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an interpretable risk prediction
model for perioperative ischemic
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nonvascular, and
nonneurosurgical patients: a
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1Department of Anesthesia and Perioperative Medicine, Zhengzhou University People’s Hospital and
Henan Provincial People’s Hospital, Zhengzhou, Henan, China, 2Xinxiang Medical University, Xinxiang,
Henan, China, 3Zhengzhou University, Zhengzhou, Henan, China

Background: Perioperative stroke is a severe complication for patients
undergoing non-cardiac, non-vascular, and non-neurosurgical surgeries,
resulting in significant morbidity and mortality. Despite its clinical relevance,
effective predictivemodels for stroke risk in this population are scarce. This study
seeks to develop and validate an interpretable predictivemodel that incorporates
essential perioperative variables to assess stroke risk. The goal is to enhance risk
stratification and support more informed clinical decision-making.

Methods: A retrospective cohort study included 106,328 patients aged 18 years
or older who underwent non-cardiac, non-vascular, and non-neurosurgical
surgeries at our institution. The development cohort comprised 74,429 patients,
with 140 perioperative stroke incidents, while the validation cohort consisted
of 31,899 patients, with 59 incidents. Risk factors for perioperative stroke
were identified using univariable logistic regression analysis. The Least Absolute
Shrinkage and Selection Operator (LASSO) regression method was applied to
select variables, followed by the development, validation, and performance
evaluation of the predictive model using multivariate logistic regression analysis.

Results: The prediction model, developed using nine variables including
demographic information, medical history, and pre- and post-operative data,
demonstrated strong discriminatory power in predicting perioperative stroke
(AUC = 0.869; 95% CI, 0.827–0.910). It also exhibited an excellent fit with
the validation cohort (Hosmer–Lemeshow test, χ2 = 6.877, P = 0.650).
Additionally, the SHAP (Shapley Additive Explanations) interpretability model
was integrated to enhance the model’s transparency, allowing clinicians to
better understand the contribution of each predictor. Decision curve analysis
confirmed the model’s significant net benefit, further validating its clinical utility.
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Conclusion: This study developed and validated a robust predictive model
for perioperative stroke risk in patients undergoing non-cardiac, non-vascular,
and non-neurosurgical procedures. Despite its retrospective design, the model
exhibited strong performance and clinical relevance. It provides a solid
foundation for future multi-center studies aimed at refining and expanding its
applicability.

KEYWORDS

prediction model, risk assessment, perioperative stroke, noncardiac, nonvascular, and
nonneurosurgical procedures, general anesthesia

Introduction

Perioperative stroke is a serious complication that can occur
within 30 days after surgery, leading to significant neurological
dysfunction, prolonged hospitalization, and increased mortality
rates (Vlisides and Mashour, 2016). The incidence of perioperative
stroke varies across different surgery types, ranging from 0.1%
to 1.9% in non-cardiac surgeries to 1.9%–9.7% in cardiovascular
surgeries (Ng et al., 2011; Marcucci et al., 2023). While several
risk factors for perioperative stroke have been identified, traditional
statistical-based prediction models struggle with nonlinearity
and variable selection issues (Chahine et al., 2023). Recently,
machine learning has emerged as a promising tool for predicting
perioperative stroke in patients undergoing non-cardiac surgeries
(Fernandes et al., 2021; Abraham et al., 2023).

This study aims to collect preoperative and intraoperative
data, including relevant variables and demographics, from patients
undergoing non-cardiac surgeries to develop an interpretable
risk prediction model for perioperative stroke. The results will
enhance physicians’ understanding of the mechanisms behind
perioperative stroke, ultimately supporting informed decision-
making and improving stroke prevention and prediction.

Materials and methods

Study design and study population

Data from the electronic medical records of patients treated
at Henan Provincial People’s Hospital between November 2014

FIGURE 1
Patient flow diagram. ASA, American Society of Anesthesiologists.
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TABLE 1 Baseline demographic and clinical characteristics of included patients diagnosed with or without ischemic stroke.

Variables Categories Total (n =
106,328)

No postoperative
ischemic stroke

Postoperative
ischemic stroke

P

No (n = 106,129) Yes (n = 199)

Emergency operation, n
(%)

<0.001

No 92,972 (87.4) 92,818 (87.4) 154 (77.4)

Yes 13,356 (12.6) 13,311 (12.5) 45 (22.6)

Sex, n (%) <0.001

male 46,481 (43.7) 46,369 (43.7) 112 (56.3)

female 59,847 (56.3) 59,760 (56.3) 87 (43.7)

Age, (Median [Q1, Q3]), yr 52 (40, 63) 52 (40, 63) 68 (62, 75) <0.001

Duration of the procedure,
(Median [Q1, Q3]), min

140 (100, 210) 140 (100, 210) 170 (120, 245) <0.001

Duration of anesthesia,
(Median [Q1, Q3]), min

156 (110, 230) 155 (110, 230) 190 (133, 265) <0.001

ASA classification, n (%) <0.001

I 10,816 (10.2) 10,816 (10.2) 0 (0.0)

II 79,995 (75.3) 79,897 (75.3) 98 (49.2)

III 15,517 (14.6) 15,416 (14.5) 101 (50.8)

Methods of anesthesia, n
(%)

0.106

Simple general anesthesia 72,209 (67.9) 72,085 (67.9) 124 (62.3)

General anesthesia combined
with nerve block

34,119 (32.1) 34,044 (32.1) 75 (37.7)

Urine output, (Median
[Q1, Q3]), ml

300 (100, 500) 300 (100, 500) 300 (200, 500) 0.115

Amount of blood loss,
(Median [Q1, Q3]), ml

50 (20, 200) 50 (20, 200) 100 (30, 200) <0.001

History of smoking, n (%) 0.881

No 97,817 (92.0) 97,635 (92.0) 182 (91.5)

Yes 8,511 (8.0) 8,494 (8.0) 17 (8.5)

History of drinking, n (%) 0.002

No 95,825 (90.1) 95,659 (90.1) 166 (83.4)

Yes 10,503 (9.9) 10,470 (9.9) 33 (16.6)

Ascites, n (%) 1

No 101,938 (95.9) 101,747 (95.9) 191 (96.0)

Yes 4,390 (4.1) 4,382 (4.1) 8 (4.0)

(Continued on the following page)
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TABLE 1 (Continued) Baseline demographic and clinical characteristics of included patients diagnosed with or without ischemic stroke.

