
TYPE Original Research
PUBLISHED 17 July 2025
DOI 10.3389/fphys.2025.1628450

OPEN ACCESS

EDITED BY

Robert Jeenchen Chen,
Stanford University, United States

REVIEWED BY

Xin Xue,
Southeast University, China
Xiaoqian Yang,
Shanghai Jiao Tong University, China
Yusuke Kure,
Osaka City General Hospital, Japan

*CORRESPONDENCE

Jiaqiang Zhang,
844452331@qq.com

RECEIVED 14 May 2025
ACCEPTED 08 July 2025
PUBLISHED 17 July 2025

CITATION

Cong X, Zou X, Zhu R, Li Y, Liu L and Zhang J
(2025) Development and validation of a risk
prediction model for perioperative acute
kidney injury in non-cardiac and
non-urological surgery patients: a
retrospective cohort study.
Front. Physiol. 16:1628450.
doi: 10.3389/fphys.2025.1628450

COPYRIGHT

© 2025 Cong, Zou, Zhu, Li, Liu and Zhang.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Development and validation of a
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Background: This study presents a predictive model designed to fill the gap in
tools for predicting perioperative acute kidney injury (AKI) in patients undergoing
non-cardiac, non-urological surgeries, with the goal of improving clinical
decision-making and patient outcomes.

Methods: A retrospective cohort of 40,520 patients aged 65 and older
who underwent non-cardiac, non-urological surgeries was analyzed. Key risk
factors were identified using univariable logistic regression and LASSO, while
multivariate logistic regression was applied to develop and validate the model.

Results: The prediction model, based on 18 key variables including
demographic data, comorbidities, and intraoperative factors, demonstrated
strong discriminatory power for predicting perioperative AKI (AUC = 0.803;
95% CI, 0.783–0.823). It also showed a good fit in the validation cohort
(Hosmer–Lemeshow test, χ2 = 5.895, P = 0.750). Decision curve analysis further
confirmed the model’s significant clinical utility.

Conclusion: This model effectively predicts perioperative AKI, providing a
valuable tool for personalized risk assessment and prevention strategies in non-
cardiac, non-urological surgeries. Further validation in diverse populations is
recommended to optimize its clinical application.

KEYWORDS

prediction model, risk assessment, perioperative acute kidney injury (AKI), non-cardiac,
nonurological surgeries, clinical decision-making

1 Introduction

Perioperative acute kidney injury (AKI) is a serious complication of surgery, leading to
prolonged hospital stays, higher healthcare costs, and increased postoperative complications
and mortality. Studies have shown that factors such as the type of surgery, anesthesia
techniques, intraoperative hypotension, blood loss, and fluid management can significantly
affect renal function (Gumbert et al., 2020; Zarbock et al., 2023). According to the Kidney
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Disease: Improving Global Outcomes (KDIGO) guidelines, AKI
is primarily diagnosed based on changes in serum creatinine
levels and urine output. Intraoperative hypotension, ischemia-
reperfusion injury, and drug toxicity can disrupt renal blood flow
and cause tubular damage, contributing to AKI (Sharma and
Slawski, 2018; Uusalo et al., 2021).

The development of perioperative AKI is also influenced by
patient-specific factors such as age, baseline renal function, and
comorbidities (e.g., diabetes, hypertension), as well as surgery-
specific factors like the type and duration of the procedure.
Additionally, intraoperative fluid management, anesthetic choices,
and hemodynamic monitoring are critical in preventing and
managing AKI (Sharma and Slawski, 2018; Uusalo et al., 2021).
Predictive models integrating preoperative, intraoperative, and
postoperative data have been developed to identify high-risk
patients and guide personalized management strategies. While
numerous studies have explored the mechanisms and risk
factors of perioperative AKI, findings vary across different
surgical types and patient populations. Further research into
the pathophysiology of AKI, along with improvements in
predictive models and their clinical application, is crucial
for reducing AKI incidence and enhancing patient outcomes
(Gumbert et al., 2020; Saugel et al., 2023).

2 Methods

2.1 Data sources and preprocessing

Data from the electronic medical records of patients treated at
Henan Provincial People’s Hospital from June 2016 to June 2021
were retrospectively analyzed. Informed consent was waived by
the Hospital’s Ethics Review Committee (Approval No. 2021-157),
which determined that the study met the criteria for a waiver
according to relevant guidelines. All methods adhered to these
guidelines and regulations. The study was approved by the Ethics
Review Committee (Approval No. 2021-157). The data focused
on patients aged 65 and older who underwent non-cardiac, non-
urological surgeries, regardless of perioperative acute kidney injury
status. The dataset included patient demographics, comorbidities,
and relevant laboratory findings for these surgical cases.

