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Objectives:This study aimed to explore the potential of synchronously acquiring
wrist pressure pulse wave (PPW) and limb lead electrocardiogram (ECG) signals
for the development of an identificationmodel for coronary heart disease (CHD)
and its associated comorbidities.

Methods: A custom-designed device equipped with pressure and ECG sensors,
was utilized to synchronously collect wrist PPW and limb-lead ECG signals from
748 participants (463 for modeling and 285 for external validation). Features
were extracted from these two types of physiological signals to form distinct
datasets, and RF models were built based on different datasets. The top-
performing RF model was then selected and compared against the Feature-
Selected (FS-RF), Support VectorMachine (SVM) and BaggedDecision Tree (BDT)
models. Ultimately, the optimal model for predicting coronary heart disease
(CHD) and its comorbidity was determined based on evaluation metrics.

Results:The RFmodel that integrated both PPWand ECG features demonstrated
significantly higher effectiveness compared to the RF model that relied
on a single physiological signal. Furthermore, when benchmarked against
the feature-selected RF(FS-RF), SVM and DBT models, the FS-RF model
demonstrated the best performance, achieving an accuracy of 76.32%, an
average precision of 75.82%, an average recall of 76.11%, and an average F1-
score of 75.88%, all of which were higher than those of other models. Notably,
the selected feature by FS-RF encompassed both PPW and ECG features.

Conclusion: This study highlights the importance of synchronously acquiring of
PPW and ECG signal, alongwith feature selection, in enhancing the performance
of the FS-RF model for identifying CHD and its associated conditions. These
findings provide a scientific basis for the application of wearable devices in
clinical settings, highlighting their potential to aid in the early detection and
management of cardiovascular disease.
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1 Introduction

Coronary heart disease (CHD) is a common chronic
cardiovascular condition, primarily caused by coronary
atherosclerosis, which leads to vascular lumen narrowing or
occlusion, subsequently resulting in myocardial ischemia, hypoxia,
and even infarction. Comorbidities such as hypertension and
diabetes significantly increase the risk of cardiovascular events,
severely affect patients’ quality of life, and place a substantial burden
on healthcare systems. Despite ongoingmedical advances, the global
prevalence of CHD and its comorbidities remains high. Therefore,
early identification and risk stratification remain pressing clinical
challenges.

Pulse diagnosis, a traditional diagnostic technique in Traditional
Chinese Medicine (TCM), involves physicians assessing a patient’s
condition by palpating the wrist pulse with their fingers. With
the rapid advancement of modern technology, signal analysis
techniques havemade significant progress, providing robust support
fort the modernization of traditional medicine practices. Wrist
pressure pulsewave (PPW) signal acquisition and analysis device has
emerged as an objective and quantitative tool, capable of precisely
capturing and analyzing pulse wave signals. This technology
provides a powerful tool for disease classification and diagnosis.
Compared to the traditional pulse diagnosis method, PPW
signal analysis exhibits higher accuracy and reproducibility, aiding
physicians in more scientifically assessing patients’ health status.

In recent years, remarkable achievements have been made in
the medical field through the integration of PPW signals and
machine learning methods. By employing sophisticated algorithms,
researches have been able to extract latent information embedded
within PPW signals, enabling precise disease classification and
prediction. For example, Zhang et al. (2018) applied a three-
class support vector machine (SVM) to distinguish PPW signals
between healthy individuals and lung cancer patients, achieving an
accuracy of 78.13%. Jiang et al. (2022) used sparse decomposition
combined with an enhanced Gabor function to identify the
PPW characteristic specific to diabetic patients, attaining an
accuracy of 93.54%. Lyu et al. (2024) employed various machine
learning classifiers to analyze PPW signals, with the Extra Trees
classifier achieving an accuracy of 85.79% in classifying healthy
individuals, CHD patients, and those with hypertension. Our
research team has also contribution to this body of work by
demonstrating the potential of PPW signals in assessing cardiac
function (Wu et al., 2023; Zhang et al., 2024). Collectively, these
findings underscore the value of integrating PPW signals with
machine learning techniques for advancing medical diagnostics.

However, most existing studies predominantly rely on single-
modality physiological signals, which are limited in their ability to
reflect complex pathological processes. Consequently, multimodal
fusion technologies have increasingly become a research focus.
Wang et al. (2023) combined Electrocardiogram (ECG) and
Photoplethysmogram (PPG) signals using a fusion matrix model
to estimate blood pressure, achieving correlation coefficients of
0.988 and 0.991 for systolic and diastolic pressure, respectively. In
a separate study, our team (Xiaotian et al., 2024) utilized pressure
and photoelectric sensors to capture PPW and figure PPG signals,
developing a random forest model that achieved 78.79% accuracy
in assessing the severity of coronary artery disease. These studies

highlight the advantages of multimodal approaches in enhancing
diagnostic accuracy and reliability.

Despite these advancements, research on the synchronous
acquisition and fusion analysis of ECG and PPW signals remains
limited. ECG reflects the heart’s electrical activity, while PPW
represents its mechanical function. The integration of these
two modalities may offer a more comprehensive evaluation of
cardiovascular status.

To address this research gap, our team has developed a
novel device capable of synchronously acquiring ECG and PPW
signals. In this study, we extract multimodal features of ECG and
PPW signals from patients with CHD and related comorbidities,
construct random forest (RF) classification models, and compare
their performance with Support Vector Machine (SVM), Bagged
Decision Trees (BDT), and feature-selected RF models. The
results demonstrate that multimodal fusion, combined with feature
selection, can significantly enhance the identification accuracy
of CHD and related diseases, offering a promising avenue for
improving diagnostic capabilities in clinical settings.

2 Data and methods

2.1 Participants

Participants were recruited from cardiology inpatients and
individuals undergoing routine health assessments at the Physical
Examination Center. The study was conducted over a two-year
period, spanning from March 2021 to March 2023, at Yueyang
Hospital of Integrated Chinese and Western Medicine, Shanghai
Jiading District Central Hospital, Shuguang East Hospital and
Shanghai Municipal Hospital of Tradition Chinese Medicine, all of
which are affiliated institution of Shanghai University of Traditional
Chinese Medicine.