Variables Categories Total (n =
106,328)

No postoperative
ischemic stroke

Postoperative
ischemic stroke

P

No (n = 106,129) Yes (n = 199)

Hypertension, n (%) <0.001

No 93,361 (87.8) 93,227 (87.8) 134 (67.3)

Yes 12,967 (12.2) 12,902 (12.2) 65 (32.7)

Diabetes, n (%) <0.001

No 99,138 (93.2) 98,983 (93.2) 155 (77.9)

Yes 7,190 (6.8) 7,146 (6.8) 44 (22.1)

Coronary heart disease, n
(%)

<0.001

No 102,624 (96.5) 102,448 (96.5) 176 (88.4)

Yes 3,704 (3.5) 3,681 (3.5) 23 (11.6)

Stenocardia, n (%) <0.001

No 106,155 (99.8) 105,961 (99.8) 194 (97.5)

Yes 173 (0.2) 168 (0.2) 5 (2.5)

Valvular heart disease, n
(%)

0.014

No 105,583 (99.3) 105,389 (99.3) 194 (97.5)

Yes 745 (0.7) 740 (0.7) 5 (2.5)

Myocardial infarction, n
(%)

<0.001

No 105,968 (99.7) 105,776 (99.7) 192 (96.5)

Yes 360 (0.3) 353 (0.3) 7 (3.5)

Heart failure, n (%) 0.02

No 106,214 (99.0) 106,017 (99.9) 197 (99.0)

Yes 114 (1.0) 112 (0.1) 2 (1.0)

Arrhythmia, n (%) 0.132

No 105,290 (99.0) 105,095 (99.0) 195 (98.0)

Yes 1,038 (1.0) 1,034 (1.0) 4 (2.0)

Atrial fibrillation, n (%) 0.134

No 105,987 (99.7) 105,790 (99.7) 197 (99.0)

Yes 341 (0.3) 339 (0.3) 2 (1.0)

Intracoronary stent
implantation, n (%)

0.027

(Continued on the following page)
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TABLE 1 (Continued) Baseline demographic and clinical characteristics of included patients diagnosed with or without ischemic stroke.

Variables Categories Total (n =
106,328)

No postoperative
ischemic stroke

Postoperative
ischemic stroke

P

No (n = 106,129) Yes (n = 199)

No 105,728 (99.4) 105,533 (99.4) 195 (98.0)

Yes 600 (0.6) 596 (0.6) 4 (2.0)

Cardiac surgery, n (%) <0.001

No 13,284 (12.5) 13,284 (12.5) 0 (0)

Yes 93,044 (87.5) 92,845 (87.5) 199 (100.0)

Peripheral vascular
disease, n (%)

0.013

No 99,429 (93.5) 99,252 (93.5) 177 (88.9)

Yes 6,899 (6.5) 6,877 (6.5) 22 (11.1)

COPD, n (%) 1

No 105,543 (99.3) 105,345 (99.3) 198 (99.5)

Yes 785 (0.7) 784 (0.7) 1 (0.5)

Dialysis, n (%) 0.594

No 104,364 (98.2) 104,167 (98.2) 197 (99.0)

Yes 1964 (1.8) 1962 (1.8) 2 (1.0)

Renal insufficiency, n (%) 0.638

No 105,685 (99.4) 105,486 (99.4) 199 (100.0)

Yes 643 (0.6) 643 (0.6) 0 (0.0)

History of cerebrovascular
disease, n (%)

<0.001

No 102,270 (96.2) 102,128 (96.2) 142 (71.4)

Yes 4,058 (3.8) 4,001 (3.8) 57 (28.6)

TIA, n (%) 1

No 106,261 (100.0) 106,062 (100.0) 199 (100)

Yes 67 (0.0) 67 (0.0) 0 (0)

Stroke, n (%) <0.001

No 102,725 (96.6) 102,579 (96.6) 146 (73.4)

Yes 3,603 (3.4) 3,550 (3.4) 53 (26.6)

Paraplegia, n (%) <0.001

No 106,134 (99.8) 105,939 (99.8) 195 (98.0)

Yes 194 (0.2) 190 (0.2) 4 (2.0)

(Continued on the following page)
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TABLE 1 (Continued) Baseline demographic and clinical characteristics of included patients diagnosed with or without ischemic stroke.

Variables Categories Total (n =
106,328)

No postoperative
ischemic stroke

Postoperative
ischemic stroke

P

No (n = 106,129) Yes (n = 199)

Cancer, n (%) 0.128

No 93,815 (88.2) 93,632 (88.2) 183 (92.0)

Yes 12,513 (11.8) 12,497 (11.8) 16 (8.0)

Preoperative white blood
cell count, (Median [Q1,
Q3]), 109/L

6.35 (5.1, 8.2) 6.35 (5.1, 8.2) 6.73 (5.16, 8.54) 0.139

Preoperative red blood cell
count, (Median [Q1, Q3]),
1012/L

4.21 (3.8, 4.61) 4.22 (3.8, 4.61) 3.99 (3.54, 4.4) <0.001

Preoperative platelet
count, (Median [Q1, Q3]),
109/L

226 (183, 274) 226 (183, 274) 215 (165.5, 271) 0.04

Preoperative hemoglobin
levels, (Median [Q1, Q3]),
g/L

126 (112, 139) 126 (112, 139) 120 (106.5, 134) <0.001

Preoperative serum
creatinine, (Median [Q1,
Q3]), μmol/L

55 (47, 66) 55 (47, 66) 56 (48, 72) 0.024

Preoperative serum
albumin levels, (Median
[Q1, Q3]), g/L

40.7 (37, 44) 40.7 (37, 44) 37 (34.05, 40.5) <0.001

Preoperative alanine
aminotransferase, (Median
[Q1, Q3]), U/L

18 (12.6, 29) 18 (12.6, 29) 18 (12.5, 31) 0.681

Preoperative aspartate
aminotransferase, (Median
[Q1, Q3]), U/L

19.4 (16, 25.7) 19.4 (16, 25.7) 21.5 (16.65, 30) 0.01

Preoperative serum
sodium, (Median [Q1,
Q3]), mmol/L

141 (139, 142) 141 (139, 142) 140.7 (138, 142) 0.013

Preoperative blood
potassium, (Median [Q1,
Q3]), mmol/L

4.17 (3.9, 4.43) 4.17 (3.9, 4.43) 4.09 (3.74, 4.38) 0.001

Preoperative blood
calcium, (Median [Q1,
Q3]), mmol/L

2.24 (2.14, 2.33) 2.24 (2.14, 2.33) 2.18 (2.08, 2.28) <0.001

Preoperative thrombin
time, (Median [Q1, Q3]), s

16.5 (15.5, 17.6) 16.5 (15.5, 17.6) 16.6 (15.6, 17.5) 0.644

Preoperative plasma
activated partial
thromboplastin time,
(Median [Q1, Q3]), s

34.1 (30.4, 37.5) 34.1 (30.4, 37.5) 34.1 (29.65, 37.5) 0.905

Preoperative plasma
prothrombin time,
(Median [Q1, Q3]), s

12.1 (11.5, 12.9) 12.1 (11.5, 12.9) 12.3 (11.4, 13.1) 0.059

(Continued on the following page)
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TABLE 1 (Continued) Baseline demographic and clinical characteristics of included patients diagnosed with or without ischemic stroke.