2.2 Study population

The inclusion criteria for this study were: 1) patients who
underwent non-cardiac and non-urological surgeries; 2) patients
aged ≥65 years; and 3) patients with an ASA classification of
I-III. The exclusion criteria were: 1) patients who underwent
cardiac, major vascular, or urological surgeries; 2) patients with
stage 5 chronic kidney disease; 3) critically ill patients in the
ICU; 4) ASA classification IV-V; and 5) missing clinical or
laboratory data. A total of 40,520 patient records were analyzed,
with the data randomly divided into a development cohort and a
validation cohort at a 70:30 ratio. Figure 1 illustrates the processing
steps in detail.

2.3 Clinical variables and definitions

This study gathered perioperative demographic, clinical,
imaging, and laboratory data from all patients, covering the period
from 7 days before to 7 days after surgery.

The study considered the following variables:

1. Demographic characteristics: age, gender, ASA classification.
2. Surgery-related variables: type of surgery, duration of surgery,

duration of anesthesia, type of anesthesia.
3. Comorbidities and medical history: smoking history, alcohol

history, ascites, hypertension, diabetes, coronary artery
disease, angina, valvular heart disease, myocardial infarction,
heart failure, arrhythmia, atrial fibrillation, coronary stent
implantation, cardiac surgery, peripheral vascular disease,
COPD, dialysis, renal insufficiency, history of cerebrovascular
disease, TIA, stroke, paraplegia, cancer.

4. Preoperative laboratory tests: white blood cell count, red
blood cell count, platelet count, hemoglobin level, serum
creatinine, serum albumin level, alanine aminotransferase,
aspartate aminotransferase, blood sodium, blood potassium,
blood calcium, thrombin time (TT), prothrombin time
(PT), activated partial thromboplastin time (APTT), plasma
prothrombin time, INR.

5. Preoperative medications: antihypertensives, ACE inhibitors,
ARBs, calcium channel blockers, metoprolol, steroids,
statins, diuretics, anticoagulants, antiplatelets, beta-blockers,
nonsteroidal anti-inflammatory drugs, hypoglycemic drugs,
insulin, aspirin and cessation days, clopidogrel and cessation
days, heparin and cessation days, butylphthalide and
duration of use, edaravone and duration of use, dextran and
duration of use.

6. Intraoperative vital signs monitoring: blood pressure, heart
rate, body temperature, BIS value, end-tidal carbon dioxide.

7. Intraoperative medications: inhaled anesthetics, propofol,
sufentanil, remifentanil, nonsteroidal drugs, diuretics,
anticoagulants, steroids, dexamethasone, methylprednisolone,
dexmedetomidine.

8. Intraoperative fluid management, transfusions, and output:
colloids, crystalloids, 0.9% sodium chloride, hydroxyethyl
starch, succinyl gelatin, mannitol, glucose, albumin, red blood
cells, plasma, platelets, cryoprecipitate, autologous blood, urine
output, blood loss.

9. Intraoperative vasoactive drugs: ephedrine, adrenaline,
norepinephrine, phenylephrine, dopamine, nitroglycerin,
urapidil, nicardipine, clevidipine, phentolamine.

10. Postoperative medications: statins, anticoagulants,
antiplatelets, dextran (dose and duration of use).

2.4 AKI diagnostic criteria

AKI was defined according to the Kidney Disease: Improving
Global Outcomes (KDIGO) guidelines, which specify an increase
in serum creatinine of ≥26.5 μmol/L within 48 h or a rise
to ≥1.5 times the baseline level within 7 days postoperatively
(de Boer et al., 2022).
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FIGURE 1
Patient flow diagram. ASA, American Society of Anesthesiologists.

2.5 Statistical analysis

We used various statistical methods to analyze both continuous
and categorical variables. Continuous variables are expressed as
medians with interquartile ranges (25th to 75th percentiles), with
differences between groups assessed using the Mann–Whitney
U test. Categorical variables are presented as frequencies and
percentages, with differences evaluated using the chi-square test or
Fisher’s exact test.

Logistic regression analysis was performed using the glmnet
package in R, applying the LASSO method for variable selection.
Significant variables were incorporated into the logistic regression
model through forward stepwise selection to minimize the Akaike
Information Criterion (AIC), ensuring inclusion of the fewest
relevant variables.

2.5.1 Assessment of multicollinearity
To assess multicollinearity, we performed multivariate logistic

regression and calculated the variance inflation factor (VIF). A
VIF value below 10 indicated no significant multicollinearity. We
also created a correlation matrix heatmap to visualize relationships
between variables and evaluated both VIF and tolerance values to
assess collinearity.

2.5.2 Handling missing data
We used Multiple Imputation by Chained Equations (MICE)

to address missing data. MICE generates multiple imputed
datasets by iteratively estimating missing values based on observed
relationships among variables. This method provides a more
accurate representation of missing data compared to simpler

approaches like mean or median imputation. A sensitivity analysis
compared the performance of models using the MICE-imputed
dataset to models excluding missing data. Results confirmed that
MICE minimally impacted model performance.