The study population for modeling comprised 75 individuals
diagnosed with CHD, 134 individuals with both CHD and
hypertension, 102 individuals with a combination of CHD,
hypertension and diabetes, and 152 healthy controls. For the
purpose of analysis, participants were categorized into four distinct
groups: Group 1 (healthy controls), Group 2(CHDpatients), Group3
(CHD patients with hypertension), and Group 4(CHD patients
with hypertension and diabetes). An additional 285 cases were for
external validation. All data were obtained with written informed
consent from the participants and were maintained under strict
confidentiality protocols.

2.2 Diagnostic criteria

CHD diagnosis followed the ACC/AHA 2023 Guidelines
(Virani et al., 2023), confirmed by coronary angiography
(≥50% stenosis) or documented myocardial infarction.
Hypertension was defined per Chinese Hypertension
Prevention and Treatment Guidelines (2024 Revision)
(Revision Committee of Chinese Guidelines for the Prevention
and Treatment of Hypertension et al., 2024) as: systolic/diastolic
blood pressure ≥140/90 mmHg on ≥3 separate days or current
antihypertensive treatment. Type 2 diabetes mellitus diagnosis
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adhered to Chinese Type 2 Diabetes Prevention and Treatment
Guidelines (2017) (Chinese Diabetes Society, 2018), requiring
fasting plasma glucose ≥7.0 mmol/L and/or HbA1c ≥ 6.5%, or
previously confirmed diagnosis with ongoing therapy.

All comorbidities and medications were triple-verified through:
(1) hospital EHR-documented discharge diagnoses; (2) laboratory
test reports within 6 months (including lipid profiles, glucose
tests); (3) independent review by two cardiologists. Self-reported
data conflicting with medical documentation were corrected per
clinical records.

2.3 Inclusion and exclusion criteria

2.3.1 Inclusion criteria

(i) Participants must fulfill aforementioned diagnostic criteria
for the targeted diseases. (ii) Participants must be in good
mental health, with no past history of severe mental disorders,
and demonstrate the ability to fully cooperate with study
procedures, including the collection process of clinical data.
(iii) Participant must be aged between 20 and 75 years
(iv) Complete general information and clinical data must be
available for each participant. (v)Prior to participation, written
informed consent must be obtained from all participants.

2.3.2 Exclusion criteria

(i) Patients experiencing acute myocardial infarction during the
study period or with a history of acute myocardial infarction
within the past 3 months; those with acute heart failure, severe
valvular diseases, pulmonary embolism, malignant tumors,
mental disorders, or severe respiratory diseases. (ii) Individuals
participating in a clinical trial or who have undergone
significant therapy within the past 6 months (iii) Individuals
with incomplete general information and clinical data.

2.4 Data collection

2.4.1 General information collection
In this study, a structured questionnaire (Liu et al., 2009)

was used to gather demographic information from participants,
including gender, age, height, weight, body mass index (BMI),
systolic blood pressure (SBP),diastolic blood pressure (DBP),and
other relevant data. BMI was determined according to the formula:
BMI = weight (kg)/[height(m)]2.

2.4.2 Synchronous acquisition of PPW and ECG
Pulse diagnosis device (ZY-II type), equipped with pressure

and electrocardiogram (ECG) sensors, was used to collect wrist
pulse and limb-lead ECG signals. The device was jointly developed
by Shanghai University of Traditional Chinese Medicine and East
China University of Science and Technology, which acquisition
terminal include pressure sensor and electrodes.The pressure sensor
is placed at the strongest pulsation point of the wrist with a strap
for PPW collection. The ECG acquisition terminal uses a standard
limb-lead configuration for signal collection, with the red electrode

positioned on the participant’s right upper limb, the yellowon the left
upper limb, and the green on the right lower limb. Figure 1 presents
an example.

Before data collection, all participants were instructed to
rest for at least 3 min to ensure physiological stability. The
data collection lasted for 60 s with a sampling frequency of
1,100 Hz. Optimal signals for subsequent feature extraction
were collected when the signals from both channels with the
software system exhibited stability and reached their maximum
amplitude.

2.5 Data pre-processing

When acquiring PPW and ECG signals using hardware devices,
high-frequency noise is initially removed through low-pass filtering.
However, during the subsequent transmission process, these signals
remain susceptible to various environmental interferences and
power line interference, introducing both high-and low-frequency
noise to varying degrees. This significantly impacts the subsequent
signal analysis and processing tasks. Consequently, it is essential to
apply digital filtering to the signals in order to eliminate baseline drift
and ensure accurate analysis.

2.5.1 Pre-processing for PPW

(i) Filtering of PPW Signals The PPW signal is a relatively weak
physiological signal with its main frequency ranging from 0
to 20 Hz. The majority of its energy is concentrated within
the 0–10 Hz range, and the dominant frequency energy is
less than 3 Hz. In our experiment, the energy of the PPW
signals is primarily distributed below 8 Hz. Therefore, a 3rd-
order Butterworth low-pass filter with a cutoff frequency
of 8 Hz was employed to filter the PPW signal. This filter
effectively suppressed noisewhile preserving the integrity of the
signal.

(ii) Removal of the Baseline Drift Following the low-pass filtering,
while high-frequency noise in the PPW signal is effectively
suppressed, the issue of baseline drift still lingers. The baseline
drift observed in the PPW signal can be primarily attributed to
two factors: interference from the human respiratory frequency
and the sensitivity of the piezoresistive pulse sensor’s output
waveform to pressure changes. The presence of baseline drift
introduces a discernible fluctuation trend in the waveform,
increasing the variability among pulse waveforms across
different cycles. Such variability poses a significant challenge to
subsequent feature extraction and signal processing analysis.

To address this issue, this study employs a cubic spline curve
fitting method for baseline drift removal. Initially, the trough points
in the PPW signal are identified. These trough points in the PPW
signals are then utilized to perform cubic spline curve fitting,
yielding the baseline drift curve.The advantage of cubic spline fitting
lies in its ability to generate a smooth curve with gradual change. By
subtracting this baseline drift curve from the original PPW signal,
the PPWsignal remains undistorted and is well-adjusted to the zero-
line position. This provides a stable and accurate foundation for
subsequent signal processing and analysis.
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FIGURE 1
Synchronous acquisition of PPW and ECG signals.