Variables Categories Total (n =
106,328)

No postoperative
ischemic stroke

Postoperative
ischemic stroke

P

No (n = 106,129) Yes (n = 199)

Preoperative international
normalized ratio, (Median
[Q1, Q3])

0.93 (0.87, 1.02) 0.93 (0.87, 1.02) 0.95 (0.88, 1.08) 0.006

Intraoperative MAP
≤60 mmHg for 5–10 min,
n (%)

<0.001

No 105,195 (99.0) 105,006 (99.0) 189 (95.0)

Yes 1,133 (1.0) 1,123 (1.0) 10 (5.0)

Preoperative ACEI drugs,
n (%)

<0.001

No 100,054 (94.1) 99,884 (94.1) 170 (85.4)

Yes 6,274 (5.9) 6,245 (5.9) 29 (14.6)

Perioperative
non-steroidal drugs, n (%)

<0.001

No 22,707 (21.4) 22,700 (21.4) 7 (3.5)

Yes 83,621 (78.6) 83,429 (78.6) 192 (96.5)

Postoperative intravenous
thrombolysis, n (%)

0.033

No 106,310 (100.0) 106,112 (100.0) 198 (99.5)

Yes 18 (0.0) 17 (0.0) 1 (0.5)

Postoperative statins, n (%) <0.001

No 104,115 (97.9) 103,985 (97.9) 130 (65.3)

Yes 2,213 (2.1) 2,144 (2.1) 69 (34.7)

Postoperative statins, n (%) <0.001

No 104,115 (98) 103,985 (98) 130 (65)

Yes 2,213 (2) 2,144 (2) 69 (35)

Postoperative
anticoagulants, n (%)

<0.001

No 71,861 (67.6) 71,815 (67.7) 46 (23.1)

Yes 34,467 (32.4) 34,314 (32.3) 153 (76.9)

Postoperative antiplatelet
drugs, n (%)

<0.001

No 102,252 (96.3) 102,126 (96.2) 126 (63.3)

Yes 4,076 (3.8) 4,003 (3.8) 73 (36.7)

(Continued on the following page)
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TABLE 1 (Continued) Baseline demographic and clinical characteristics of included patients diagnosed with or without ischemic stroke.

Variables Categories Total (n =
106,328)

No postoperative
ischemic stroke

Postoperative
ischemic stroke

P

No (n = 106,129) Yes (n = 199)

Postoperative
butylphthalides, n (%)

<0.001

No 106,102 (99.8) 105,965 (99.8) 137 (68.8)

Yes 226 (0.2) 164 (0.2) 62 (31.2)

Abbreviations: ASA, american society of anesthesiologists; COPD, chronic obstructive pulmonary disease; TIA, transient ischemic attack.

and June 2021 were retrospectively analyzed. This period was
selected because it provides the most consistent dataset from our
electronic medical record (EMR) database, which was established
in 2021. Although the database extends to 2023, advancements in
surgical techniques and perioperative protocols after 2021 could
introduce variability, so the analysis was limited to this timeframe for
consistency. Ethical approval for the study was granted by the Ethics
Review Committee of Henan Provincial People’s Hospital (Approval
No. 2021-157), and all methods adhered to the Declaration of
Helsinki. Informed consent was waived by the committee, as the
study complied with relevant ethical guidelines and regulations.

Patients aged ≥18 years who underwent any surgical procedure
under general anesthesia at Henan Provincial People’s Hospital
between November 1, 2014, and June 30, 2021 (n = 177,046)
were identified from our electronic medical record system. To
ensure comprehensive data capture, patients included in the study
were required to have at least one follow-up within 30 days after
surgery. Follow-up visits were scheduled to capture the occurrence
of perioperative strokes. However, in cases where patients did not
have a stroke during their follow-up visit but had one after the visit
but still within 30 days, additional monitoring through the hospital’s
EHR system was used to capture these events. Any stroke occurring
after a follow-up visit within the 30-day period was recorded, and
these patientswere included in the analysis.We applied the following
exclusion criteria in a stepwise fashion (Figure 1).

1. American Society of Anesthesiologists physical status IV or V
(n = 1,285);

2. Cardiac surgical procedures (n = 2,522);
3. Neurosurgical procedures (n = 8,547);
4. Vascular surgical procedures (n = 6,985);
5. Admission to neurology wards, neuro–intensive care units, or

other critically ill ICUs (n = 1899);
6. Missing data >20% of predefined key perioperative variables

(n = 49,480).

After sequential exclusions, 106,328 patients remained for
analysis. Within this analytic cohort, 199 patients experienced a
perioperative ischemic stroke and 106,129 did not. To develop and
validate the risk predictionmodel, we randomly allocated 70% of the
cohort (n = 74,429) to the development cohort and the remaining
30% (n = 31,899) to the validation cohort, preserving the overall
event rate.

Data preprocessing

Missing values were handled usingmultiple imputation with the
MICE (Multivariate Imputation by Chained Equations) package in
R. This method generates multiple plausible values for each missing
data point, resulting in several complete datasets. The results from
these datasets were combined to provide robust estimates while
accounting for the uncertainty of missing data. Sensitivity analyses
were performed to assess the impact of imputation on the model’s
performance.

Variables

This study included clinical data from 106,328 patients who
underwent non-cardiac, non-vascular surgeries. Perioperative
demographic, clinical, imaging, and laboratory data were
systematically collected from the preoperative period through
the first 7 days post-surgery. The study focused on the following
variables.

1. The demographic characteristics included age, sex, height,
weight, and BMI (Body Mass Index).

2. The surgery-related factors, such as ASA (American Standards
Association) grade, type and duration of surgery, anaesthesia
duration and method, urine output, and blood loss volume,
were also included.