2.5.3 Model performance evaluation
Model performance was evaluated using a diagnostic chart with

significant variables. The receiver operating characteristic (ROC)
curve assessed discrimination, with the area under the curve
(AUC) as a measure of performance. Calibration was evaluated
with calibration plots (Bootstrap method) and Spiegelhalter’s Z
test, with good calibration indicated by close alignment between
predicted and observed outcomes. Decision curve analysis (DCA)
was performed, and net benefits were calculated at clinically relevant
thresholds (e.g., 5%, 10%, 20%). Calibration was further assessed
by grouping predicted probabilities into deciles and comparing the
observed versus predicted AKI rates.

2.5.4 Clinical application
To facilitate clinical use, a nomogram was developed as a visual

tool for clinicians to predict patient outcomes based on the model.

2.5.5 Development and validation cohorts
A random 70% sample of the cohort served as the development

cohort, while the remaining 30% was used as the validation cohort.
The rms package in R was used for graphical evaluation of model
performance. All statistical tests were two-sided, with a significance
threshold set at a p-value of less than 0.05. All analyses were
performed using R version 4.3.1.
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2.5.6 Sensitivity analysis
To assess the robustness of model performance with respect to

missing data, we performed a sensitivity analysis comparing models
developed usingMultiple Imputation byChained Equations (MICE)
and those based on complete-case analysis. Model evaluation was
conducted using AUC, accuracy, sensitivity, specificity and F1 score.

To address concerns about certain variables reflecting
perioperative severity or interventions, we conducted a sensitivity
analysis. A secondary model using only preoperative variables
(excluding intraoperative or postoperative factors) was developed
and evaluated. This “preoperative-only” model was built using
LASSO followed bymultivariate logistic regression and compared to
the primarymodel. Bothmodelswere assessed usingAUC, accuracy,
sensitivity, specificity, and F1 score.

Due to the retrospective nature of the dataset and the lack of
standardized perioperative urine-output documentation, we were
unable to conduct a sensitivity analysis based on the full KDIGOAKI
definition. This represents a limitation of the current study. Future
prospective studies should aim to collect complete urine output
records to enable full diagnostic alignment with KDIGO criteria.

All code, synthetic data, and documentation required to
reproduce the analyses are hosted in our GitHub repository (https://
github.com/Iory-lab/Model-3.0). The exact version of the analytical
code is archived under commit 842928e, while the corresponding
documentation (README) is available under commit d7eb6be.

3 Results

In this study, we analyzed 1,471 perioperative AKI patients,
divided into a development cohort of 1,029 patients and a validation
cohort of 442 patients. A total of 151 clinical features were extracted,
of which 42 contained missing data. The proportion of missing
data for each feature was below 10% and 88.6% of the patients had
complete data across all features. Descriptive statistical analyses are
presented in Supplementary Tables 1, 2, with Supplementary Table 1
comparing patients with and without perioperative acute kidney
injury, and Supplementary Table 2 contrasting the characteristics of
the development and validation cohorts.

To construct the predictive model, we used the LASSO logistic
regression algorithm to select relevant features. Among the 151
features, 30 were selected based on nonzero coefficients, with an
optimal lambda value of 0.0002754 (Figure 2). Multivariate logistic
regression was then performed using these 30 factors. The best-
fitting model was determined by comparing Akaike Information
Criterion (AIC) values. Figure 3 and Table 1 display the correlation
matrix, variance inflation factors (VIF), and tolerance values for each
variable, respectively.

Ultimately, the final model included 18 significant factors:
age (OR: 1.04, 95% CI: 1.03–1.05), ASA classification (OR: 1.75,
95% CI: 1.51–2.01), anesthesia methods (OR: 1.59, 95% CI:
1.39–1.82), emergency surgery (OR: 1.63, 95% CI: 1.37–1.94),
chronic kidney disease (CKD, OR: 1.69, 95% CI: 1.38–2.07),
liver cirrhosis (OR: 1.63, 95% CI: 1.04–2.55), Child-Pugh score
(OR: 1.28, 95% CI: 1.22–1.34), diabetes (OR: 1.27, 95% CI:
1.07–1.52), maximum 90-day preoperative urine protein (OR:
1.26, 95% CI: 1.14–1.4), coronary heart disease (OR: 1.42, 95%
CI: 1.19–1.7), mean arterial pressure <65 mmHg duration (OR:

FIGURE 2
Factor selection using the least absolute shrinkage and selection
operator (LASSO) logistic regression. (A) The LASSO coefficient profiles
of the 151 candidate variables. A plot of the coefficient profile was
generated against the log(λ). (B) Selection of the tuning parameter (λ)
was performed using LASSO penalized logistic regression with 10-fold
cross-validation.

