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Objective: This study aims to develop an artificial intelligence model and web-
based application for the automatic detection of 21 commonly used auricular
acupoints based on the YOLOv11 neural network.

Methods: A total of 660 human ear images were collected from three medical
centers. The LabelMe annotation tool was used to label the images with
bounding boxes and key points, which were then converted into a format
compatible with the YOLO model. Using this dataset, transfer learning and
fine-tuning were performed on different-sized versions of the YOLOv11 neural
network. The model performance was evaluated on validation and test sets,
considering metrics such as mean average precision (mAP) under different
thresholds, recall, and detection speed. The best-performing model was
subsequently deployed as a web application using the Streamlit library in the
Python environment.

Results: Five versions of the YOLOv11 keypoint detection model were
developed, namely YOLOv11n, YOLOv11s, YOLOv11m, YOLOv11l, and YOLOv11x.
Among them, YOLOv11x achieved the highest performance in the validation set
with a precision of 0.991, recall of 0.976, mAP50 of 0.983, andmAP50–95 of 0.625,
though it exhibited the longest inference delay (19 ms/img). On the external
test set, YOLOv11x achieved an ear recognition accuracy of 0.996, sensitivity of
0.996, and an F1-score of 0.998. For auricular acupoint localization, the model
achieved an mAP50 of 0.982, precision of 0.975, and recall of 0.976. The model
has been successfully deployed as a web application, accessible on both mobile
and desktop platforms to accommodate diverse user needs.

Conclusion: The YoloEar21 web application, developed based on YOLOv11x
and Streamlit, demonstrates superior recognition performance and user-friendly
accessibility. Capable of providing automatic identification of 21 commonly
used auricular acupoints across various scenarios for diverse users, it exhibits
promising potential for clinical applications.
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Introduction

Auricular therapy, as an integral component of ancient Chinese
acupuncture, has been proven to be a simple yet effective approach
for disease prevention, diagnosis, and treatment (Yang et al., 2020;
Liu et al., 2021). Specific points on the auricle are believed to reflect
the physiological functions and pathological changes of the human
body, collectively referred to as auricular acupoints. Traditional
Chinese medicine (TCM) emphasizes a diagnostic approach known
as “inspection, listening and smelling, inquiry, and palpation,”
among which auricular identification plays a crucial role in visual
diagnosis. This process primarily involves the precise localization
of auricular acupoint key features. Despite its significant clinical
value, mastering auricular therapy requires systematic training,
extensive clinical practice, and substantial medical expertise.
Moreover, individual variations in auricular morphology mean that
acupoint localization cannot solely rely on standard templates, as
doing so may lead to inaccurate positioning and, consequently,
suboptimal therapeutic outcomes. This inherent variability
presents a challenge for the clinical application of auricular
therapy (Wirz-Ridolfi, 2019).

Artificial intelligence (AI), a cutting-edge technology built
upon the rapid advancements in the internet and computing
industries, has demonstrated immense potential across various
medical fields, including assisted capsule endoscopy interpretation
and colonoscopy quality control (Chen et al., 2024a; Chen et al.,
2024b). The application of AI in auricular acupoint identification
has shown remarkable adaptability through keypoint detection
models. Since the introduction of YOLOv1 in 2015, this single-
stage object detection network has undergone continuous
improvements (Terven et al., 2023), incorporating algorithmic
enhancements and new functionalities to achieve both higher
real-time processing speeds and improved detection accuracy. In
September 2024, the Ultralytics team released the latest YOLOv11
model, integrating novel structures such as the C3k2 module,
SPPF, and C2PSA to enhance feature extraction and detection
capabilities.

In this study, a dedicated dataset was constructed using
auricular images collected from multiple centers. A deep learning-
based keypoint detection model was trained and tested using
the YOLOv11 neural network, and subsequently developed into
a web application. This model enables the rapid localization
and identification of 21 commonly used auricular acupoints,
significantly improving the efficiency and accuracy of acupoint
recognition, thereby facilitating the broader adoption and
therapeutic efficacy of auricular therapy.