3. The comorbidities included a history of smoking and alcohol
consumption, ascites, hypertension, diabetes mellitus, various
cardiac conditions, COPD (chronic obstructive pulmonary
disease), renal issues, and cerebrovascular diseases.

4. The laboratory test results included blood counts; serum
creatinine levels; albumin levels; liver enzymes; and various
coagulation profiles.

5. Preoperativemedications included a range of antihypertensive,
anticoagulant, antiplatelet, and other drugs, along with specific
details such as the duration of discontinuation of certain
medications.

6. The vital signs monitored intraoperatively included blood
pressure, heart rate, temperature, BIS (bispectral index) value,
and end-tidal carbon dioxide.

7. Intraoperative medications ranged from inhaled anaesthetics
to various drugs, including diuretics and anticoagulants.
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TABLE 2 Baseline demographic and clinical characteristics of included patients between training cohort and validation cohort.

Variables Categories Total (n = 106,328) Training cohort
(n = 74,429)

Validation cohort
(n = 31,899)

P

Ischemic stroke, n (%) 0.975

No 106,129 (100.0) 74,289 (100.0) 31,840 (100.0)

Yes 199 (0.0) 140 (0.0) 59 (0.0)

Emergency operation, n (%) 0.894

No 92,972 (87.4) 65,087 (87.6) 27,885 (87.6)

Yes 13,356 (12.6) 9,342 (12.6) 4,014 (12.6)

Sex, n (%) 0.572

male 46,481 (43.7) 32,494 (43.7) 13,987 (43.9)

female 59,847 (56.3) 41,935 (56.4) 17,912 (56.2)

Age, (Median [Q1, Q3]), yr 52 (40, 63) 52 (40, 63) 52 (40, 63) 0.316

Duration of the procedure,
(Median [Q1, Q3]), min

140 (100, 210) 140 (100, 210) 140 (100, 210) 0.56

Duration of anesthesia,
(Median [Q1, Q3]), min

156 (110, 230) 156 (110, 230) 155 (110, 230) 0.582

ASA classification, n (%) 0.875

I 10,816 (10.2) 7,579 (10.2) 3,237 (10.2)

II 79,995 (75.3) 55,964 (75.4) 24,031 (75.5)

III 15,517 (14.6) 10,886 (14.6) 4,631 (14.5)

Methods of anesthesia, n
(%)

0.47

Simple general anesthesia 72,209 (67.9) 50,495 (68.0) 21,714 (68.2)

General anesthesia combined
with nerve block

34,119 (32.1) 23,934 (32.0) 10,185 (32.0)

Urine output, (Median [Q1,
Q3]), ml

300 (100, 500) 300 (100, 500) 300 (100, 500) 0.938

Amount of blood loss,
(Median [Q1, Q3]), ml

50 (20, 200) 50 (20, 200) 50 (20, 200) 0.128

History of smoking, n (%) 0.508

No 97,817 (92.0) 68,444 (92.0) 29,373 (92.0)

Yes 8,511 (8.0) 5,985 (8.0) 2,526 (8.0)

History of drinking, n (%) 0.388

No 95,825 (90.0) 67,038 (90.1) 28,787 (89.9)

Yes 10,503 (10.0) 7,391 (9.9) 3,112 (10.1)

Ascites, n (%) 0.698

No 101,938 (96.0) 71,344 (95.9) 30,594 (96.2)

(Continued on the following page)
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TABLE 2 (Continued) Baseline demographic and clinical characteristics of included patients between training cohort and validation cohort.

Variables Categories Total (n = 106,328) Training cohort
(n = 74,429)

Validation cohort
(n = 31,899)

P

Yes 4,390 (4.0) 3,085 (4.1) 1,305 (3.8)

Hypertension, n (%) 0.859

No 93,361 (87.9) 65,343 (87.9) 28,018 (87.9)

Yes 12,967 (12.1) 9,086 (12.1) 3,881 (12.1)

Diabetes, n (%) 0.416

No 99,138 (93.2) 69,365 (93.2) 29,773 (93.2)

Yes 7,190 (6.8) 5,064 (6.8) 2,126 (6.8)

Coronary heart disease, n
(%)

0.367

No 102,624 (96.4) 71,811 (96.5) 30,813 (96.3)

Yes 3,704 (3.6) 2,618 (3.5) 1,086 (3.7)

Stenocardia, n (%) 0.816

No 106,155 (99.8) 74,306 (99.8) 31,849 (99.8)

Yes 173 (0.2) 123 (0.2) 50 (0.2)

Valvular heart disease, n
(%)

1

No 105,583 (99.3) 73,907 (99.3) 31,676 (99.3)

Yes 745 (0.7) 522 (0.7) 223 (0.7)

Myocardial infarction, n
(%)

0.454

No 105,968 (99.7) 74,170 (99.7) 31,798 (99.7)

Yes 360 (0.3) 259 (0.3) 101 (0.3)

Heart failure, n (%) 0.728

No 106,214 (99.9) 74,347 (99.9) 31,867 (99.9)

Yes 114 (0.1) 82 (0.1) 32 (0.1)

Arrhythmia, n (%) 0.245

No 105,290 (99.0) 73,720 (99.0) 31,570 (99.0)

Yes 1,038 (1.0) 709 (1.0) 329 (1.0)

Atrial fibrillation, n (%) 0.332

No 105,987 (100.0) 74,199 (100.0) 31,788 (100.0)

Yes 341 (0.0) 230 (0.0) 111 (0.0)

Intracoronary stent
implantation, n (%)

0.687

No 105,728 (99.4) 74,004 (99.4) 31,724 (99.4)

(Continued on the following page)
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TABLE 2 (Continued) Baseline demographic and clinical characteristics of included patients between training cohort and validation cohort.