2.5.2 Pre-processing for ECG

(i) Filtering of ECG Signals Upon examining the frequency
spectrum of the collected ECG signals, it becomes evident
that these signals are primarily affected by two types of
interference: 50 Hz electromagnetic interference (EMI)
originating from the electrical circuits and myoelectric
interference with the frequency range of 20Hz–40 Hz.
When determining the cutoff frequencies for the filters, it is
necessary to balance between noise removal, smoothing of
the ECG waveform, and preservation of the original signal
morphology. These balances ensure that the subsequent
identification of ECG feature points remains accurate and
reliable.

To achieve this, a two-stage filtering method was designed
in this study. In the first stage, a cutoff frequency of 40 Hz
was set to effectively eliminate the 50 Hz power line noise. This
step is essential for the accurate extraction of the R-wave feature
points, which are critical for ECG analysis. Following, a cutoff
frequency of 20Hz was applied in the second stage to further
filter out any remaining noise above 20 Hz. By utilizing the signal
from which noise above 20 Hz has been removed, other feature
points were identified using the already detected R-waves as a
reference.This two-stage approach ensures a clean and accurate ECG
signal, facilitating the precise identification of all relevant feature
points.

(ii) Removal of Baseline Drift Eliminating baseline drift in ECG
signals is necessary for accurate analysis, and this can be
achieved by adjusting the onset of the P-wave to the zero line.
The key to accomplish this line in accurately identifying the
onset of the P-wave in each ECG cycle. Once these points are
determined, they can serve as the basis for fitting a baseline for
the ECG signal.

In the specific implementation process, our study employed
a low-pass filtering approach. Given that baseline drift typically

occurs at relatively low frequencies, we applied a low-pass filter
to the raw ECG signal. The cutoff frequency for this filter was
carefully selected to be between 0.2 and 0.5 Hz, ensuring that
the signal baseline could be effectively extracted. Subsequently,
by subtracting this extracted baseline from the original signal,
we obtained an ECG signal with the baseline drift removed,
thereby enhancing the accuracy and reliability of subsequent
analysis.

2.6 Feature extraction methods for PPW
and ECG signals

2.6.1 PPW feature extraction
In this study, we employ the time-domain analysis method

to extract the peaks and troughs of PPW signal in typical
cycle, thereby illustrating its amplitude (H1, H2, H3, H4, H5),
duration (T1, T2, T3, T4, T5, T, W1, W2), and area feature
(As, Ad), refer to Figure 2. Additionally, we calculated the ratios
of these features (H2/H1, H3/H1, H4/H1, H5/H1, T1/T, T4/T,
T1/T4, T5/T4, W1/T, W2/T, As/Ad) to gain further insights.
Furthermore, pulse variation features such as P-rMSSD and P-
SDNN were also calculated. The physiological significance of
some statistically significant parameters is shown in Table 1
(Yan et al., 2021).

2.6.2 ECG feature extraction
In this investigation, the time-domain method was used to

extract ECG-specific points, as illustrated in Figure 3 (Xu et al.,
2017). Subsequently, a comprehensive of features was calculated,
including the P, Q, R, S, T waves, along with various segments
and intervals: P segment, QRS segment, T segment, PR segment,
ST segment, PR interval, QT interval, RR interval and heart
rate (HR). Additionally, heart rate variability (HRV) features
SDNN, RMSSD and mean RR were calculated. The physiological
significance of some statistically significant parameters is shown in
Table 2.
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FIGURE 2
Time-domain analysis of PPW in typical circle.

2.7 Statistical analysis

Statistical analysis was conducted using SPSS Statistics 25.0
(IBM, Armonk, NY, United States) to compare differences in
pulse and ECG features among the four groups. For continuous
variables, if the data followed a normal distribution, analysis of
variance (ANOVA) was utilized, with results expressed as mean and
standard deviation (denoted as x¯±SD); if the assumption of normal
distribution was not met, the non-parametricMann-Whitney U test
was used, with outcomes represented by the median and quartiles,
(denoted asM (QR1-QR3)). For categorical data, the Chi-square test
was employed, with results expressed in terms of frequencies and
percentages (denoted as n (%)). A significance level of P < 0.05 was
used to indicate statistical significance.

2.8 Model establishment and evaluation
methods

2.8.1 Model establishment
In this study, three distinct machine learning algorithms were

employed to develop models for disease identification. These
algorithms include Random Forest (RF), Support Vector Machine
(SVM), and Bagged Decision Trees (BDT). RF is an ensemble
learning method that combines predictions from multiple decision
trees, determining the final result by selecting the most frequent
outcome among these trees (Schwarz et al., 2010). This approach
leverages the strength of multiple weak learners to improve
predictive accuracy.

BDT, on the other hand, employs the technique of Bagging or
Bootstrap Aggregating, which involves generating multiple versions
of a decision tree predictor by resampling the training data and
then aggregating their predictions to obtain a final result (Chen and

Guestrin, 2016). Bagging helps to reduce overfitting and improve the
stability of the mode.

SVM is a powerful supervised learning algorithm use for
classification and regression tasks. It seeks to find an optimal
hyperplane within the feature space, maximizing the margin
between distinct class (Boser et al., 1992). SVM can handle both
linear and non-linear data through the use of kernel functions,
which transform the input data into a higher-dimensional space
where a linear separation is possible. Each of these models possesses
unique strengths and has foundwidespread application in predictive
analytics.

2.8.2 Model evaluation methods
A confusion matrix was used to summarize performance of a

classification model. This matrix compares the actual class of an
instance with the class predicted by the model. The matrix typically
has two dimensions: the classes and the predicted classes. A typical
structure of the confusion matrix for a binary classification problem
is presented in Table 3.

Accuracy = TP+TN
TP+ FN+ FP+TN

(1)

Using the confusion matrix, calculated accuracy, precision,
recall and F1-score employing Formula 1 through Formula 4,
respectively. These evaluation metrics are equally applicable to
multi-classification problems.

Precision: The ratio of correctly predicted positive instances to
the total number of instances predicted as positive.

Precision = TP
TP+ FP

(2)
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TABLE 1 Physiological significance of PPW features.