1.01, 95% CI: 1.01–1.01), preoperative glucose (OR: 1.07, 95%
CI: 1.04–1.09), postoperative neutrophils (OR: 1.04, 95% CI:
1.03–1.06), postoperative mean platelet volume (OR: 1.25, 95%
CI: 1.19–1.31), postoperative serum sodium (OR: 1.04, 95% CI:
1.03–1.06), preoperative antihypertensive medication (OR: 1.38,
95% CI: 1.2–1.58), heparin during admission (OR: 6.1, 95% CI:
4.34–8.58), and intraoperative norepinephrine (OR: 1.77, 95% CI:
1.51–2.08) (Table 2).
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FIGURE 3
Heatmap of Pairwise Correlations Among Variables. This heatmap visualizes the pairwise correlations between the variables included in the model.
Positive correlations are represented in red, while negative correlations are depicted in blue. The intensity of the color reflects the strength of the
correlation, with darker shades indicating stronger correlations. ASA, American Society of Anesthesiologists; AM, Anesthesia methods; ES, Emergency
surgery; CKD, Chronic Kidney Disease; LC, Liver cirrhosis; CPS, Child-Pugh score; DM, Diabetes; Max-90d-UP, Max 90-day pre-op urine protein; CHD,
Coronary heart disease; MAP<65 dur, Mean arterial pressure <65 mmHg duration; Pre-Glu, Preoperative glucose; Post-NEU, Postoperative neutrophils;
Post-MPV, Postoperative mean platelet volume measurement; Post-Na, Postoperative serum sodium; Pre-AHT, Preoperative antihypertensive
medication; Hep-adm, Heparin during admission; NE-intra, Intraoperative norepinephrine.

Cross-validation was performed in both cohorts using R Studio,
yielding AUC values for the model. In the development cohort, the
AUC was 0.808 (95% CI 0.795–0.820, P < 0.05) with a C-index
of 0.808, while the validation cohort achieved an AUC of 0.803
(95% CI 0.783–0.823, P < 0.05) with a C-index of 0.803 (Figure 4).
Sensitivity analysis of the missing data treatment method showed
no significant impact on model performance, indicating that the
imputation approach did not significantly affect the results (Table 3).

Calibration curve analysis confirmed strong agreement between
predicted and actual probabilities in both cohorts, with Brier
scores of 0.032 for both the development and validation cohorts.
Furthermore, the Hosmer–Lemeshow test indicated good model
fit, with P-values greater than 0.05 in both cohorts (development
cohort χ2 = 4.215, P = 0.900; validation cohort χ2 = 5.895, P
= 0.750). Figure 4 illustrates the calibration curve after bootstrap

optimism correction with 1000 iterations, demonstrating a strong
alignment between predicted and observed probabilities. The
corrected intercept and slope, clearly marked on the curve,
provide additional evidence of the model’s robust calibration.
The adjusted AUC of 0.8047 further corroborates the model’s
stability and predictive accuracy across both the development
and validation cohorts. Grouped calibration analysis demonstrated
close agreement between observed and predicted event rates
across all risk deciles (Figure 5), further supporting the model’s
calibration. Together, these results highlight the model’s exceptional
performance and its potential utility for clinical decision-making in
the prediction of perioperative acute kidney injury (AKI).

A sensitivity analysis was conducted to assess the effect of
perioperative variables, such as heparin during admission and
intraoperative norepinephrine, by excluding intraoperative and
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TABLE 1 Variance inflation factors (VIF) and corresponding tolerance
values for each variable.

Variables VIF Tolerance

Age 1.101763 0.9076361

ASA 1.179344 0.8479291

Anesthesia methods 1.162552 0.8601763

Emergency surgery 1.045272 0.9566885

Chronic Kidney Disease 1.031904 0.9690825

Liver cirrhosis 1.021543 0.9789114

Child-Pugh score 1.042135 0.9595686

Diabetes 1.097386 0.911256

Max 90-day pre-op urine protein 1.036597 0.9646952

Coronary heart disease 1.055851 0.9471037

Mean arterial pressure <65 mmHg duration 1.048448 0.9537903

Preoperative glucose 1.110083 0.9008335

Postoperative neutrophils 1.026089 0.9745745

Postoperative mean platelet volume
measurement

1.025862 0.9747896

Postoperative serum sodium 1.038448 0.9629753

Preoperative antihypertensive medication 1.084485 0.922097

Heparin during admission 1.208883 0.8272097

Intraoperative norepinephrine 1.061903 0.941706

postoperative data. The results, presented in Table 3, showed that
the full model (including perioperative variables) achieved an AUC
of 0.813, with high accuracy (96.6%) and sensitivity (99.91%). In
contrast, the preoperative-onlymodel showed a lower AUCof 0.768,
with sensitivity of 99.97%, but lacked specificity (0%). These results
indicate that the full model offers the best balance of sensitivity,
specificity, and clinical relevance, supporting its selection as the
preferred model for perioperative AKI risk prediction.