Variables Categories Total (n = 106,328) Training cohort
(n = 74,429)

Validation cohort
(n = 31,899)

P

Yes 600 (0.6) 425 (0.6) 175 (0.6)

Cardiac surgery, n (%) 0.457

No 13,284 (12.5) 9,336 (12.5) 3,948 (12.4)

Yes 93,044 (87.5) 65,093 (87.5) 27,951 (87.6)

Peripheral vascular disease,
n (%)

0.573

No 99,429 (93.5) 69,621 (93.6) 29,808 (93.4)

Yes 6,899 (6.5) 4,808 (6.4) 2091 (6.6)

COPD, n (%) 0.755

No 105,543 (99.3) 73,884 (99.3) 31,659 (99.2)

Yes 785 (0.7) 545 (0.7) 240 (0.8)

Dialysis, n (%) 1

No 104,364 (98.2) 73,054 (98.1) 31,310 (98.2)

Yes 1964 (1.8) 1,375 (1.9) 589 (1.8)

Renal insufficiency, n (%) 0.769

No 105,685 (99.4) 73,975 (99.4) 31,710 (99.4)

Yes 643 (0.6) 454 (0.6) 189 (0.6)

History of cerebrovascular
disease, n (%)

0.574

No 102,270 (96.2) 71,605 (96.2) 30,665 (96.2)

Yes 4,058 (3.8) 2,824 (3.8) 1,234 (3.8)

TIA, n (%) 0.709

No 106,261 (99.9) 74,384 (99.9) 31,877 (99.9)

Yes 67 (0.1) 45 (0.1) 22 (0.1)

Stroke, n (%) 0.988

No 102,725 (97.0) 71,906 (97.0) 30,819 (97.0)

Yes 3,603 (3.0) 2,523 (3.0) 1,080 (3.0)

Paraplegia, n (%) 0.227

No 106,134 (99.8) 74,285 (99.8) 31,849 (99.8)

Yes 194 (0.2) 144 (0.2) 50 (0.2)

Cancer, n (%) 0.149

No 93,815 (88.2) 65,600 (88.2) 28,215 (88.2)

Yes 12,513 (11.8) 8,829 (11.8) 3,684 (11.8)

(Continued on the following page)
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TABLE 2 (Continued) Baseline demographic and clinical characteristics of included patients between training cohort and validation cohort.

Variables Categories Total (n = 106,328) Training cohort
(n = 74,429)

Validation cohort
(n = 31,899)

P

Preoperative white blood
cell count, (Median [Q1,
Q3]), 109/L

6.35 (5.1, 8.2) 6.36 (5.1, 8.2) 6.32 (5.09, 8.19) 0.136

Preoperative red blood cell
count, (Median [Q1, Q3]),
1012/L

4.21 (3.8, 4.61) 4.21 (3.8, 4.61) 4.22 (3.8, 4.61) 0.408

Preoperative platelet count,
(Median [Q1, Q3]), 109/L

226 (183, 274) 225 (183, 273) 226 (183, 274) 0.173

Preoperative hemoglobin
levels, (Median [Q1, Q3]),
g/L

126 (112, 139) 126 (112, 139) 126 (112, 139) 0.412

Preoperative serum
creatinine, (Median [Q1,
Q3]), μmol/L

55 (47, 66) 55 (47, 66) 55 (48, 66) 0.623

Preoperative serum
albumin levels, (Median
[Q1, Q3]), g/L

40.7 (37, 44) 40.7 (37, 44) 40.7 (37, 44) 0.228

Preoperative alanine
aminotransferase, (Median
[Q1, Q3]), U/L

18 (12.6, 29) 18 (12.6, 29) 18 (12.8, 29) 0.162

Preoperative aspartate
aminotransferase, (Median
[Q1, Q3]), U/L

19.4 (16, 25.7) 19.4 (16, 25.7) 19.4 (16, 25.7) 0.875

Preoperative serum sodium,
(Median [Q1, Q3]), mmol/L

141 (139, 142) 141 (139, 142) 141 (139, 143) 0.078

Preoperative blood
potassium, (Median [Q1,
Q3]), mmol/L

4.17 (3.9, 4.43) 4.17 (3.9, 4.43) 4.17 (3.91, 4.43) 0.685

Preoperative blood calcium,
(Median [Q1, Q3]), mmol/L

2.24 (2.14, 2.33) 2.24 (2.14, 2.33) 2.24 (2.14, 2.33) 0.736

Preoperative thrombin
time, (Median [Q1, Q3]), s

16.5 (15.5, 17.6) 16.5 (15.5, 17.6) 16.5 (15.5, 17.6) 0.588

Preoperative plasma
activated partial
thromboplastin time,
(Median [Q1, Q3]), s

34.1 (30.4, 37.5) 34 (30.4, 37.5) 34.1 (30.4, 37.5) 0.775

Preoperative plasma
prothrombin time, (Median
[Q1, Q3]), s

12.1 (11.5, 12.9) 12.1 (11.5, 12.9) 12.1 (11.5, 12.9) 0.732

Preoperative international
normalized ratio, (Median
[Q1, Q3])

0.93 (0.87, 1.02) 0.93 (0.87, 1.02) 0.93 (0.87, 1.02) 0.603

Intraoperative MAP
≤60 mmHg for 5–10 min, n
(%)

0.047

No 105,195 (99.0) 73,605 (99.0) 31,590 (99.0)

Yes 1,133 (1.0) 824 (1.0) 309 (1.0)

(Continued on the following page)
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TABLE 2 (Continued) Baseline demographic and clinical characteristics of included patients between training cohort and validation cohort.

Variables Categories Total (n = 106,328) Training cohort
(n = 74,429)

Validation cohort
(n = 31,899)

P

Preoperative ACEI drugs, n
(%)

0.297

No 100,054 (94.1) 70,000 (94.0) 30,054 (94.2)

Yes 6,274 (5.9) 4,429 (6.0) 1845 (5.8)

Perioperative non-steroidal
drugs, n (%)

0.436

No 22,707 (21.4) 15,943 (21.4) 6,764 (21.2)

Yes 83,621 (78.6) 58,486 (78.6) 25,135 (78.8)

Postoperative intravenous
thrombolysis, n (%)

0.572

No 106,310 (100.0) 74,418 (100.0) 31,892 (100.0)

Yes 18 (0.0) 11 (0.0) 7 (0.0)

Postoperative statins, n (%) 0.653

No 104,115 (97.9) 72,890 (97.9) 31,225 (97.8)

Yes 2,213 (2.1) 1,539 (2.1) 674 (2.2)

Postoperative
anticoagulants, n (%)

0.393

No 71,861 (67.6) 50,242 (67.5) 21,619 (67.8)

Yes 34,467 (32.4) 24,187 (32.5) 10,280 (32.2)

Postoperative antiplatelet
drugs, n (%)

0.991

No 102,252 (96.2) 71,575 (96.2) 30,677 (96.2)

Yes 4,076 (3.8) 2,854 (3.8) 1,222 (3.8)

Postoperative
butylphthalides, n (%)

0.631

No 106,102 (99.8) 74,267 (99.8) 31,835 (99.8)

Yes 226 (0.2) 162 (0.2) 64 (0.2)

Abbreviations: ASA, american society of anesthesiologists; COPD, chronic obstructive pulmonary disease; TIA, transient ischemic attack.