Features Physiological significance

T Reflects one cardiac cycle of the left ventricle

T1 Reflects left ventricular rapid ejection phase

T4 Reflects left ventricular systolic period

T5 Reflects left ventricular diastolic period

W1 The width of the upper 1/3 of the main wave indicates the duration of the artery’s high-pressure level

W2 The width of the upper 1/5 of the main wave indicates the duration of the artery’s high-pressure level

H2/H1 Reflects arterial elasticity and peripheral vascular resistance

H3/H1 Reflects arterial elasticity and peripheral vascular resistance

H5/H1 Reflects aortic elasticity and aortic valve function

T1/T Reflects cardiac ejection function

T4/T Reflects relative duration of the systole

W1/T Reflects the duration of the artery’s high-pressure level

W2/T Reflects the duration of the artery’s high-pressure level

P-rMSSD Reflects root mean square of the difference between adjacent pulsation periods

P-SDNN Reflects the standard deviation of the adjacent pulsation period

FIGURE 3
Time-domain analysis of ECG.

Recall: The ratio of correctly predicted positive to the total
number of actual positive.

Recall = TP
TP+ FN

(3)

F1-Score: The harmonic means of precision and recall.

F1− score = 2×Precision×Recall
Precision+Recall

(4)
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TABLE 2 Physiological significance of ECG features.

Features Physiological significance

QRS segment Reflects the completion time of ventricular depolarization

PR interval Reflects ventricular activation time

ST segment Reflects the time from ventricular depolarization to the beginning of repolarization

QT interval Reflects the total time of ventricular depolarization and repolarization

HR Reflects the number of beats per minute at rest

RR interval Reflects the time between consecutive heartbeats, starting from the activation of the sinoatrial node

SDNN Reflects overall heart rate variability, indicating the autonomic nervous system’s regulation

RMSSD Indicates short-term heart rate variability, primarily reflecting parasympathetic activity

mean RR Reflects the mean of sinus RR intervals

TABLE 3 Confusion matrix.

Predicted classes Actual classes

Positive Negative

Positive TP FP

Negative FN TN

Accuracy: The ratio of correctly predicted instances (true positives and true negatives) to
the total number of instances (predictions).

3 Results

3.1 Sample size calculation

To ensure sufficient statistical power for our study design, we
conducted sample size calculations using G∗Power 3.1.9.7 software
t. Based on Cohen’s (Cohen, 2013) recommendations, we adopted a
medium effect size (w = 0.30), a significance level (α) of 0.05, and
a power (1 − β) of 0.80. The degrees of freedom were calculated
as (4–1) × (27–1) = 78. Based on these parameters, our sample
size calculation indicated that a minimum of 405 participants were
required. Ultimately, we recruited total of 463 participants, thus
meeting the sample size requirement for robust statistical analysis.

3.2 Demographic comparison among
groups

The demographic characteristic of the study groups is
presented in Table 4. Upon statistical analysis, no significant
differences in sex distribution were observed among the groups
(P > 0.05). However, a notable age discrepancy was observed,
whereby individuals in Group 2, Group 3, and Group 4 were
exhibited significantly higher mean age than those in Group 1 (P <
0.05). Additionally, the BMI values in Group 3 and Group 4 were

significantly higher compared to both Group 1 and Group 2 (P <
0.05).This indicates a higher prevalence of overweight or obesity in.

Two groups relative to the others. Additionally, significant
higher levels of SBP and DBP were observed in Group 3 and
Group 4 when compared to Group 1 (P < 0.05). These findings
suggest potential variations in cardiovascular health status among
the study groups.

3.3 Comparison of PPW and ECG features
among groups

The analytic results of PPW and ECG features across the
four groups is presented in Table 5 and 6, respectively. Table 5
revealed that compared to Group 1 with healthy individuals, all
other groups demonstrated significant increases in various pulse
features, including H2/H1, H3/H1, T, T1, T4, and T5, while H5/H1
was notably lower. These findings suggest altered hemodynamics
in the groups with CHD and its comorbidities. Specifically, the
increased H2/H1 and H3/H1 ratios indicated reduced arterial
elasticity and elevated peripheral vascular resistance, whereas the
decrease in H5/H1 may suggest impaired aortic elasticity and aortic
valve function.

When Compared to Group 1, Group 2 exhibited a higher
T1/T ratio, reflecting an elevated cardiac ejection function in
CHD patients. This increase is likely a compensatory mechanism,
suggesting that the heart is working hard to maintain normal blood
supply. Additionally, Group 3, when compared toGroup 1, exhibited
lower P-rMSSD and P-SDNN values, signifying reduced pulse rate
variability. This reduction in pulse rate variability mirrors changes
in HRV to some extent and suggest a decline in autonomic nervous
function of the heart.

Furthermore, the P-SDNN value in Group 4 was even lower
than that in Group 3, further emphasizing the progressive decline in
autonomic function with the addition of diabetes as a comorbidity.
When compared to Group 2,Group 3 showed higher values for T,
W1, and W2, suggesting a decreased in HR and an increased in
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TABLE 4 Comparison of demographic data among groups [n (%),‾x±SD].

Groups n Sex Age BMI SBP (mmHg) DBP (mmHg)

Male Female

Group 1 152 96 (63.2%) 56 (36.8%) 44.85 ± 21.86 23.13 ± 2.95 125.59 ± 16.39 74.82 ± 8.49

Group 2 75 38 (50.7%) 37 (49.3%) 65.25 ± 11.35∗ 23.29 ± 3.72 127.96 ± 16.88 76.84 ± 9.24

Group 3 134 75 (56.0%) 59 (44.0%) 68.95 ± 8.39∗ 24.22 ± 3.35∗# 134.73 ± 14.71∗# 77.95 ± 10.29∗

Group 4 102 58 (56.8%) 44 (43.2%) 68.74 ± 7.85∗ 24.47 ± 2.99∗# 137.75 ± 14.78∗# 79.48 ± 9.25∗

Statistical value -- x2 = 3.60 F = 87.12 F = 5.07 F = 15.79 F = 5.64

P value -- 0.31 <0.001 <0.001 <0.001 <0.001

Note:∗, compared with Group 1, P < 0.05; #, compared with Group 2, P < 0.05.

TABLE 5 Comparison of PPW features among groups [M(QR1-QR3)].