Methods

Datasets

In this study, three datasets were collected, covering the period
from May 2018 to December 2024. Dataset 1# (n = 210 images),
Dataset 2# (n = 230 images), and Dataset 3# (n = 220 images)
were sourced from the Ear210 public dataset (https://www.kaggle.
com/datasets/chg0901/ear210-dataset-coco), Changshu Hospital
Affiliated toNanjingUniversity of ChineseMedicine, and Changshu

Hospital Affiliated to Soochow University, respectively. In total, 660
human ear images were gathered for model training, validation,
and testing. All images underwent anonymization, with identifying
metadata such as location, time, and device information removed.
Additionally, the eye regions of subjects were pixelated to ensure
privacy protection. Figure 1A presents representative image samples
from the dataset, while Figure 1B illustrates the distribution of
images across the training, validation, and test sets.

Image annotation

The annotation of acupoints was conducted in accordance
with China’s national standard Nomenclature and Location of
Meridian Points (GB/T 12346-2021). The annotation process and
representative examples are illustrated in Figure 2. In this study,
the annotation workflow was divided into three stages, with
participants assigned to three distinct teams, each responsible for
a specific phase of the process. Only images that underwent this
structured annotation and verification procedure were deemed
eligible for training the deep learning model. The LabelMe 5.3.1
annotation tool (Russell et al., 2008) was utilized to label auricular
images with bounding boxes and 21 auricular acupoint keypoints.
The JSON files generated in the LabelMe format were subsequently
converted into TXT format compatible with YOLO model training,
ensuring seamless integration with the deep learning model’s
requirements. Inter-rater agreement among annotators was assessed
using Cohen’s kappa statistic to ensure the reliability of the
annotation process.

Image preprocessing

A diverse range of devices was used for image acquisition,
including one Canon EOS R6Ⅱ camera, one iPhone 15, and two
Huawei Mate 60 smartphones. To enhance the generalization
capability of the trained model, a series of image preprocessing
and data augmentation strategies were implemented. During
preprocessing, all images were uniformly resized to 640 × 640
pixels while maintaining their original aspect ratios. In the data
augmentation phase, multiple random transformation strategies
were applied to simulate real-world variations in image conditions.
Specifically, random horizontal flipping was applied with a
50% probability to improve the model’s robustness to mirrored
transformations. Additionally, to address the potential imbalance
caused by a preference for single-sided ear image collection,
mirroring transformations were employed to generate artificial
samples of opposite ear sides, effectively mitigating dataset bias.
Furthermore, RandomResize and RandomCrop algorithms were
utilized to randomly adjust image sizes and perform random
cropping, allowing the model to learn multi-scale and localized
features. The HSVRandomAug algorithm, provided by YOLO
(Qiu et al., 2023), was employed to introduce random perturbations
in the HSV color space, enhancing the model’s resilience to
variations in lighting and color differences. All data augmentation
operations were integrated into the training process online (Athalye
and Arnaout, 2023; Kang et al., 2019), eliminating the need
for pre-generated augmented images while ensuring that the
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FIGURE 1
Illustrative samples and distribution of dataset images for the AI model of automatic auricular acupoint keypoint detection. (A) Representative images
from the dataset; (B) distribution of image quantities across the training, validation, and test sets.

FIGURE 2
Annotation process and representative examples for the AI model of automatic auricular acupoint keypoint detection. (A) Step 1: Medical staff from
various hospital departments collect ear images from individuals of different ages, genders, and occupations using different devices. (B) Step 2: Two
acupuncture specialists annotate the collected images using the LabelMe 5.3.1 graphical annotation tool and perform cross-checking. (C) Step 3: A
senior acupuncture specialist with 15 years of experience reviews the annotations and makes the final decision on the labeling. (D) Example of Auricular
Acupoint Image Annotation. The training and validation sets were annotated by one group of acupuncture specialists, while the external test set was
independently annotated by a separate group of clinicians.
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FIGURE 3
Keypoint detection system for the automatic recognition of 21 common auricular acupoints.

model encounters subtly altered images in each iteration, thereby
improving its adaptability and robustness.