8. Intraoperative fluids and blood transfusions included colloids,
crystalloids, and various blood components.

9. Intraoperative vasopressor drugs encompassed a range of
medications from ephedrine to phenylephrine.

10. Postoperative medications included statins, anticoagulants,
antiplatelets, and other drugs, along with details regarding
their dosages and durations.

Postoperative medications, including anticoagulants,
antiplatelet drugs, and statins, were administered during the
first 7 days after surgery to prevent secondary cardiovascular or
cerebrovascular events.

Perioperative ischemic stroke definition

Perioperative ischemic stroke was defined as a new focal
neurological deficit occurring within 30 days after surgery,
confirmed by neuroimaging (CT or MRI), and diagnosed by
board-certified neurologists (Mashour et al., 2011). Diagnoses were
recorded in the patients’ medical records. To account for strokes that
occurred after follow-up visits but still within the 30-day period, we
employed a robust data collection approach using the hospital’s
electronic health record (EHR) system to capture any stroke events.
Additionally, patients were monitored for adverse events through
follow-up calls and subsequent clinic visits.
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FIGURE 2
Factor selection using the least absolute shrinkage and selection
operator (LASSO) logistic regression: (A) The cross-validation curve,
where the vertical axis represents the area under the curve (AUC) and
the horizontal axis represents log(λ). Two black dashed lines indicate
λ.min (the λ value with the highest AUC) and λ.1se (the largest λ within
1 standard error of λ.min). The gray shaded area represents the
confidence interval for the mean AUC; (B) The LASSO coefficient
profiles of the 179 candidate variables. Each curve represents the
trajectory of a predictor variable’s coefficient as log(λ) changes. Two
black dashed lines indicate λ.min and λ.1se, consistent with Figure 2A.

Statistical analysis

To ensure adequate statistical power, a power calculation was
conducted prior to the study. Based on an estimated perioperative
stroke incidence of 0.19% (consistent with previous studies) and
the requirement of at least 10 events per variable (EPV: Events Per
Variable) for logistic regression, a minimum of 160 stroke events

was needed to analyze 16 predictor variables. Our cohort included
199 stroke events, exceeding this threshold and providing sufficient
power (>80%) to detect significant predictors with an alpha level
of 0.05. The total cohort size of 106,328 patients ensured adequate
stroke event capture while maintaining a representative sample.

Various statistical methods were used to analyze continuous and
categorical variables. Continuous variables are presented asmedians
with interquartile ranges (25th to 75th percentiles), with differences
assessed using the Mann–Whitney U test. Categorical variables are
presented as frequencies and percentages, with differences evaluated
using the chi-square test or Fisher’s exact test.

Logistic regression analysis was performed using the glmnet
package in R, with the LASSO (Least Absolute Shrinkage and
Selection Operator) method applied for variable selection.
Hyperparameter tuning for LASSO logistic regression was
performed via tenfold cross-validation, with the optimal lambda
value selected based on the minimum cross-validation error.
Significant variables identified by LASSO were further incorporated
into the logistic regression model using a forward stepwise selection
procedure to minimize the Akaike information criterion (AIC),
ensuring a parsimonious model with minimal variable inclusion.

Multivariate logistic regression analysis was used to assess
multicollinearity by calculating the variance inflation factor (VIF).
VIF values below 10 indicated no multicollinearity concerns. For
variables significantly correlated with the main outcomes, odds
ratios (ORs) and 95% confidence intervals (CIs) were calculated.

The model’s discriminative ability was evaluated using a
diagnostic chart that included key variables. Discriminative ability
was assessed with the receiver operating characteristic (ROC)
curve, with the area under the curve (AUC) quantifying model
performance. Calibration was assessed using calibration plots and
Spiegelhalter’s Z test, which indicated good calibration when
predicted values closely matched actual risk. Additionally, the
SHAP (Shapley Additive Explanations) interpretability model was
applied to provide insights into the contribution of each predictor,
enhancing the model’s transparency and interpretability for clinical
decision-making.

A randomly generated sample of 70%of the cohort (using a seed)
was applied for the development cohort, with the remaining 30%
used for the validation cohort. The rms package in R was employed
for graphical evaluation. All tests were two-sided, with a p-value of
less than 0.05 indicating statistical significance. Statistical analysis
was conducted using R version 4.3.1.

Results

A total of 106,328 adult patientsmet the inclusion criteria during
the study period, and after applying the exclusion criteria, the study
cohort consisted of 70,718 patients. We analyzed data from 199
perioperative stroke patients, allocating 140 to the development
cohort and 59 to the validation cohort. Tables 1,2 present descriptive
statistical analyses: Table 1 compares patients with and without
ischemic stroke, while Table 2 contrasts the development and
validation cohorts.

To identify predictive factors and develop a corresponding
model, we employed the LASSO logistic regression algorithm.
Out of 179 factors, 31 with nonzero coefficients were selected
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FIGURE 3
Heatmap of Pairwise Correlations Among Variables. This heatmap visualizes the pairwise correlations between the variables included in the model.
Positive correlations are represented in red, while negative correlations are depicted in blue. The intensity of the color reflects the strength of the
correlation, with darker shades indicating stronger correlations. HD:history of cerebrovascular disease. DB: diabetes. NSD: perioperative non-steroidal
drugs. DH: drinking history. BS: preoperative blood sodium level. ACEI: preoperative ACEI drugs. LBP: intraoperative MAP ≤60 mmHg for 5–10 min. AP:
angina pectoris.

TABLE 3 Variance inflation factors (VIF) and corresponding tolerance
values for each variable.

Variable VIF Tolerance

Age 1.07 0.935

Drinking history 1.007 0.993

Diabetes 1.048 0.954

Angina pectoris 1.002 0.998

History of cerebrovascular disease 1.047 0.956

Intraoperative MAP ≤60 mmHg for 5–10 min 1.002 0.998

Preoperative blood sodium level 1.004 0.996

Preoperative ACEI drugs 1.019 0.982

based on an optimal lambda value of 0.0003226 (Figures 2A,B).
LASSO regression enhances model interpretability by reducing the
number of predictors, focusing on the most clinically relevant

factors. Figure 3 and Table 3 display the correlation matrix, variance
inflation factors (VIF), and tolerance values for each variable,
respectively.

