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Objective: To systematically evaluate the regulatory effects of exercise
intervention on telomere length (TL) and telomerase activity (TA), and to provide
evidence for formulating precise exercise prescriptions based on telomere
protection.

Methods: Databases including China National Knowledge Infrastructure,
Wanfang, VIP, PubMed, Web of Science, Cochrane Library, and Embase were
searched to collect randomized controlled trials (RCTs) regarding the regulation
of TL and TA by exercise intervention up to February 2025. The Cochrane risk
assessment tool was used to evaluate the quality of the included literature. Meta-
analysis, heterogeneity test, subgroup analysis, sensitivity analysis, univariate
meta-regression analysis, and publication bias test were conducted using
Review Manager 5.3 and Stata 18.0 software.

Results: Exercise intervention significantly maintained TL (SMD = 0.59, 95%
CI: 0.14–1.06, P = 0.01) and enhanced TA (SMD = 0.35, 95% CI: 0.20–0.51, P
< 0.00001). A single study suggests high-intensity interval training (HIIT) may
maintain TL (SMD = 0.66, P = 0.01), but this requires further validation due to
limited evidence. Aerobic exercise (AE) consistently increased TA (SMD = 0.33,
P = 0.0001), while resistance exercise (RE) showed non-significant trends (SMD
= 0.16, P = 0.43). Subgroup analysis by sex showed a trend toward greater TL
maintenance in females (SMD = 0.48, P = 0.06) compared tomales (SMD = 0.38,
P = 0.40). An exercise duration of ≥16weekswas necessary for significant effects.
High heterogeneity (I2 = 92% for TL) was partially explained by measurement
methods, age, and baseline health.

Conclusion: Exercise maintains TL and enhances TA, potentially contributing to
delayed aging. AE shows robust effects on TA, while HIIT and RE require further
research due to limited studies. Future studies should standardize measurement
methods and explore confounders like diet and genetics.

Systematic Review Registration: PROSPERO, identifier CRD420251006569.
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1 Introduction

Research indicates that the proportion of the world’s population
aged 60 and above is increasing rapidly. It is projected that by 2050,
this proportion will rise by 20%, surpassing the number of children
globally. This phenomenon suggests that the population structure of
most countries is tending towards aging (Stambler, 2017).Therefore,
developing interventions that can slow down the aging process or
reduce the incidence of aging-related diseases has become an urgent
task, which also holds significant application value in improving
the quality of life and reducing medical costs (Chakrabarti and
Mohanakumar, 2016; Konar et al., 2016). Studies on human and
animal models have shown that various genetic, dietary, exercise,
and drug interventions can extend lifespan. Meanwhile, these
lifespan - extending methods also contribute to delaying the onset
of age - related diseases (Kenyon, 2010; Tacutu et al., 2013). In
recent years, research has revealed the importance of telomere length
(TL) and its integrity in the aging process, as well as potential
interventions to delay aging, such as physical exercise and a healthy
diet (Mercken et al., 2012). Since TL plays a crucial role in cellular
aging and telomere shortening is associated with a decrease in
life expectancy and an increased risk of chronic diseases, telomere
attrition has been described as one of the important biological
features of aging (López-Otín et al., 2013).

Telomeres are special structures at the ends of linear
chromosomes, composed of repetitive G - and C - rich DNA
sequences (5’ - TTAGGG - 3’/3’ - CCCTAA - 5′) and bound
to a protein complex (shelterin), including telomeric repeat
binding factor 1 (TRF1), telomeric repeat binding factor 2 (TRF2),
protection of telomeres 1 protein (POT1), TRF1 - and TRF2 -
interacting nuclear protein 2 (TIN2), TIN2 and POT1 interacting
protein 1 (TPP1), and repressor activator protein 1 (RAP1).
These proteins directly recognize telomere sequences and assist in
forming T - loop and D - loop structures, thus hiding the telomere
ends and suppressing the DNA damage response, preventing the
activation of ataxia - telangiectasia mutation (ATM) and RAD3
- related (ATR) kinases (Balan et al., 2018; Blackburn et al.,
2015; de Lange, 2005). Telomeres play a key role in stabilizing
chromosomes, preventing DNA degradation and end - to - end
fusion, and regulating cell growth. Simultaneously, as a mitotic
clock, their length gradually shortens with cell division, serving
as an indicator of cellular replication potential (Arnoult and
Karlseder, 2015; Blackburn, 2010). With aging, telomere shortening
leads to functional impairment, triggering genomic instability, cell
senescence, and apoptosis (Blackburn et al., 2015). Biological aging
is a process independent of chronological aging, which reduces the
organism’s viability and increases vulnerability. TL, as a biomarker
of biological aging, records both chronological and biological age
(Brown et al., 2017). When TL shortens below a threshold, it can
trigger chromosome fusion, genomic instability, and DNA damage,
resulting in the production of non - functional proteins (Cleal et al.,
2018; Hemann et al., 2001). These proteins may induce apoptosis
or promote cancer development. Although telomere shortening can
suppress tumors, its functional loss accelerates cell aging and tissue
degeneration, driving organismal aging (Vakonaki et al., 2018).
Therefore, maintaining TL is crucial for delaying aging.