Decision curve analysis revealed that the threshold probabilities
for clinical intervention to prevent perioperative AKI in patients
undergoing non-cardiac, non-urological surgeries ranged from 0%
to 90% in the development cohort and 0%–94% in the validation
cohort. These findings suggest that clinical interventions could be
effective within these probability ranges (Figure 6). Although the
predicted risk of AKI in the general perioperative population is
typically less than 15%, the inclusion of decision thresholds up
to 90% allows us to evaluate the model’s performance in high-
risk scenarios, particularly for patients with the highest predicted
risk, ensuring that these individuals are prioritized for timely
interventions. Additionally, net benefit values at clinically relevant
thresholds (e.g., 5%, 10%, and 20%) are presented in Table 4. These

thresholds better represent realistic perioperative AKI rates, offering
a more accurate understanding of the model’s practical utility. The
net benefit analysis at these thresholds helps to strike an appropriate
balance between true positives and false positives, demonstrating
the model’s applicability in clinical decision-making for patients at
varying levels of risk.

To benchmark the new model, we compared its performance
with the SPARK score, an established perioperative AKI risk
prediction tool. In the validation cohort, the SPARK score achieved
an AUC of 0.763 (95% CI: 0.741–0.763), a Brier score of
0.033, and a Hosmer–Lemeshow test χ2 of 8.63 (P = 0.472),
indicating a satisfactory model fit. In contrast, the new model
outperformed the SPARK score, achieving anAUCof 0.803 (95%CI:
0.783–0.823), reflecting better discriminative ability. Additionally,
Net Reclassification Improvement (NRI) analysis showed that the
new model enhanced risk classification, with an overall NRI of
0.0237 (95%CI: 0.01137–0.04087), indicating a 2.37% improvement
in accurate reclassification. The new model was particularly
effective in identifying high-risk patients (NRI+ = 0.0243, 95%
CI: 0.01184–0.04171), while minimizing the misclassification of
healthy patients as high-risk (NRI- = −0.0006, 95% CI: −0.00128
to −0.00022). These findings underscore the new model’s superior
accuracy in identifying high-risk patients and reducing false
positives, thus enhancing its clinical utility (Figure 7).

Figure 8 presents a nomogram illustrating the logistic
model. Age, duration of MAP <65 mmHg, preoperative glucose,
postoperative neutrophils, postoperative MPV, and postoperative
serum sodium are treated as continuous variables, while the
remaining variables are categorical. Based on a Youden index of
0.40, the optimal cutoff value on the nomogram was determined
to be 185, yielding high sensitivity (71.5%) and specificity (74.7%).
Scores above 185 indicate a high risk of perioperative AKI.

After validating the model’s discrimination, calibration,
and clinical decision-making abilities, we confirmed its clinical
effectiveness. The analysis of patient characteristics and AKI
risk factors facilitated the development of a multivariate logistic
regressionmodel, which was rigorously validated and assessed using
various graphical tools.

4 Discussion

Perioperative acute kidney injury (AKI) is a common and
serious complication in surgical patients, particularly in high-
risk procedures like cardiac and organ transplantation surgeries,
where the incidence can reach 30%–50% (Zarbock et al., 2015).
AKI not only prolongs hospital stays and increases healthcare
costs but also significantly raises postoperative mortality and the
risk of chronic kidney disease (CKD) and end-stage renal disease
(ESRD) (Hoste et al., 2015). Despite advances in perioperative
management, the incidence of AKI remains high, highlighting
the challenges of accurate prediction and timely intervention
during this critical period (Khwaja, 2012). Traditional risk scoring
systems, such as RIFLE, AKIN, and KDIGO, primarily rely on
postoperative renal function changes and have limited predictive
ability before and during surgery, restricting their clinical utility
(Forni et al., 2017). However, with the advent of machine learning
and advanced statistical techniques, multifactorial prediction
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TABLE 2 Multivariate logistic regression analysis for risk factors associated with acute kidney injury in perioperative non-cardiac and non-urological
surgery patients.