Model training configuration

This study employed a transfer learning strategy (Shin et al.,
2016), utilizing five different scales of YOLOv11 pose models
pretrained on the COCO (Common Objects in Context) dataset:
nano (n), small (s), medium (m), large (l), and extra (x). These
variations represent different model sizes and complexities. During
training, the model weights were randomly initialized, and all
layers were retrained using the dedicated dataset developed in
this study, which includes 21 commonly used auricular acupoints.
The optimizer was automatically selected, and the learning rate
was adjusted based on configuration settings to optimize training
performance. The training process was set to a maximum of 120
epochs, with a batch size of 16. The intersection over union
(IoU) threshold for performance evaluation was set to 0.6, and
the maximum number of detected targets was limited to 20. To
enhance efficiency, automatic mixed-precision training was enabled
on the graphics processing unit (GPU). Additionally, an early
stopping mechanism was implemented, with a patience setting of
8, meaning training would be terminated early if no improvement
in validation performance was observed over eight consecutive
epochs, thereby preventing overfitting. The proposed auricular
acupoint keypoint detection system developed in this study is
illustrated in Figure 3.

Model performance evaluation

This study conducted a comprehensive evaluation of the
trained model, including internal validation (n = 88) and external
testing (n = 220). The performance assessment was performed
using both bounding box (Box, B) and keypoint (Keypoint, K)
metrics. The bounding box metrics were employed to evaluate
the model’s accuracy in ear localization, while the keypoint

metrics were utilized to assess the precision of keypoint detection.
The evaluation metrics comprised: mean average precision for
bounding boxes at IoU threshold 0.50 [mAP50(B)], mean average
precision for keypoints at IoU threshold 0.50 [mAP50(K)], mean
average precision for bounding boxes across IoU thresholds
from 0.50 to 0.95 [mAP50–95(B)], mean average precision for
keypoints across IoU thresholds from 0.50 to 0.95 [mAP50–95(K)],
precision for bounding boxes [precision(B)], precision for keypoints
[precision(K)], recall for bounding boxes [recall(B)], recall for
keypoints [recall(K)], and latency (ms/img). The evaluation metrics
were calculated according to the following definitions: Precision
(Equation 1), recall (also known as sensitivity, Equation 2), mean
average precision at an IoU threshold of 0.50 (mAP50, Equation 3),
mean intersection over union (MIoU, Equation 4), and latency
(Equation 5).

Precision = TP
TP+ FP

(1)

Recall = Sensitivity = TP
TP+ FN

(2)

mAP50 = 1
N

N

∑
i=1

APi (3)

MIoU(y,p) =
|y∩ p|
|y∪ p|
× 100% (4)

Latency (ms/img) = Preprocess Time + Inference Time

+Postprocess Time (5)

True positives (TP) represent the number of correctly detected
ear regions, while false positives (FP) indicate the number of
instances where the model incorrectly detected a region as an ear.
False negatives (FN) refer to the number of ear regions that the
model failed to detect. In the equations, y represents the ground
truth ear region, and p denotes the predicted ear region. The term
|y∩p| refers to the number of pixels in the intersection (overlapping
area) between the ground truth and the predicted region, whereas
|y∪p| represents the number of pixels in the union (total covered
area) of the ground truth and the predicted region.
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FIGURE 4
Flowchart of the AI model for automatic detection of auricular acupoint keypoints.

Web application development

To facilitate the convenient application of the auricular acupoint
recognition model across different settings, such as hospitals
and homes, while catering to diverse user groups including
doctors, nurses, patients, and students, this study developed a web
application named “YoloEar21”in the Python environment. The
application was built using the best-performing model and the
Streamlit library.The interface design integrates Streamlit’s nativeUI
components withAntDesign aesthetics, creating a user-friendly and
visually intuitive experience. Users can upload images and videos
via the sidebar or utilize their device’sWebCam (e.g., smartphone or
computer) for real-time capture. By clicking the “Detect Keypoints”
button, the system automatically performs acupoint detection and
inference. This application is cross-platform compatible, easy to
operate, and shareable, allowing seamless functionality on both
mobile and desktop devices.