Pulse features Group 1 (n = 152) Group 2 (n = 75) Group 3 (n = 134) Group 4 (n = 102) Z P

H2/H1 0.85 (0.56,0.95) 0.94
(0.86,0.97)∗

0.92
(0.84,0.96)∗

0.93
(0.89,0.97)∗

31.97 <0.001

H3/H1 0.72 (0.46,0.86) 0.83
(0.73,0.89)∗

0.81
(0.72,0.86)∗

0.83
(0.74,0.88)∗▲

28.77 <0.001

H5/H1 0.38 (0.30,0.43) 0.3
(0.25,0.36)∗

0.34
(0.27,0.40)∗

0.32
(0.25,0.37)∗▲

35.02 <0.001

T 0.79 (0.72,0.88) 0.86
(0.78,0.93)∗

0.9
(0.80,1.00)∗#

0.85
(0.74,0.92)∗#▲

34.67 <0.001

T1 0.13 (0.12,0.14) 0.15
(0.14,0.16)∗

0.14
(0.13,0.16)∗

0.14
(0.13,0.16)∗#

33.18 <0.001

T4 0.32 (0.30,0.35) 0.35
(0.33,0.37)∗

0.36
(0.33,0.38)∗

0.34
(0.32,0.36)∗#

45.63 <0.001

T5 0.41 (0.39,0.45) 0.46
(0.43,0.48)∗

0.46
(0.42,0.47)∗

0.44
(0.41,0.46)∗#▲

63.36 <0.001

T1/T 0.16 (0.14,0.19) 0.18
(0.15,0.20)∗

0.16
(0.14,0.18)#

0.17
(0.15,0.19)∗▲

12.11 <0.001

W1 0.16 (0.12,0.20) 0.19
(0.17,0.22)∗

0.2
(0.17,0.23)∗#

0.19
(0.17,0.22)∗

58.79 <0.001

W2 0.11 (0.08,0.15) 0.14
(0.12,0.17)∗

0.15
(0.12,0.19)∗#

0.15
(0.12,0.18)∗

57.78 <0.001

W1/T 0.21 (0.15,0.24) 0.24
(0.19,0.25)∗

0.23
(0.20,0.25)∗

0.23
(0.20,0.25)∗

24.22 <0.001

W2/T 0.15 (0.10,0.18) 0.17
(0.14,0.20)∗

0.17
(0.13,0.20)∗

0.18
(0.15,0.20)∗#▲

33.03 <0.001

P-rMSSD 36.73 (24.67,60.73) 20.68 (13.14,80.10) 22.25 (13.52,40.81)∗ 17.14 (10.67,40.62) 14.67 <0.001

P -SDNN 36.73 (24.67,60.73) 23.74 (15.50,74.21) 23.48 (15.92,43.79)∗ 21.46 (15.12,36.21)∗# 23.81 <0.001

Note:∗, compared with Group 1, P < 0.05; #, compared with Group 2, P < 0.05;▲, compared with Group 3, P < 0.05.
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TABLE 6 Comparison of ECG features among groups [M(QR1-QR3)].

ECG
Features

Group 1
(n = 152)

Group 2 (n = 75) Group 3
(n = 134)

Group 4
(n = 102)

Statistical value P

QRS segment 0.072 (0.057,0.081) 0.078
(0.071,0.095)∗

0.077 (0.063,0.084) 0.075
(0.068,0.093)∗

Z = 16.94 <0.001

ST interval 0.085 (0.077,0.093) 0.092
(0.076,0.104)∗

0.095 (0.085,0.105)∗ 0.095
(0.078,0.108)∗

Z = 14.89 <0.001

PR interval 0.137 (0.115,0.163) 0.165
(0.143,0.185)∗

0.163 (0.141,0.191)∗ 0.16
(0.135,0.188)∗

Z = 9.77 <0.001

QT interval 0.366
(0.314,0.402)

0.40
(0.375,0.434)∗

0.404
(0.368,0.431)∗

0.387
(0.354,0.441)∗

Z = 8.11 <0.001

HR 76.22 ± 11.72 74.91 ± 11.06 73.66 ± 17.74∗ 78.24 ± 15.13▲ F = 2.097 0.009

mean RR 781.51 (723.404,858.20) 788.85
(732.68,892.04)

833.25
(756.87,931.19)

782.9
(709.85,867.29)∗▲

Z = 11.76 0.002

Note:∗, compared with Group 1, P < 0.05; #, compared with Group 2, P < 0.05;▲, compared with Group 3, P < 0.05.

cardiac afterload in CHD patients with hypertension.These changes
are associate with an elevated risk of adverse cardiovascular events.

Lastly, Group4 exhibited a decreased T1/T ratio compared to
Group 2, suggesting impaired cardiac function in the CHD patients
with both hypertension and diabetes.These findings underscore the
complex interplay betweenCHD, its comorbidities, and the resulting
changes in cardiac function and hemodynamics.

In the analysis of ECG features presented in Table 6, all groups,
with the exception of Group1 demonstrated elevated ST, PR, and
QT intervals. These findings are indicative of potential conduction
abnormalities in the groups with CHD and its comorbidities.
Compared to Group 1, Group 2 and Group 4 exhibited increased
QRS segments, suggesting prolonged ventricular depolarization. In
contrast, Group 3 exhibited a significantly reduced heart rate (HR),
which is likely attributable to autonomic dysfunction. Group 4 also
displayed increased QRS segments and mean RR intervals. With a
higher HR and lower mean RR intervals than Group 3, reflecting
the additional impact of diabetes on cardiac electrical activity and
heart rate regulation.These findings highlight distinct ECG changes
associated with varying cardiovascular and metabolic conditions.

3.4 Establishment and comparison of
models

3.4.1 Using SMOTE to balance the dataset for
classification

In this study, we have four distinct groups, comprising a total of
463 samples for modeling. However, the sample distribution across
the four groups is unbalanced. It is well-recognized fact in the
research community that achieving a balanced sample size among
different groups is crucial for improving model generalization and
reducing the bias induced by class imbalance. To address the
imbalance across the four sample groups in the dataset,we employed
the Synthetic Minority Over-sampling Technique (SMOTE). This
method effectively balances the dataset by generating synthetic

samples of theminority class (Dablain et al., 2023). In implementing
SMOTE, we focused on augmenting only the minority class data.
We adjusted the sampling ratio to guarantee that the augmented
minority class matched the quantity to the majority class (n = 152).
As for the parameter K, which represents the number of nearest
neighbors considered in the synthesis process, we assigned a value
of 5. By applying SMOTE, we effectively enriched our dataset,
thereby establishing amore balanced data foundation for subsequent
classification tasks.