Ultimately, the final model included 9 significant factors: age
(OR: 1.07, 95% CI: 1.06–1.09), drinking history (OR: 2.20, 95% CI:
1.44–3.37), diabetes (OR: 1.89, 95% CI: 1.26–2.84), angina pectoris
(OR: 8.00, 95% CI: 2.80–22.87), history of cerebrovascular disease
(OR: 3.60, 95% CI: 2.42–5.36), intraoperative MAP ≤60 mmHg for
5–10 min (OR: 3.12, 95%CI: 1.42–6.86), preoperative blood sodium
level (OR: 0.95, 95% CI: 0.91–0.99), preoperative ACEI drugs (OR:
2.03, 95% CI: 1.31–3.14), perioperative non-steroidal drugs (OR:
4.35, 95% CI: 1.77–10.67) (Table 4).

After validating the development and validation cohorts, the
model achieved an AUC of 0.864 (95% CI 0.839–0.890) in the
development cohort and 0.869 (95% CI 0.827–0.910) in the
validation cohort (Figures 4A,B). At the optimal threshold of
0.002, sensitivity and specificity were 0.771 and 0.807 in the
development cohort, and 0.794 and 0.814 in the validation cohort.
The corresponding F1 scores were 0.785 and 0.802, respectively,
demonstrating the model’s ability to distinguish between stroke and
non-stroke patients despite the imbalanced dataset.

Calibration analysis showed strong agreement between
predicted and observed probabilities, with Brier scores of 0.002
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TABLE 4 Multivariate logistic regression analysis for risk factors associated with acute ischemic stroke in perioperative noncardiac, nonvascular, and
nonneurosurgical surgery patients.

Variables B SE OR CI (95%) Z P

Intercept −4.762 3.129 0.01 0–3.94 −1.522 0.128

Age 0.068 0.007 1.07 1.06–1.09 9.151 0

Drinking history [Yes] 0.789 0.218 2.2 1.44–3.37 3.621 0

Diabetes [Yes] 0.639 0.206 1.89 1.26–2.84 3.096 0.002

Angina pectoris [Yes] 2.079 0.536 8 2.8–22.87 3.881 0

History of cerebrovascular disease [Yes] 1.282 0.203 3.6 2.42–5.36 6.301 0

Intraoperative MAP ≤60 mmHg for 5–10 min [Yes] 1.138 0.402 3.12 1.42–6.86 2.832 0.005

Preoperative blood sodium level −0.053 0.022 0.95 0.91–0.99 −2.44 0.015

Preoperative ACEI drugs [Yes] 0.706 0.224 2.03 1.31–3.14 3.152 0.002

Perioperative non-steroidal drugs [Yes] 1.47 0.458 4.35 1.77–10.67 3.212 0.001

Abbreviations: B, regression coefficient; SE, standard error; OR, odds ratio; CI, 95% confidence interval.

in both cohorts. Hosmer–Lemeshow test results indicated good
calibration (development cohort: χ2 = 5.680, P = 0.771; validation
cohort: χ2 = 6.877, P = 0.650). Calibration plots further confirmed
the model’s reliability in both cohorts (Figures 4C,D).

Decision curve analysis (DCA) was performed to assess the
clinical utility of the predictive model. This method calculates the
net benefit of applying the model across a range of threshold
probabilities, comparing it to two baseline strategies: treating all
patients or treating none. The threshold probabilities, ranging from
0% to 94% in the development cohort and 0%–92% in the validation
cohort, represent the minimum predicted risk at which a clinical
decision (e.g., initiating treatment) would be made. The model
showed a positive net benefit within these ranges, supporting its
utility for patients undergoing non-cardiac, non-vascular, and non-
neurosurgical surgeries (Figures 5A,B).

Figure 6A presents the SHAP (SHapley Additive exPlanations)
summary plot for Logistic regression model, where the X-
axis represents SHAP values (higher values indicate stronger
contributions to stroke prediction). Feature magnitude is
represented by a color gradient, ranging from purple (high values)
to yellow (low values).

The top four predictors of stroke risk were age, a history of
cerebrovascular disease, diabetes, and the use of perioperative non-
steroidal anti-inflammatory drugs (NSAIDs). Advanced age, a prior
history of cerebrovascular disease, diabetes, and the perioperative
use of NSAIDs were strongly associated with an elevated risk
of stroke. Other significant factors included a history of alcohol
consumption, abnormal serum sodium levels, low usage rates of
ACE inhibitors, intraoperative hypotension (mean arterial pressure
[MAP] ≤ 60 mmHg for 5–10 min), and a history of angina
pectoris.

These findings were further supported by the feature
importance rankings in Figure 6B. The interpretability of the
model was also demonstrated through individualized case

analyses. Figure 6C shows SHAP force plots for a representative
non-stroke patient, highlighting feature-specific contributions to the
prediction.

Our thorough validation process confirmed the model’s
effectiveness in clinical settings. We developed and validated a
logistic regression model based on patient characteristics and
stroke risk factors, employing various graphical methods for
evaluation.

Discussion

Perioperative strokes in non-cardiac and non-neurological
surgery patients are relatively rare, occurring in approximately
0.1%–0.8% of patients. Notably, the incidence rises to 7% among
patients older than 65 years, with many strokes remaining
undetected (Lindberg and Flexman, 2021). Although less
frequently diagnosed following non-cardiac, non-carotid, or non-
neurological surgeries, these strokes are significant postoperative
complications, contributing to increased perioperative mortality,
morbidity, longer hospital stays, and higher healthcare costs
(Ng et al., 2011; Lewis et al., 2019).

Preventing perioperative strokes is challenging due to complex
and diverse risk factors. Common comorbidities in these patients,
such as atrial fibrillation, diabetes, and hypertension, are all
significant stroke risk factors (Reinert et al., 2021). Additionally,
perioperative stress responses, medication adjustments, and
the surgery itself can further elevate stroke risk (Vlisides and
Mashour, 2016).

Clinical prediction models are essential for accurately
forecasting perioperative strokes. These models, which integrate
factors such as age, medical history, and surgery type, are
effective at identifying high-risk patients and outperform
traditional assessment methods (Goeller and Bartels, 2021).
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FIGURE 4
The ROC curve and calibration plot of the predictive model: (A) ROC curve for the development cohort, showing an AUC of 0.864 (95% CI:
0.839–0.890), with sensitivity (0.771) and specificity (0.807) at the optimal threshold of 0.002. (B) ROC curve for the validation cohort, showing an AUC
of 0.869 (95% CI: 0.827–0.910), with sensitivity (0.794) and specificity (0.814) at the same threshold. (C) Calibration plot for the development cohort,
demonstrating excellent calibration. C-index (0.866): Represents the model’s discriminative ability, similar to AUC. R2 (0.144): Indicates the proportion
of variance explained by the model. Slope (1) and Intercept (0.000): Reflect perfect calibration, with minimal bias. Brier score (0.002): Measures
prediction error, where lower values indicate better calibration. (D) Calibration plot for the validation cohort, confirming good calibration. C-index
(0.850): Indicates strong discriminative ability. R2 (0.130): Reflects the proportion of variance explained. Slope (0.962) and Intercept (−0.218): Highlight a
slight deviation from perfect calibration. Brier score (0.002): Confirms low prediction error and good calibration.