The workflow of this study (Figure 4) comprises four distinct
phases: (1) Data Preparation: involving data collection and
partitioning into training, validation, and test sets; (2) Model
Development: employing transfer learning across five YOLO
architectures to identify the optimal model; (3) Model Performance
Evaluation: assessing the selected model through comprehensive
metrics including precision, recall, and inference speed using the
test set; and (4) Model Deployment: implementing the optimal
model into a Streamlit-based web application designed for versatile
multi-scenario applications.

Experimental environment

The computing platform used in this study is configured as
follows: an NVIDIA RTX A4000 GPU with 16.9 GB VRAM, an

Intel Xeon E5-2680 v4 six-core CPU, 30.1 GB RAM, and 451.0 GB
of storage. The development, training, and image processing of the
deep learning model were conducted using PyTorch 1.10.1 + cu113,
along with other supporting Python libraries. The training process
was tracked and managed using Weights & Biases (wandb). For
data processing, analysis, and visualization, the study utilized Pandas
1.3.4, NumPy 1.21.4,Matplotlib 3.5.0, and Plotly 5.4.0.Model saving
and loading were handled using H5py 3.6.0. The web application
was developed with Streamlit 1.36.0, and the model development
environment was based on Ultralytics YOLOv8.0.145, running on
Python 3.9.

Results

Baseline data

A total of 660 human ear images were included in this study,
with baseline characteristics summarized in Table 1. The dataset
comprised 316 images from male subjects (47.9%) and 344 from
female subjects (52.1%). There were 323 images of left ears (48.9%)
and 337 images of right ears (51.1%). In total, 660 bounding boxes
and 13,860 auricular acupoint keypoints were annotated.Themodel
development set consisted of images fromDataset 1# andDataset 2#,
totaling 440 images.These were randomly divided into a training set
(n = 352) and a validation set (n = 88) using an 8:2 sampling ratio.
The test set (n = 220) was sourced from Dataset 3#.

Model training

The study utilized wandb to track the complete training process
of the model. Figure 5 illustrates the loss function trends of
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TABLE 1 Baseline demographic characteristics of the study dataset.

Characteristic Training Set (n = 352) Validation Set (n = 88) Test Set (n = 220) Total (n = 660)

Sex (Male/Female) 171/181 45/43 100/120 316/344

Ear side (Left/Right) 173/179 45/43 105/115 323/337

Age (years) 69.32 ± 13.33 71.24 ± 12.51 70.53 ± 13.72 69.95 ± 13.35

Ethnicity (Han/Others) 348/4 85/3 215/5 648/12

Note: “Han” refers to the Han Chinese, the largest ethnic group in China. Age is presented as mean ± standard deviation (SD). Disease status was not restricted or collected, as this study
focused on general auricular acupoint localization in a broad population.

FIGURE 5
The variation trends of loss functions during the training process of different YOLOv11 model versions. (A) The variation trend of Bounding Box Loss
across training epochs; (B) The variation trend of Keypoint Loss across training epochs.

different YOLOv11 model versions during the training phase. The
displayed losses include bounding box loss, which measures the
accuracy of ear localization, and keypoint loss, which evaluates the
precision of auricular acupoint detection. As the number of training
epochs increased, the model’s loss values gradually decreased and
stabilized, indicating that the model was converging towards an
optimized state.

Figures 6A–C illustrate the variations in precision, recall, and
mAP50 performance metrics for ear bounding box localization
across different models throughout the training process. Initially,
these metrics exhibit a slow increase with significant fluctuations
but gradually stabilize and maintain high values upon convergence.
Notably, all five model versions demonstrated minimal differences
in ear bounding box localization performance, each achieving
an optimal level exceeding 0.995. Figures 6D-F and F depict the
trends in precision, recall, and mAP50 for the localization of
21 commonly used auricular acupoint keypoints during training.
In the early stages, the performance metrics showed fluctuations
while improving progressively, eventually stabilizing at their peak
values. Among the models, YOLOv11x exhibited the best overall
performance across all keypoint detection metrics, achieving a
precision of 0.991, recall of 0.976, and mAP50 of 0.983.