Variables B (original) B (adjusted) SE OR CI Z P

Intercept −20.134 −20.155 1.196 0 0–0 −16.835 0

Age 0.042 0.042 0.006 1.04 1.03–1.05 7.571 0

ASA 0.557 0.56 0.073 1.75 1.51–2.01 7.655 0

Anesthesia methods 0.461 0.463 0.069 1.59 1.39–1.82 6.647 0

Emergency surgery [Yes] 0.489 0.487 0.088 1.63 1.37–1.94 5.548 0

Chronic Kidney Disease (CKD) [Yes] 0.523 0.516 0.104 1.69 1.38–2.07 5.02 0

Liver cirrhosis [Yes] 0.487 0.465 0.229 1.63 1.04–2.55 2.13 0.033

Child-Pugh score 0.249 0.250 0.024 1.28 1.22–1.34 10.447 0

Diabetes [Yes] 0.241 0.244 0.089 1.27 1.07–1.52 2.707 0.007

Max 90-day pre-op urine protein 0.232 0.234 0.053 1.26 1.14–1.4 4.354 0

Coronary heart disease [Yes] 0.35 0.348 0.091 1.42 1.19–1.7 3.856 0

Mean arterial pressure <65 mmHg duration 0.008 0.008 0.001 1.01 1.01–1.01 6.856 0

Preoperative glucose 0.064 0.063 0.013 1.07 1.04–1.09 4.745 0

Postoperative neutrophils 0.044 0.044 0.007 1.04 1.03–1.06 5.993 0

Postoperative mean platelet volume measurement 0.222 0.222 0.025 1.25 1.19–1.31 8.742 0

Postoperative serum sodium 0.042 0.042 0.008 1.04 1.03–1.06 5.402 0

Preoperative antihypertensive medication [Yes] 0.32 0.32 0.07 1.38 1.2–1.58 4.578 0

Heparin during admission [Yes] 1.808 1.82 0.174 6.1 4.34–8.58 10.372 0

Intraoperative norepinephrine [Yes] 0.572 0.574 0.083 1.77 1.51–2.08 6.905 0

Abbreviations: ASA, american society of anesthesiologists; B, regression coefficient; SE, standard error; OR, odds radio; CI, credibility interval.

models incorporating a wide range of clinical variables have
significantly enhanced AKI risk prediction accuracy, thereby
supporting clinical decision-making and personalized prevention
strategies (Coca et al., 2012).

This study developed a perioperative AKI prediction model
specifically for non-cardiac and non-urological surgery patients,
aiming to better isolate and analyze common risk factors within
a more homogeneous cohort. Cardiac surgeries, such as those
involving cardiopulmonary bypass, and urological surgeries, which
directly affect renal perfusion, introduce unique variables that
complicate risk factor identification. By excluding these two types
of surgeries, we sought to create a model with broader applicability
across various surgical settings. The results showed that the full
model, incorporating perioperative variables, achieved an AUC
of 0.813, with high accuracy (96.6%) and sensitivity (99.91%)
(Ellis et al., 2018). I In comparison, the preoperative-only model
had a lower AUC of 0.768, high sensitivity (99.97%), but lacked
specificity (0%) (Guan et al., 2022). These findings suggest that
while preoperative variables can identify high-risk patients, the full

model offers the best balance of sensitivity, specificity, and clinical
relevance, making it the preferred choice for perioperative AKI
prediction (Chen et al., 2024).

To improve prediction further, we developed the model
using LASSO and multivariate logistic regression, which offered
significant advantages. The LASSO algorithm selected 30 key
variables, reducing the risk of overfitting and enhancing model
robustness (Tomašev et al., 2019). Logistic regression further
narrowed these variables down to 18, encompassing patient
characteristics, surgical type, and biomarkers, which provided a
comprehensive risk assessment (Tomašev et al., 2019). The model
achieved AUC values of 0.808 and 0.803 in the development
and validation cohorts, respectively, indicating good discriminative
ability. The Brier score of 0.032 confirmed the consistency between
predicted and actual outcomes (Khwaja, 2012).

Decision curve analysis demonstrated that the model offered
substantial clinical benefit across a wide range of threshold
probabilities (0%–90% in the development cohort and 0%–94%
in the validation cohort). Notably, as shown in Table 4, the
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FIGURE 4
The ROC curve, calibration plot of the new predictive model. (A) ROC curve of the new predictive model with the development cohort; (B) ROC curve
for the new prediction model with the validation cohort; (C) Calibration plot of the new predictive model with the development cohort; (D) Calibration
plot of the new predictive model with the validation cohort.

model provided significant net benefit at clinically relevant risk
thresholds (5%, 10%, and 20%), effectively identifying high-
risk patients (Zarbock et al., 2015). These features make the model
a valuable tool for perioperative management, assisting clinicians in
implementing precise, individualized interventions.

The perioperative AKI prediction model developed in this
study incorporates 18 key factors spanning the preoperative,
intraoperative, and postoperative stages, emphasizing the
multifactorial nature of AKI. Preoperatively, elderly patients are
at higher risk of AKI due to declining renal function, high ASA
scores, cardiovascular disease, diabetes, and chronic kidney disease
(Anderson et al., 2011). Elevated preoperative urine protein,
hyperglycemia, and coronary heart disease further heighten the

risk by impairing renal perfusion (Coca et al., 2012). Additionally,
antihypertensive medications, which can affect renal blood flow,
increase the likelihood of AKI (Löffler and Bourque, 2016).