Telomerase is an RNA - dependent DNA polymerase composed
of telomerase reverse transcriptase (TERT) and telomerase

FIGURE 1
PubMed database search strategy.

RNA template (TERC), which can provide cells with unlimited
proliferation potential by lengthening telomeric DNA (Blackburn,
2001; Cong et al., 2002). Due to the “end - replication problem”,
the telomeres of somatic cells gradually shorten with age, while
telomerase can slow down this process (Harley et al., 1990; Beyne-
Rauzy et al., 2005). The polymorphism of TERT is associated
with a reduced risk of breast cancer (Helbig et al., 2017), and
telomerase plays a key role in maintaining genomic stability
by synthesizing telomeres and counteracting telomere erosion
(Zhang F. et al., 2016). In addition, the regulation of telomerase
activity (TA) has potential value in anti - aging and cancer treatment
(Cong et al., 2002; Aviv, 2002).

With the change of lifestyle, the lifespan and quality of life
of the elderly have improved, especially with regular physical
exercise. However, the underlying mechanisms remain unclear,
which has, to some extent, promoted research on the relationship
between exercise and telomere biology, such as whether exercise
can delay aging and improve diseases. This systematic review
and meta - analysis aim to integrate existing clinical studies
and systematically evaluate the regulatory effects of exercise
intervention on TL and TA, providing evidence - based support
for formulating precise exercise prescriptions based on telomere
protection.

2 Methods

This studywas preregistered at PROSPERO(CRD420251006569)
and adheres to PRISMA guidelines.

2.1 Literature inclusion and exclusion
criteria

Inclusion criteria: Randomized controlled trials (RCTs)
from database inception to February 2025, with no baseline
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FIGURE 2
Flow Diagram of literature selection.

differences between experimental and control groups. The
control group maintained a regular lifestyle without exercise,
while the experimental group received exercise intervention
(minimum 16 weeks, ≥60 min/week). Outcome indicators:
TL and TA.

Exclusion criteria: Non-RCTs, studies with ineligible outcomes
(e.g., animal studies), exercise combined with diet or other
interventions, no control group, non-continuous exercise,
duplicated publications, or exercise perception training.

2.2 Literature search strategy

Databases (PubMed,Webof Science, Cochrane Library, Embase,
CNKI, Wanfang, VIP) were searched using terms “telomeres,
telomerase, exercise, senescence” up to February 2025. The PubMed
search strategy is shown in Figure 1.

2.3 Data extraction

Data were extracted on author, publication year, participant
characteristics, sample size, intervention details (time, frequency,
method), cell/tissue types, measurement methods, and outcomes.
Ineligible studies were excluded after title/abstract or full-
text review.

2.4 Quality evaluation

The Cochrane risk assessment tool evaluated selection,
implementation, detection, followup, reporting, and other biases,

with studies classified as high (5+ points), medium (3–4 points), or
low quality (2 or fewer points) (Higgins et al., 2011).

2.5 Statistical analysis

Meta-analysis used Review Manager 5.3 and Stata 18.0.
Standardized mean difference (SMD) and 95% confidence intervals
(CI) were calculated. Significance was set at P < 0.05. Heterogeneity
was assessed via Q-test (α = 0.1) (Hatala et al., 2005). A fixed-
effects model was used if I2 ≤ 50%; otherwise, a random-
effects model was applied, with subgroup, sensitivity, and meta-
regression analyses to explore heterogeneity. Egger’s test assessed
publication bias (Aviv, 2002).

3 Results

3.1 Literature search results

A total of 1,566 papers were initially obtained by searching
various databases, including Chinese databases (CNKI, Wanfang,
VIP) and English databases (PubMed, Web of Science, Cochrane
Library, Embase). After importing them into EndNote X9 literature
management software to remove duplicate papers, 741 papers
remained. Preliminary screening by reading the titles and abstracts
led to the exclusion of 689 irrelevant papers, leaving 52 papers.
Following further full-text review, 41 papers were excluded due
to intervention methods not complying (n = 5) or being non-
randomized controlled trials (n = 36). Additionally, 5 manually
searched literature pieces were added. Ultimately, 16 randomized
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TABLE 2 Extraction methods of the Studies Included in the Meta⁃analysis.