Model performance evaluation

A comparative analysis of different versions of the YOLOv11
model was conducted on the validation set (Table 2). The results

showed that YOLOv11x achieved the best mAP50 performance,
although its inference speed was relatively slower. Specifically,
YOLOv11x attained an mAP50 of 0.995 for ear localization and
0.983 for auricular acupoint recognition, with an average inference
time of 19 milliseconds per image (equivalent to processing 52.63
images per second). Statistical analysis indicated that the mAP50

for auricular acupoint recognition achieved by YOLOv11x was
significantly higher than those of YOLOv11n, YOLOv11l, and
YOLOv11s (p < 0.05), while there was no significant difference
compared to YOLOv11m (p > 0.05). The overall trade-off between
accuracy and processing speed is illustrated in Figure 7.

Model visualization and interpretation

Figure 8 demonstrates the visualization results of Grad-CAM
technique in the AI model’s decision-making process. Column
A displays the original ear images; Column B presents the
detection outcomes from the YOLOv11x model, including both
the ear object detection results and the localization of 21 auricular
acupoint keypoints; Column C overlays the activation heatmaps
onto the original images. In the heatmaps, warm colors (such
as red and yellow) indicate regions of high model attention
during decision-making, which are typically associated with critical
pathological features or target characteristics, while cool colors
(such as blue and purple) represent areas of lower model attention,
corresponding to background or less influential regions for the
model’s judgment.
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FIGURE 6
Performance Metric Trends of Different YOLO Models During Training. (A) Variation trend of bounding box precision; (B) Variation trend of bounding
box recall; (C) Variation trend of bounding box mAP50; (D) Variation trend of keypoint precision; (E) Variation trend of keypoint recall; (F) Variation
trend of keypoint mAP50. B: Bounding Box, K: Keypoint, mAP50: mean average precision at 50% Intersection over Union threshold.

TABLE 2 Performance comparison of different YOLO versions in object detection and keypoint detection.

Model Precision
(B)

Recall
(B)

mAP50

(B)
mAP50–95

(B)
Precision

(K)
Recall
(K)

mAP50

(K)
mAP50–95

(K)
Latency
(ms/img)

yolo11n 0.997
(0.98–1.00)

1 (0.99–1.00) 0.995
(0.98–1.00)

0.825
(0.77–0.89)

0.950
(0.92–0.98)

0.952
(0.92–0.98)

0.958
(0.93–0.98)

0.536
(0.46–0.58)

1.7

yolo11s 1 (0.99–1.00) 1 (0.99–1.00) 0.995
(0.98–1.00)

0.838
(0.78–0.89)

0.976
(0.95–0.99)

0.976
(0.95–0.99)

0.980
(0.94–0.99)

0.622
(0.57–0.67)

2.1

yolo11m 1 (0.99–1.00) 0.996
(0.98–1.00)

0.995
(0.98–1.00)

0.832
(0.77–0.89)

0.976
(0.95–0.99)

0.973
(0.94–0.99)

0.982
(0.96–0.99)

0.623
(0.57–0.67)

4.8

yolo11l 1 (0.99–1.00) 0.968
(0.93–0.99)

0.994
(0.97–1.00)

0.779
(0.71–0.84)

0.951
(0.91–0.98)

0.920
(0.88–0.97)

0.924
(0.89–0.96)

0.463
(0.42–0.51)

5.6

yolo11x 0.998
(0.98–1.00)

1 (0.99–1.00) 0.995
(0.98–1.00)

0.855
(0.80–0.90)

0.991
(0.97–0.99)

0.976
(0.95–0.99)

0.983
(0.97–0.99)

0.625
(0.57–0.68)

19

Note: Performance comparison of different YOLOv11 model versions on the validation set (n = 88 images), with evaluation metrics categorized into bounding box (B) and keypoint (K) groups;
latency represents the inference time required per image, measured in milliseconds (ms). mAP50: mean average precision at 50% Intersection over Union threshold; mAP50–95: mean average
precision across Intersection over Union thresholds from 50% to 95%. Values in parentheses indicate 95% confidence intervals calculated by bootstrap resampling.