Intraoperatively, fluctuations in blood pressure and reduced
cardiac output—especially in patients undergoing general anesthesia
or emergency surgery—substantially increase the risk of AKI,
particularly in patients with liver cirrhosis (Sun et al., 2015).
The risk is greater with higher Child-Pugh scores (Marik and
Bellomo, 2013). Although norepinephrine is used to maintain
blood pressure during surgery, its vasoconstrictive effects may
reduce renal blood flow, thus increasing the risk of renal ischemia
(Singer et al., 2016). Furthermore, the duration of intraoperative
hypotension, particularly the cumulative time spent with a mean

Frontiers in Physiology 08 frontiersin.org

https://doi.org/10.3389/fphys.2025.1628450
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Cong et al. 10.3389/fphys.2025.1628450

TABLE 3 Comparative performance of different models based on AUC, accuracy, sensitivity, specificity, and F1 score.

Model AUC Accuracy Sensitivity Specificity F1 score

Model with Imputed Data 0.813 (95% CI: 0.793–0.8333) 0.966 0.9991 0.03 0.983

Model with Complete Case Analysis 0.808 (95% CI: 0.788–0.828) 0.964 0.999 0.0381 0.982

Preoperative Variables Model 0.768 (95% CI: 0.747–0.789) 0.963 0.9997 0 0.981

FIGURE 5
Grouped calibration of observed vs. predicted acute kidney injury (AKI) rates across risk deciles (combined data). This calibration plot compares the
observed and predicted rates of acute kidney injury (AKI) across deciles of predicted risk. The blue solid line represents the observed AKI rates (i.e., the
actual incidence) within each risk decile, while the red dashed line illustrates the predicted AKI rates (i.e., the model’s estimated probability) for each
decile. Deciles were determined based on the predicted risk scores from the model, and the plot provides an assessment of the model’s calibration in
predicting AKI. The legend distinguishes between observed and predicted AKI rates for clarity.

arterial pressure below 65 mmHg, is a critical determinant of AKI
risk (Sun et al., 2015). This variable was incorporated into our
final model to reflect the significant impact of both the severity
and duration of intraoperative hypotension on renal perfusion and
subsequent injury (Shaw et al., 2022).

Postoperatively, inflammatory responses and coagulation
system activation (e.g., increased neutrophil count andmean platelet
volume) further elevate the risk of AKI (Zarbock et al., 2015).
Abnormal serum sodium levels, which indicate fluid imbalance,
also contribute to this increased risk (Sterns, 2015). Together,
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FIGURE 6
The decision curve of the new predictive model. (A) Decision curve of
the new predictive model with the development cohort; (B) Decision
curve of the new predictive model with the validation cohort.

TABLE 4 Net benefit of the prediction model at clinically relevant risk
thresholds.

Risk threshold Net benefit (95% CI)

5% (0.05) 0.892 (0.885, 0.898)

10% (0.10) 0.792 (0.780, 0.802)

20% (0.20) 0.603 (0.579, 0.622)

Net benefit values were derived from decision curve analysis, representing the clinical
benefit of the model compared to universal treatment or no treatment. A threshold
probability of 5%, 10%, and 20% was selected based on typical clinical decision points for
perioperative acute kidney injury (AKI) risk stratification.

these factors heighten the risk of perioperative AKI, underscoring
the need for close monitoring and early intervention in clinical
management (Kellum et al., 2021).

In comparison to existing perioperative AKI risk prediction
models, such as the SPARK score, the new model showed superior
performance in both the development and validation cohorts, with
an AUC of 0.803 (vs. 0.763 for SPARK). NRI analysis further
demonstrated that our model more accurately reclassified high-
risk patients and reduced the misclassification of healthy patients,
highlighting its clinical advantages. The higher AUC and favorable
NRI results suggest a better balance of sensitivity and specificity,
enabling more timely interventions and potentially improving
patient outcomes. Given these advantages, the new model holds
promise for integration into clinical practice as a reliable tool for
preventing and managing perioperative AKI.

This study successfully developed an effective model for
predicting perioperative AKI based on various clinical variables.
The model performed well in both the development and validation
cohorts, exhibiting high discrimination and calibration, and
accurately identifying high-risk patients. These findings provide
valuable guidance for preventing and managing perioperative AKI.