To systematically evaluate the effect of SMOTE processing, we
conducted a comparative analysis using a RF classifier, utilizing
the entirety of the original dataset. As depicted in Figure 4, which
displays the Receiver Operating Characteristic (ROC)curves of
Random Forest (RF) classification before SMOTE was applied,
we can observe the classification performance of the original
imbalanced dataset. The Area Under the ROC Curve (AUC) values
for Group1, Group2, Group3 and Group4 were 0.92101, 0.71691,
0.72787 and 0.78027 respectively.

Figure 5 illustrates the ROC curves of RF classification after
SMOTE processing. The AUC values for Group1, Group2, Group3
and Group4 were found to be 0.95425, 0.9576, 0.89381 and 0.91799
respectively. This represents an improvement of 0.033, 0.241, 0.166,
and 0.138 for the four groups, respectively.

In summary, after achieving data balancing through SMOTE,
the classification performance of the model has been enhanced,
demonstrating the effectiveness of this technique in addressing class
imbalance issues.

3.4.2 Establishment and comparison of the RF
models based on different datasets

After balancing sample size of different groups, we proceeded
with modeling. The RF algorithm was select for modeling due
to its robustness and strong performance in handling complex
datasets. To further minimize the risk of overfitting and to
validate the robustness of our models, we utilized a 5-fold cross-
validation approach. In this method, the dataset is divided into
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FIGURE 4
ROC curves of RF classification before SMOTE processing.

FIGURE 5
ROC curves of RF classification after SMOTE processing.

five equal subsets, with four parts being used for training and
the remaining one part for testing. This is process is repeated
five times, with a different subset serving as the test set in each
iteration.

To compare the impact of different physiological signals on
prediction models for CHD and its associated comorbidities, we
designed and established multiple models using various datasets.
These datasets were derived from simultaneously acquired PPWand
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FIGURE 6
Confusion matrix for Model 1 based on PPW features.

ECG signals. They encompassed PPW features, ECG features, as
well as a combination of both. The first RF model, designated as
Model 1, was constructed using a dataset that included demographic
data alongside ECG features. The second model, named Model 2,
incorporated demographic data and PPW features. Lastly, the third
RF model, referred to as Model 3, was established based on the
comprehensive original dataset, which included both PPWandECG
features along with demographic data.

The performance of these RF models was assessed using
accuracy, precision, recall, and F1-score metrics, all of which were
calculated based on confusion matrices (as depicted Figures 6–8)
following formulas outlined in Section 2.8.2. Our study found that
Model 3, which was built on the complete original dataset, achieved
the best performance. Specifically, it achieved an accuracy of 74.72,
a precision of 75.45%, a recall of 74.67%, and a F1-score of 74.84%.
These metrics represent substantial improvements compared to
the other models: When compared to Model 1, the improvements
were 6.10% in accuracy, 6.66% in precision, 6.08% in recall, and
6.23% in F1-score. Furthermore, when compared to Model 2, the
enhancements were evenmore pronounced, with increases of 6.63%
in accuracy, 7.6% in precision, 6.58% in recall, and 7.04% in F1-
score. A detailed summary of the comparison of RF models based
on different datasets was presented in Figure 9.

3.4.3 Establishment and comparison of models
utilizing different algorithms
3.4.3.1 Hyperparameter optimization of different models

In this section, we present the establishment and comparative
analysis of models constructed using various algorithms. The

objective was to assess the performance of different computational
methods in predicting the CHD and its associated comorbidities.

In addition to the baseline random forest model (referred to
as Model 3 in Section 3.4.2), which incorporating PPW, ECG, and
demographic features, we developed themodes using support vector
machine (SVM), bagged decision tree (BDT) and A feature-selected
RF model (FS-RF) using the same dataset.

In this study, we employed the Grid Search method to optimize
the hyperparameters of the RF, SVM, and BDTmodels. The specific
configurations are outlined below: For the RF and BDT models,
the hyperparameters that we optimized include the number of trees
(with a search range set from 50 to 200) and the minimum number
of samples required at a leaf node (with a search range set from 1
to 3). By fine-tuning these parameters, we aimed to find an optimal
balance that ensures the model sufficiently learns the data while
avoiding overfitting. For the SVM model, the hyperparameters that
we optimized are the penalty coefficient C (with a search range of
10–8 to 108) and the kernel coefficient gamma (with a search range
of 10–8 to 108). Through Grid Search, we were able to identify the
hyperparameters that yield the best performance of the model on
the validation set.

3.4.3.2 RF model with feature selection
A feature-selected RF model (FS-RF) was constructed based

on importance scores generated by the RF algorithm. For the FS-
RF model, we adopted a systematic feature selection approach
combining feature importance ranking and Sequential Forward
Selection (SFS). First, all features were ranked based on their
importance scores calculated by the RF algorithm, as shown in

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2025.1628309
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Hong et al. 10.3389/fphys.2025.1628309

FIGURE 7
Confusion matrix for Model 2 based on ECG features.

Figure 10. Subsequently, SFS was applied to iteratively incorporate
features while evaluating model performance using 5-fold cross-
validation accuracy. The analysis revealed that the model achieved
peak accuracy when the top 34 most important features were
included, as demonstrated in Figure 11. Further addition of features
led to a decline in validation accuracy, indicating the onset of
overfitting. This optimal feature subset achieved a balance between
predictive performance and model simplicity, making it an ideal
choice for our prediction task.

3.4.3.3 Performance comparison of different models
To begin with,the dataset underwent appropriate preprocessing.

TheSMOTEwas employed to address class imbalance. Subsequently,
the dataset was partitioned into training and testing sets. All models
underwent optimized through 5-fold stratified cross-validation.

After the models were established, a comparison was conducted
to evaluate their predictive performance. Confusematrices and their
associated performance metrics were employed to quantify and
compare themodels’ effectiveness.The prediction results of different
models were visualized using confusion matrices, as depicted in
Figures 8, 12–14(which presents the results for theRFmodelwithout
feature selection, the FS-RF model, the SVM model and BDT
model). Based on these confusionmatrices, we computed several key
metrics, including accuracy, average precision, average recall, and
average F1-scores, to provide a comprehensive assessment of model
performance.