Model deployment and testing

On the external test set (n = 220), YOLOv11x achieved an
accuracy of 0.996, a sensitivity of 0.996, and an F1 score of
0.998 for ear detection, with the confusion matrix presented in
Figure 9A. The recognition performance of 21 auricular acupoints
demonstrated an mAP50 of 0.982, a precision of 0.975, and a recall
of 0.976. Inter-rater agreement among annotators was assessed using
Cohen’s kappa statistic, with a kappa value of 0.87. Additionally, a
randomly selected image from the external test set was used for
prediction, with its detection results presented as an example in
Figures 9B–D.

The web application YoloEar21 (https://ear-spotter-app-v6.
streamlit.app/), developed based on the YOLOv11x model and
Streamlit library, features an operational interface as shown in
Figure 10A.This application supports users in uploading ear images
or videos, or utilizing the device’s camera for real-time capture.Upon
clicking the prediction button, it automatically identifies the human
ear and 21 auricular acupoint keypoints. Video 1 (Figure 10B)
demonstrates the process of using YoloEar21 on an Apple iPhone to
capture ear images via the camera and automatically detect auricular
acupoint keypoints. Video 2 (Figure 10C) illustrates the real-time
detection of ear images displayed on an iPad using a Logitech camera
on a local computer.
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FIGURE 7
Performance comparison of different YOLOv11 model versions. The x-axis represents the inference time required for processing a single image by
different YOLOv11 models under the PyTorch framework, measured in milliseconds (ms), where positions further to the left indicate faster processing
speeds; the y-axis displays the mean average precision at 50% Intersection over Union threshold (mAP50) obtained by the models on the validation set,
with higher positions indicating greater mAP50 values.

FIGURE 8
Grad-CAM Visualization of the AI Model’s Decision-Making Process. (A) Original images; (B) AI model recognition results; (C) Overlay display of
activation heatmaps on original images.

Discussion

Auricular acupoints, located on the auricle, serve as key
convergence points of the body’s meridians, playing a crucial
role in disease diagnosis and treatment. Modern medicine has
increasingly focused on auricular acupoints and systematic
auricular therapy to enhance the diagnostic and therapeutic efficacy
for various conditions. Researchers worldwide have conducted
numerous studies on auricular therapy, achieving remarkable
clinical outcomes. For instance, auricular massage has been used

to treat insomnia (Zhuang et al., 2022), auricular acupuncture has
been applied to alleviate pain severity in patients with acute and
chronic pain (Elliott et al., 2024), and auricular acupressure has been
employed to relieve wheezing symptoms in patients with chronic
obstructive pulmonary disease (COPD) (Dang et al., 2024). Due to
its proven therapeutic efficacy, auricular therapy has been widely
adopted across multiple medical specialties. However, its clinical
application largely relies on empirical practice, lacking objective
and quantifiable diagnostic criteria, which poses challenges for its
standardization and broader adoption. In this study, five models
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FIGURE 9
Prediction results of the model on the test set. (A) Confusion matrix of the AI model for ear detection task, (B) displays the original ear images, (C)
presents the manually annotated images, (D) shows the AI model’s prediction results. The model’s predictions (Figure 9D) closely resemble the
physician’s annotations (Figure 9C). In Figure 9D, the confidence score of 0.9 for the model’s prediction of the ear is displayed in the upper left corner
of the predicted bounding box.