Study Cell/tissue type TL TA DNA

(Brown et al., 2023) PBMCs, Lymphocyte qPCR — PAXgeneTM Blood DNA Tube, BD Sciences

(Cheung et al., 2019) PBMCs — PCR ELISAPLUS ELISA

(Eigendorf et al., 2019) PBMCs qPCR — QIAamp DNA Mini kit

(Puterman et al., 2018) PBMCs, Leukocytes qPCR ddPCR QIAamp® DNA Blood Midi kit

(Werner et al., 2019) PBMCs, Leukocytes Flow cytometry, FISH, PCR Lightcycler QIAamp DNA Blood Mini Kit(Column
extraction)

(Friedenreich et al., 2018) PBMCs, Leukocytes qPCR — Macherey-Nagel NucleoMag Blood 200 μL
kit

(Duan et al., 2016) PBMCs — TE ELISA Sodium citrate tube

(Dimauro et al., 2016) PBMCs RT-PCR — ChargeSwitch gDNA 50–100 μL blood Kit

(Mason et al., 2014) PBMCs, Leukocytes qPCR — Qiagen Midi Kit
Kit(Column extraction)

(Ho et al., 2012) PBMCs — TRAP ELISA Ficoll-Paque PLUS

(Shin et al., 2008) PBMCs qPCR — Wizard
Genomic DNA Purification Kit

(Hagstrom and Denham, 2018) PBMCs, Leukocytes qPCR — Macherey-Nagel NucleoMag Blood 200 μL
kit

(Ribeiro et al., 2021) PBMCs, Leukocytes qPCR — MasterPure Complete DNA and RNA
Purification Kit

(Saks et al., 2016) PBMCs qPCR qPCR —

(Sanchez-Gonzalez et al., 2021) Saliva qPCR — NanoDropTM 2000/2001
spectrophotometer

(Hoodenand-Moghadam et al., 2020) PBMCs — ELISA human kit ELISA human kit

PBMCs:Peripheral blood mononuclear cells; qPCR: Quantitative Polymerase Chain Reaction; TRAP: Telomeric Repeat Amplification Protocol; ddPCR: Droplet Digital PCR; TE-ELISA:
human telomerase–enzyme linked immunosorbent assay.

controlled trial (RCT) papers were included in the qualitative and
meta-analyses (Figure 2).

3.2 Basic characteristics and quality
evaluation of the included papers

The basic characteristics of the 16 papers included in the
Meta-analysis of this study are shown in Table 1. A total of 1,908
subjects were included in the Meta-analysis, with 1,005 in the
experimental group and 903 in the control group. Among them,
11 papers adopted aerobic exercise (AE) intervention, 1 paper
used high intensity interval training (HIIT) intervention, 3 papers
applied resistance exercise (RE) intervention, and 3 paper used
a combination of aerobic and resistance exercise intervention.
The control groups in all included papers did not undergo any
exercise intervention. The participants varied in type, including

patients with breast cancer, women suffering from intimate partner
violence, healthy women, people with high stress and lack of
exercise, healthy populations, menopausal women, healthy elderly
people, overweight and obese women, chronic disease patients,
obese middle-aged females, postmenopausal women, PCOS
women, myocardial infarction patients, and healthy older women.
Gender distribution varied across studies, with some focusing
on females, males, or mixed populations. Exercise intervention
durations ranged from 8 to 52 weeks, with frequencies from 2 to
7 times per week.

Table 2 outlines the cell/tissue types used for analysis and the
methods for measuring TL and TA. Leukocytes were commonly
used for TL measurement via qPCR, while PBMCs were frequently
used for TA measurement through methods like PCR ELISA PLUS
orTRAPELISA.DNAextractionmethods also varied, including kits
such as QIAamp DNA Mini kit, PAXgeneTM Blood DNA Tube, or
Macherey-Nagel NucleoMag Blood 200 μL kit.
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FIGURE 3
Analysis of the risk of bias in Accordance with the Cochrane Collaboration Guidelines.

The Cochrane risk of bias assessment tool was used to evaluate
the quality of the above papers. Six papers were of high quality, and
nine were of medium quality. The evaluation results are shown in
Figures 3, 4.