As demonstrated in Table 7, our study finding revealed that
the FS-RF model, after undergoing feature selection, achieved an
accuracy of 76.32%, an average precision of 75.82%, an average recall
of 76.11%, and average F1-scores of 75.88%. When compared to the

RF model without feature selection, the FS-RF model demonstrated
improvement 1.60% in accuracy, 0.37% in average precision, 1.44%
in average recall, and 1.06% in average F1 score.

Moreover, the FS-RF model significantly outperformed SVM
and BDT models across all performance metrics. In terms
of accuracy, the FS-RF model achieved a 5.76% and 5.60%
improvement compared to SVM and BDT models, respectively.
Similarly, it exhibited a 5.26% and 5.10% increase in the average
precision, a 2.57% and 5.59%, improvement in average recall, and
a 4.56% and 5.54% rise in average F1-score when compared to SVM
and BDT models, respectively.

To statistically validate these performance differences, paired
t-tests were conducted on the cross-validation accuracies. The
results revealed statistically significant performance improvements.
Specifically, the FS-RFmodel outperformed theRFmodel (p=3.56×
10−6), the SVMmodel (p=3.31× 10−7), and theBDTmodel (p=5.17
× 10−6).These findings clearly demonstrate that the feature selection
strategy significantly enhanced RF model’s predictive performance.

These comparative results highlight the significant performance
advantages of the RF algorithm in classification tasks. Particularly,
when optimized with appropriate feature selection techniques,
the performance of the FS-RF algorithm achieves even better
performance. This emphasizes the importance of feature selection
in improving the predictive capabilities of machine learning models
for classification.

3.4.4 External validation of the FS-RF model
To evaluate the generalizability of the FS-RF model, an

independent external validation cohort was collected from Jiading
District Central Hospital, Shanghai. This cohort consisted of
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FIGURE 8
Confusion matrix for Model 3 based on PPW and ECG features.

FIGURE 9
Comparison of models based on differrent datasets.

285 participants, comprising 58 healthy controls, 99 individuals
diagnosed with CHD, 106 individuals with both CHD and
hypertension, and 22 individuals with a combination of CHD,
hypertension and diabetes.

In the external validation set, the FS-RF model achieved an
overall accuracy of 81.27%. The class-specific accuracies were
as follows: 87.93% for healthy controls, 97.98% for individuals
with CHD alone, 66.04% for individuals with both CHD and
hypertension, and 60.0% for individuals with CHD, hypertension
and diabetes.

4 Discussion

Hypertension and diabetes are significant risk factors for
CHD. These conditions, along with CHD, interact in a complex
and interdependent manner, with each amplifying the adverse
effects of the others. Prolonged hypertension can lead to the
narrowing or blockage of coronary arteries, subsequently causing
ischemia and hypoxia in myocardial cells, thereby accelerating
the process of atherosclerosis (Poznyak et al., 2022). Moreover,
diabetes contributes to vascular endothelial damage and promotes
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FIGURE 10
SF-RF model ranked the features based on their importance scores.

FIGURE 11
RS-RF model accuracy based on different selected features.

inflammation, furthering arteriosclerosis by impairing the
coagulation mechanism (Dubsky et al., 2023; Yang et al., 2024).
These conditions form a detrimental cycle that exacerbates
atherosclerosis and ultimately leading to advanced coronary artery
disease. Early identification of CHD and its comorbidities is
important.

This study utilizes a wearable multi-source sensor pulse
diagnostic device to collect pulse PPW and ECG signals from
patients with CHD and those with comorbid hypertension or
diabetes, followed by the extraction of signal features. Based on
these features and individual information (such as age, BMI, and

other cardiovascular risk factors), we employ multiple machine
learning algorithms to construct predictive models for CHD and
its comorbidities. The performance of different models is then
compared. The study aims to provide a non-invasive, convenient,
and real-time monitoring method for the early clinical diagnosis of
CHD and its comorbidities.

The results of this study show that there are differences in
PPW and ECG characteristics among different groups. These
variations in physiological signals reflect pathological changes
associated with CHD and its comorbidities. (1) Regarding the
correlation between PPW and vascular function: For example,
compared with healthy individuals, CHD patients and those with
comorbidities showed increased pulse wave characteristics H2/H1
and H3/H1, suggesting reduced arterial elasticity and elevated
peripheral vascular resistance. The decreased H5/H1 may indicate
impaired aortic elasticity and aortic valve dysfunction in CHD and
its comorbidities. Furthermore, compared with the CHD group, the
CHD with hypertension group exhibited increased W1 and W2 in
PPW features, indicating elevated cardiac afterload, which suggests
that long-term poorly controlled blood pressuremay lead to changes
in left ventricular systolic function. (2) Regarding ECG changes
and myocardial electrophysiological alterations: For example,
compared with healthy individuals, CHD patients and those
with comorbidities exhibited abnormal ECG features: prolonged
ST segment suggesting myocardial ischemic injury, prolonged
PR interval reflecting atrioventricular conduction dysfunction,
and prolonged QT interval potentially associated with abnormal
ventricular repolarization. Additionally, theCHDwith hypertension
and diabetes group showed increased mean RR interval. Heart rate
variability analysis indicated that this change was related to cardiac
autonomic neuropathy, possibly due to decreased sympathetic
activity or increased parasympathetic tone, leading to bradycardia.
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FIGURE 12
Confusion matrix of FS-RF model.

FIGURE 13
Confusion matrix of SVM model.

This finding is consistent with previous research (Duan et al., 2023).
This study confirms that synchronously acquired multimodal PPW
and ECG data can complement each other’s advantages, providing

multidimensional diagnostic information for early identification of
CHD and its comorbidities, as well as references for understanding
disease progression.
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FIGURE 14
Confusion matrix of BDT model.