FIGURE 10
Web application developed based on the optimal model and its use cases. By scanning the QR codes in the figure, viewers can observe two real-time
detection cases of the AI model performing ear recognition. (A) Operational interface of the web application; (B) Case 1; (C) Case 2.

were trained, among which YOLOv11x demonstrated the best
performance across key metrics, including Precision, Recall, and
mAP50. Although its latency is relatively high, processing at 52.63
frames per second (fps), it still meets the ISO/IEC IEEE 29119
standards for real-time performance in AI-poweredmedical devices
(>16 fps), ensuring that clinicians receive timely and dynamic
identification feedback.

Currently, research and application of auricular therapy have
been conducted in dozens of countries and regions, with the
World Health Organization (WHO) officially recognizing it as an
effective method for treating various diseases. As modern medicine
continues to integrate with traditional Chinese medicine, the

application of AI technology in auricular acupoint recognition not
only presents new possibilities for the inheritance and innovation of
traditional medicine but also opens up vast industrial prospects and
development potential, fostering an innovative “Traditional Chinese
Medicine + AI” model. Li et al. (Li et al., 2023) proposed an AI
model based on image segmentation algorithms, achieving auricular
acupoint region localization and segmentation.This study integrates
object detection and keypoint detection algorithms, enabling the
developed model to first automatically identify the ear’s position in
an image and then further recognize 21 commonly used auricular
acupoints.Themodel demonstrated outstanding performance in ear
localization, achieving an accuracy of 0.996 and a sensitivity of 0.996.
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Similarly, for auricular acupoint recognition, the model exhibited
excellent performance, with anmAP50 of 0.982, a precision of 0.975,
and a recall of 0.976.

As a time-honored therapy in traditional Chinese medicine,
auricular therapy is not only applied in medical institutions under
the guidance of healthcare professionals but is also widely practiced
by patients and their families in the long-term management
of chronic conditions such as insomnia and chronic pain,
demonstrating its unique value. However, the accurate identification
of auricular acupoints relies on specialized knowledge and training,
and is influenced by factors such as the morphological variability
of the auricle and anatomical differences between the bilateral
ears. These complexities make it challenging for non-medical
professionals to accurately locate auricular acupoints (Godson
and Wardle, 2019). To address this issue, this study developed
the AI model and web application YoloEar21. Through internal
validation and external testing, results indicate that its efficiency
and accuracy are comparable to those of experienced acupuncture
specialists. More importantly, YoloEar21 features an intuitive visual
interface, user-friendly operation, and strong adaptability, making
it suitable for applications in hospitals, home care, and elderly
care institutions. This significantly enhances the accessibility and
dissemination of auricular therapy. Additionally, this AI model
alignswith the traditional Chinesemedicine principle of “preventing
diseases before they arise,” holding great potential in early disease
prevention and health management by providing precise and
convenient healthcare solutions for a broader patient population.
Furthermore, the system can be utilized in medical education
and training, enabling medical students and practitioners to learn
auricular acupoint localization more intuitively, thereby improving
learning efficiency and practical proficiency.

This study has several limitations. First, the dataset is limited
in size and diversity, and should be expanded to include samples
frommore ethnic groups and additional medical centers to improve
generalizability. Second, prospective human-machine comparison
studies with acupuncturists of varying experience are needed to
evaluate the model’s clinical performance. Currently, YoloEar21
enables recognition of user-uploaded images onmobile and desktop
platforms. In the future, we plan to expand YoloEar21 to support
RTSP video streams from fixed surveillance cameras for real-time
auricular acupoint detection. This would allow patients to simply
sit at a designated location while the system assists healthcare
professionals in real-time acupoint localization, further enhancing
clinical convenience and intelligence.

Conclusion

This study developed YoloEar21, an intelligent recognition
system for 21 commonly used auricular acupoints, based on the
YOLOv11 model. The system demonstrated excellent performance,
achieving an mAP50 of 0.982 and a recall of 0.976. Through a cross-
platform web application, YoloEar21 enables seamless deployment
on both mobile and desktop devices, offering strong adaptability
across various clinical settings. It provides real-time auricular
acupoint recognition services for both physicians and patients,
serving as a critical support tool for the effective application of
auricular therapy.
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