3.3 Meta-analysis results

3.3.1 Meta-analysis of the effect size of TL
Fourteen studies assessed TL. Exercise maintained TL (SMD

= 0.59, 95% CI: 0.22–0.95, P = 0.001, I2 = 92%, random-effects
model) (Figure 4). Subgroup analysis by exercise type showed trends
for AE (SMD = 0.48, P = 0.06, I2 = 93%), RE (SMD = 1.79, P =
0.34, I2 = 95%), HIIT (SMD = 0.66, P = 0.01, single study), and
AE + RE (SMD = 0.57, P = 0.13). The HIIT result is preliminary
due to reliance on a single study. Subgroup analysis by sex showed
a trend for females (SMD = 0.48, P = 0.06) over males (SMD =
0.38, P = 0.40) (Figure 5). Sensitivity analysis indicated stable results

(Figure 6). Meta-regression identified publication year (2016–2018)
as a heterogeneity source (β = −1.256, P = 0.026) (Table 3)

3.3.2 Meta - analysis of the effect size of TA
Nine studies assessed TA. Exercise enhanced TA (SMD = 0.36,

95% CI: 0.22–0.51, P < 0.00001, I2 = 39%, fixed-effects model)
(Figure 7). Subgroup analysis showed significant effects for AE
(SMD = 0.33, P = 0.0001, I2 = 44%) and HIIT (SMD = 0.78,
P = 0.003, single study), but not RE (SMD = 0.16, P = 0.43).
Mixed-gender groups showed significant TA increases (SMD= 1.12,
P = 0.02) (Figure 8).

3.3.3 Publication bias analysis
Egger’s test was used to study the publication bias of the literature

from two aspects: the intervention effect of exercise on TL and TA.
When the intercept segment crossed the zero point, the publication
bias was low. For the intervention effect of exercise on TL, the
test result was t = 0.46, P = 0.66, 95% CI: (−5.42–8.15), which
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FIGURE 4
Subgroup analysis of TL effect size under Different Modes of exercise.

FIGURE 5
Subgroup analysis of TL effect size under Different gender of exercise.
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FIGURE 6
Sensitivity analysis of TL effect size under Different Modes of exercise.

TABLE 3 Meta-regression analysis results of heterogeneity factors Affecting TL effect size.

Research features Regression coefficient(β) 95%CI t p

Intervention time −0.04 −0.08∼0.008 −1.91 0.09

Sample size −0.002 −0.01∼0.01 −0.39 0.71

health 0.69 −0.79∼2.16 1.07 0.32

country 0.40 −0.21∼1.00 1.51 0.17

Gender 0.56 −0.95∼2.07 0.85 0.42

Article quality −0.45 −2.34∼1.44 −0.55 0.60

Publication Year 2016–2018 −1.25628 −2.32∼−0.20 −2.73 0.026

included 0, indicating that there was no obvious publication bias
in the intervention effect of exercise on TL, and the results of the
Meta - analysis were relatively stable. For the intervention effect
of exercise on TA, the test result was t = 1.35, P = 0.24, 95%
CI: (−1.91–6.11), which included 0, indicating that there was no
obvious publication bias in the intervention effect of exercise on
TA, and the results of the Meta - analysis were relatively stable
(Figures 9, 10).

4 Discussion

Exercise maintains TL and enhances TA, potentially
contributing to delayed aging. This meta-analysis of 16 RCTs
provides evidence for exercise prescriptions targeting telomere

protection, aligning with prior meta-analyses like Schellnegger et al.
(2022), which found exercise associated with longer TL in
leukocytes (SMD = 0.41, P < 0.05) but noted similar heterogeneity
challenges (Schellnegger et al., 2022). TL and TA are robust
biomarkers of cellular aging, reflecting replication potential
more directly than oxidative stress or inflammatory markers
(Tacutu et al., 2013). Exercise maintained TL (SMD = 0.60,
P = 0.01) and enhanced TA (SMD = 0.35, P < 0.00001). The
claim of telomere lengthening is tempered by mechanisms such
as selective apoptosis of cells with short telomeres, which may
increase the proportion of cells with longer telomeres without
actual elongation (Beyne-Rauzy et al., 2005). Thus, exercise
primarily maintains TL relative to sedentary controls. TA increases
may result from telomerase recruitment to short telomeres
(Zou et al., 2004), immune cell proliferation (Simpson et al.,
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FIGURE 7
Subgroup analysis of TA effect size under different modes of exercise.

FIGURE 8
Subgroup analysis of TA effect size under different gender of exercise.