In terms of model construction, this study explored two key
aspects: physiological signal fusion and algorithm optimization,
with the following findings:

(1) The enhancement effect of multimodal physiological signal
fusion onmodel identification.Through comparative analysis of
modeling performance between models based on single signal
source andmultimodal signals, this study confirmed the clinical
value of multidimensional feature collaborative diagnosis. The
identificationmodels for CHD and its comorbidities established
based on synchronously acquired PPW and ECG information
demonstrated superior performance to models using single
signal modality. Compared with models built solely on ECG
signals, the multimodal models showed improvements of
6.10% in accuracy, 6.66% in precision, 6.08% in recall, and
6.23% in F1-score. When compared with models relying
solely on PPW signals, these four metrics improved by
6.63%, 10.90%, 6.58%, and 7.04% respectively. These results
demonstrate that multimodal signal fusion enables more
comprehensive evaluation of patients’ physiological status,
significantly enhancing thediagnostic andpredictive capabilities
of the models. The performance improvements were consistent
across all evaluation metrics, particularly showing notable
enhancement in precision (10.90% increase compared to PPW-
onlymodels), suggesting thatmultimodal integration effectively
reduces false positive rates in disease identification.

(2) Impact of machine learning algorithm optimization on model
performance.This study further compared the performance of
four machine learning algorithms (FS-RF, RF, SVM, BDT)
on the multimodal PPW and ECG dataset, highlighting
the importance of feature engineering and algorithm

compatibility. The results demonstrated that the FS-RF
model achieved the best performance, with accuracy, average
precision, average recall, and average F1-score of 76.32%,
75.82%, 76.11%, and 75.88%, respectively. Compared to the
standard RF model without feature selection, these metrics
improved by 1.60%, 0.37%, 1.44%, and 1.06%, respectively. In
contrast, SVM and BDT models exhibited relatively inferior
performance.

This study demonstrated the advantages of the RF algorithm in
handling high-dimensional data, as its built-in feature importance
evaluation mechanism provided an objective basis for feature
selection (Yaqoob et al., 2025). Specifically, the FS-RF model,
constructed using 34 key features selected through this approach,
achieved optimal performance. These findings suggest that
proper feature selection combined with algorithm optimization
significantly enhances model efficacy in CHD and comorbidity
identification.

The top 34 features selected by the FS-RFmodel based on feature
importance ranking show high correlation with cardiovascular
disease mechanisms and possess distinct clinical significance.
For example, Age and BMI, as traditional cardiovascular risk
factors, ranked as the top two most important features. The
PPW time-domain feature H4/H1 negatively correlates with
vascular compliance, reflecting arterial stiffness; W1/T and
W2/T are associated with arterial pressure waveform variations,
indicating peripheral resistance changes (Zhang et al., 2021).
The ECG heart rate variability index SDNN reduction reflects
autonomic nervous dysfunction, consistent with pathological
characteristics of coronary heart disease complicated by
hypertension or diabetes (Fitzpatrick et al., 2018). P-wave amplitude
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TABLE 7 Performance comparison of four models.

Classifier Group Precision
(%)

Recall (%) F1-score
(%)

Average
Precision
(%)

Average
Recall (%)

Average
F1-score
(%)

Accuracy
(%)

FS-RF

Group1 82.24 88.65 85.29

75.82 76.11 75.88 76.32
Group2 83.55 76.97 80.12

Group3 65.13 63.46 64.28

Group4 72.37 75.34 73.81

RF

Group1 91.18 81.58 86.33

75.45 74.67 74.82 74.72
Group2 83.22 81.58 82.34

Group3 63.12 58.55 60.74

Group4 64.29 76.97 69.86

SVM

Group1 73.03 87.40 79.57

70.56 73.54 71.32 70.56
Group2 73.03 81.62 77.34

Group3 73.03 51.87 60.59

Group4 63.16 73.28 67.78

BDT

Group1 80.92 82.00 81.32

70.72 70.52 70.34 70.72
Group2 76.32 73.42 74.38

Group3 51.32 60.94 55.83

Group4 74.34 65.70 69.83

(P-value) and duration (P-segment) can assess atrial structure and
functional status.

These features are directly linked to pathological mechanisms,
not only improving classification accuracy but also enhancing the
model’s clinical interpretability, highlighting the crucial role of
feature engineering in model optimization and clinical translation.

Through the feature selection process, we effectively eliminated
redundant or irrelevant features, simplified the model structure,
and improved computational efficiency and interpretability (Li and
Mu, 2024). The independent external validation cohort evaluation
in this study demonstrated that the FS-RF model achieved
an overall accuracy of 81.27%, indicating good generalization
capability. While the model performed excellently in distinguishing
healthy individuals from pure CHD patients, its performance
declined slightly in identifying complex cases involving CHD with
comorbid hypertension and diabetes. This may be attributed to
increased clinical heterogeneity, feature overlap, and sample size
imbalance (Abdalrada et al., 2022).

Although the study achieved certain results, several limitations
require further optimization in subsequent research. First,
the insufficient total sample size and imbalanced inter-group
distribution affected the model’s stability and generalization ability.
Second, the limitation in synchronous PPG and ECG acquisition
duration. To balance experimental rigor with clinical feasibility, this

study adopted a 60-s synchronous acquisition protocol for PPG
and ECG signals. However, this duration may not fully capture
patients’ pathological characteristics. The 60-s selection was based
on considerations that the study population consisted of hospitalized
patients with generally complex health conditions, where prolonged
data collection might cause discomfort, reduce compliance, and
increase the probability of motion artifacts.

Future research will focus on the following improvements: 1)
multi-center data collection to expand sample size for building
more robust models; 2) optimize signal acquisition protocol
design through dynamic adjustment of collection duration to
enhance transient physiological event detection while maintaining
patient comfort; and 3) enhancing signal processing techniques to
effectively eliminate complex environmental noise interference and
motion artifacts in clinical settings.

5 Conclusion

This study aims to utilize a self-developed non-invasive,
convenient real-time monitoring tool to achieve early screening and
dynamic risk stratification for coronary heart disease (CHD) and
its comorbidities through synchronous acquisition and analysis of
PPW and ECG signals. The paper reports interim results of this
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research, which may provide valuable references for related
fields. Subsequent work will focus on improving the acquisition
device to enhance user comfort and prolong signal collection
duration. Further multicenter data collection will be conducted
to expand clinical sample size for model refinement. Additionally,
in-depth comparisons with clinical risk scoring systems will
be performed to clarify the advantages and limitations of
this technology, with corresponding improvements made
to provide multidimensional reference basis for clinical
application.
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