However, this study has several limitations. First, the model is
based on single-center data, which may introduce sample selection
bias and limit the generalizability of the results (Coca et al., 2012).
Second, although the model includes several clinical variables
related to AKI, it does not account for key factors such as
intraoperative fluid management (Semler et al., 2018), blood
pressure fluctuations (Salmasi et al., 2017), and intraoperative
medication use. Third, the study was limited to patients aged 65
and older, a population at higher risk for perioperative AKI due
to age-related decline in renal function (Shen et al., 2022). While
this age group is critical for perioperative AKI prediction, excluding
younger adults may limit the model’s applicability to mixed-age
surgical populations (Gomelsky et al., 2020). Future studies should
validate themodel inmulticenter cohorts and incorporate additional
clinical variables to further optimize its performance.

Another limitation that requires attention is the potential for
outcome misclassification. In this study, acute kidney injury (AKI)
was defined solely by serum creatinine criteria, while urine output
data—an essential component of the KDIGO definition—were
unavailable. This reliance on serum creatinine alone for diagnosing
AKI may introduce bias. Without urine output data, some
patients who developed AKI but whose serum creatinine levels
did not meet the predefined criteria may have been overlooked
(Weiss et al., 2019). Conversely, patients with elevated serum
creatinine levels but normal urine output—who may not have
actual AKI—could have been misclassified (Fu et al., 2022). As
a result, the reported incidence of perioperative AKI in patients
undergoing non-cardiac and non-urological surgeries may be
either underestimated or overestimated, deviating from the true
prevalence (Schiefer et al., 2023).

To address this issue, future research should prioritize
collecting complete urine-output data to minimize classification
bias. Unfortunately, due to data limitations in the current study,
conducting a sensitivity analysis restricted to patients with reliable
urine-output records was not feasible. Additionally, we did not
collect data on ischemic time, which is primarily relevant to
vascular and cardiac surgeries that were excluded from this
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FIGURE 7
Scatter Plot of Net Reclassification Improvement (NRI) Between Models. This plot compares the NRI of the standard model (x-axis) and the new model
(y-axis). Red dots represent cases, and black dots represent controls. The event probability ranges from 0 to 1, illustrating the risk reclassification
between the two models.

research. However, we did collect data on surgical and anesthesia
durations, which may serve as indirect surrogates for ischemic
time, particularly in surgeries where blood flow restriction may
occur. This limitation has been addressed in the manuscript
(Shaw et al., 2022; Zamirpour et al., 2023).

In the present study, AKI was defined solely based on serum
creatinine criteria due to the unavailability of urine output data.
According to KDIGO guidelines, this approach may lead to under-
or overestimation of true AKI incidence (Kellum and Lameire,
2013). Prior studies have suggested that omitting urine output
criteria can lead to a 20%–40% under-ascertainment of AKI events,
especially in the early postoperative period. For example, in the
PERISCOPE cohort, urine output alone accounted for nearly half
of AKI diagnoses missed by creatinine alone (Göcze et al., 2018).
Based on our observed AKI incidence of 3.6%, we estimate the
actual rate could range between 4.3% and 5.0%, suggesting a relative
underestimation of 28%–39% (Ostermann et al., 2020).

Furthermore, relying solely on serum creatinine may bias
the effect estimates for certain intraoperative hemodynamic

predictors. For instance, transient hypotension or vasopressor
use—such as prolonged MAP <65 mmHg or intraoperative
norepinephrine administration—may cause renal hypoperfusion
leading to oliguria, but without immediate creatinine elevation.
These subclinical cases may not be captured under a creatinine-only
AKI definition, potentially attenuating the observed associations
for these variables (Khwaja, 2012; Sun et al., 2015). As such,
the impact of short-term hypotension on AKI risk may be
underestimated, resulting in residual bias toward the null
hypothesis.

To mitigate classification bias, future studies with larger sample
sizes and data from multiple centers should aim to gather
comprehensive urine-output data and conduct sensitivity analyses.
This approach will help accurately assess the role of urine output in
AKI diagnosis and improve the performance of prediction models,
ultimately enhancing the validity and reliability of future research in
this area (Neyra et al., 2023; Zamirpour et al., 2023).

Despite these limitations, the model demonstrated strong
performance in predicting perioperative AKI. However, to
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FIGURE 8
Nomogram of the logistic regression model for perioperative AKI risk prediction.

extend its applicability, further validation in larger, more diverse
populations is needed, along with refinement to include additional
clinical factors.

5 Conclusion

This study identified key risk factors for perioperative acute
kidney injury (AKI) in patients undergoing non-cardiac and
non-urological surgeries, providing a foundation for improved
management and prevention strategies. A predictive model was
developed and validated, demonstrating strong performance and
potential as a decision-support tool for clinicians. These findings

lay the groundwork for future large-scale prospective trials to
further validate the model and broaden its clinical application.
Nonetheless, given the reliance on creatinine-only criteria, the
model may be subject to misclassification bias, especially in
cases of transient or oliguria-predominant AKI. Future work with
comprehensive urine-output data is warranted to further enhance
diagnostic accuracy.
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