Unlike traditional statistical models, machine learning models
capture complex, nonlinear relationships between risk factors,
improving prediction accuracy. This is especially useful in
clinical practice, where risk factors often interact in ways
that are difficult for traditional models to fully account for.
Developing personalized treatment plans based on these
models can enhance treatment efficacy and reduce unnecessary
interventions. However, the effectiveness of these treatments
depends on data quality and adaptation to various clinical scenarios
(Woo et al., 2021).

Applying these models in resource-limited settings remains
challenging, necessitating continuous improvements to ensure their
relevance in clinical practice and bridge the gap between clinical and
research settings (Goeller and Bartels, 2021; Woo et al., 2021).

This study focuses on ischemic stroke and its risk factors
during the perioperative period. Through statistical analysis and
comprehensive evaluation, the model’s reliability in predicting
perioperative stroke risk in non-cardiac surgery patients was
confirmed (Goeller and Bartels, 2021; Woo et al., 2021). The model
can help clinicians develop early, tailored treatment strategies.
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FIGURE 5
Decision curve analysis for the predictive model: (A) Development
cohort: The curve illustrates the net benefit of the predictive model
across a range of threshold probabilities (0%–94%), compared to the
strategies of treating all or no patients. The upper bound of 94%
represents the highest probability at which the model remains
clinically beneficial. (B) Validation cohort: The model shows a similar
range of positive net benefit (0%–92%), with an upper bound of 92%
indicating its consistent clinical utility.

Our model incorporates nine predictive factors (Vlisides
and Moore, 2021): age, drinking history, diabetes, angina
pectoris, cerebrovascular disease history, intraoperative MAP
≤60 mmHg for 5–10 min, preoperative blood sodium level,
preoperative ACE inhibitor use, and perioperative NSAID use. By

incorporating clinically relevant variables and their coefficients,
along with the SHAP (Shapley Additive Explanations)
interpretability model, the model improves interpretability.
This approach enables clinicians to assess the relative
importance of each predictor in perioperative stroke risk.
The inclusion of SHAP further facilitates informed decision-
making by offering clear insights into the contribution
of each factor, thereby identifying actionable variables for
intervention.

Preoperatively, stroke risk is positively correlated with
advanced age, alcohol consumption, diabetes, angina, and
cerebrovascular disease history (Pai et al., 2017). Additionally,
low serum sodium levels and cessation of ACE inhibitors during
the perioperative period increase stroke risk (Roshanov et al.,
2017; Khan et al., 2021). Intraoperatively, prolonged low
MAP and NSAID use are key risk factors (Pai et al., 2017;
Vlisides and Moore, 2021).

Wu and Fang (2020) developed a stroke prediction model
for individuals over 60, using SMOTE technology to balance the
data, identifying sex, LDL cholesterol, blood glucose, hypertension,
and uric acid as key predictors. (Wu and Fang, 2020). Another
study involving patients over 65 years old undergoing non-
cardiac surgery used various machine learning techniques to
evaluate factors such as age, chest pain history, heart failure
symptoms, high-risk surgeries, intraoperative blood pressure, serum
creatinine levels, left ventricular ejection fraction, and perioperative
transfusions to predict adverse cardio-cerebral events (Wu et al.,
2023).These findings highlight the value of machine learning in risk
factor analysis.

Unlike previous studies that focused on older populations
or specific patient groups, our study included adult patients
of all ages undergoing non-cardiac, non-vascular, and non-
neurosurgical procedures, improving the generalizability of
the findings. By using advanced machine learning techniques,
including comprehensive imputations and integrating logistic and
LASSO regression, we addressed challenges such as nonlinearity
and multicollinearity, resulting in a highly interpretable and
clinically relevant model. These methods, supported by previous
research comparing machine learning to traditional logistic
regression in prognostic modeling (Liew et al., 2022), produced
exceptional AUC values of 0.864 and 0.869 in the development
and validation cohorts, respectively. Internal validation confirmed
the model’s robustness and its potential to guide early
interventions and improve perioperative stroke prevention
strategies.

This study has several limitations. First, as a single-center
investigation, the findings require external validation (Riley et al.,
2021). Additionally, the retrospective design introduces
potential biases, such as selection bias, and limits the ability
to account for changes in clinical practices over time. To
mitigate these limitations, we employed random sampling,
robust statistical methods, and thorough model validation to
minimize bias.

Themodel primarily focuses on preoperative and intraoperative
variables, such as age, medical history, and surgical conditions.
It is designed for perioperative risk stratification and guiding
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FIGURE 6
SHAP of the model: (A) Characteristic attributes in SHAP. The abscissa is the SHAP value, and each line denotes a feature. Higher eigenvalues are
indicated by purple dots, and lower eigenvalues are indicated by yellow dots; (B) Feature importance ranking of the Logistic regression model; (C)
Interpretability analysis of 1 independent samples. HD:history of cerebrovascular disease. DB: diabetes. NSD: perioperative non-steroidal drugs. DH:
drinking history. BS: preoperative blood sodium level. ACEI: preoperative ACEI drugs. LBP: intraoperative MAP ≤60 mmHg for 5–10 min. AP,
angina pectoris.
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postoperative management rather than preoperative decision-
making. While retrospective data lacks prospective validation, it
offers an efficient approach for developing and validating predictive
models using large, real-world datasets. These findings provide
critical insights for optimizing perioperative management and lay
the groundwork for future multi-center, prospective studies to
integrate preoperative predictors and enhance clinical decision-
making.

Conclusion

This study developed and validated a robust predictive model
for perioperative stroke risk in non-cardiac, non-vascular, and non-
neurosurgical patients. Despite its retrospective design, the model
demonstrated strong discriminatory performance and clinical
relevance. These findings provide a solid foundation for future
multi-center, prospective studies to refine the model, incorporate
additional variables, and expand its applicability to diverse patient
populations.
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