2010), or upregulation of TERT expression (Zhang J. et al.,
2016). Mechanistically, exercise reduces oxidative stress via
enhanced antioxidant enzyme activity (e.g., superoxide dismutase)
(Shin et al., 2008) and suppresses inflammation through reduced
pro-inflammatory cytokines (e.g., IL-6, TNF-α) (Werner et al., 2019;

von Zglinicki, 2002), both of which protect telomeres from damage
(von Zglinicki, 2002).

Subgroup analysis by sex showed a stronger TL maintenance
trend in females (SMD = 0.48, P = 0.06) than males (SMD = 0.38,
P = 0.40), possibly due to estrogen’s role in telomerase regulation
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FIGURE 9
Bias analysis of the impact of exercise intervention on TL

FIGURE 10
Bias analysis of the impact of exercise intervention on TA

(Konar et al., 2016). AE consistently enhanced TA (SMD = 0.33,
P = 0.0001), while HIIT showed promise for TL maintenance
(SMD = 0.66, P = 0.01), though this finding is limited by a single
study (Werner et al., 2019). RE showed non-significant trends
(SMD = 0.16, P = 0.43), likely due to only three studies and high
variability in protocols (e.g., intensity, volume) (Zhang F. et al.,
2016). Merging AE and RE categories was considered but not
implemented, as their distinct physiological mechanisms (e.g.,
oxidative stress reduction inAE vsmuscle hypertrophy inRE) justify
separate analyses (Vakonaki et al., 2018).

High heterogeneity (I2 = 92% for TL) was partially explained
by measurement methods (e.g., qPCR, Flow-FISH, Southern blot),
participant age, and baseline health (Table 2). For example, qPCR
is less precise than Southern blot for TL measurement, potentially

inflating variability (Chakrabarti and Mohanakumar, 2016). TRAP
ELISA for TA is less reliable than gel-based TRAP or droplet
digital PCR (Friedenreich et al., 2018). Participant diversity (healthy,
cancer, obese, stressed) and age (20–80 years) likely amplify
heterogeneity, as disease states or older age may enhance exercise
effects (Puterman et al., 2018).Metaregression identified publication
year as a significant heterogeneity source, but only 25.2% of
variance was explained, suggesting unexamined confounders like
diet or genetics (von Zglinicki, 2002). The forest plots (Figures 4,6, )
correctly represent effect sizes favoring exercise, with positive SMD
indicating TL/TA increases.

Causal claims about exercise delaying aging are tempered by
potential confounders. Diet (e.g., antioxidant intake) and genetic
factors (e.g., TERT polymorphisms) may influence TL and TA
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independently or interact with exercise effects (von Zglinicki,
2002). For instance, high antioxidant diets may synergize with
exercise to reduce oxidative stress, while genetic predispositionsmay
modulate telomerase response (de Lange, 2005). These factors were
not controlled in most included studies, limiting causal inferences.

Exercise prescriptions include:

• TL maintenance: HIIT, ≥16 weeks, ≥60 min/week, 80%–90%
max heart rate, pending further validation.

• TA enhancement: AE (e.g., running, swimming),
≥150 min/week, 60%–75% heart rate reserve, ≥6 months.

• Comprehensive strategy: Combine AE and RE (e.g., Taijiquan)
for synergistic effects (Blackburn, 2001).

Limitations include reliance on English literature, limited
HIIT/RE studies, measurement variability, and uncontrolled
confounders like diet and genetics. Compared to Schellnegger et al.
(2022), our study includes more recent RCTs and TA outcomes
but faces similar heterogeneity challenges (Schellnegger et al.,
2022). Future research should standardize TL/TA measurement
methods (e.g., adopt Southern blot or droplet digital
PCR), control for confounders, and explore sex- and
cell-specific effects.

5 Conclusion

Exercise maintains TL and enhances TA, potentially
contributing to delayed aging. AE shows robust effects on TA, while
HIIT and RE require further research due to limited studies and
non-significant results for RE. Standardized measurement methods
and control for confounders like diet and genetics are needed to
strengthen causal inferences.
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Glossary

RCTs randomized controlled trials

TRF1 telomeric repeat binding factor 1

TRF2 telomeric repeat binding factor 2

POT1 protection of telomeres 1 protein

TIN2 TRF1 - and TRF2 - interacting nuclear protein 2

TPP1 TIN2 and POT1 interacting protein 1

RAP1 repressor activator protein 1

TERT telomerase reverse transcriptase

TERC telomerase RNA template

AE Aerobic exercise

RE Resistance exercise

HIIT High-intensity interval exercise

HR Heart rate
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