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Objective: To address the limitations of conventional delirium prediction
models in emergency polytrauma care, this study developed an interpretable
machine learning (ML) framework incorporating trauma-specific biomarkers and
advanced optimization algorithms for risk stratification of delirium in emergency
polytrauma patients.

Methods: This multi-center retrospective observational cohort study was
conducted across six hospitals in the Ya’an region. A total of 956 polytrauma
patients admitted between January 2020 and December 2024 were enrolled,
complying with the American Association for the Surgery of Trauma (AAST)
diagnostic criteria for polytrauma. Demographic, clinical (e.g., Glasgow
Coma Scale [GCS], Injury Severity Score [ISS]), and laboratory data (e.g.,
fibrin degradation products [FDP], lactate) were systematically collected. To
address high-dimensional clinical heterogeneity, an Improved Flood Algorithm
(IFLA)—enhanced with sine mapping initialization and Cauchy mutation
perturbations—was integrated into an automated machine learning (AutoML)
framework for simultaneous feature selection and hyperparameter optimization.
Model performance was benchmarked against conventional algorithms (logistic
regression [LR], support vector machine [SVM], extreme gradient boosting
[XGBoost], LightGBM) using five-fold cross-validation. The SHapley Additive
exPlanations (SHAP) framework quantified predictor contributions, and a
MATLAB-based clinical decision support system (CDSS) was implemented for
real-time risk stratification.

Results: The improved algorithm significantly outperformed other algorithms
on 12 standard test functions. The automated machine learning (AutoML)
model achieved ROC-AUC and PR-AUC values of 0.9690 and 0.9611,
respectively, on the training set, and 0.8929 and 0.8487, respectively, on
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the test set, both significantly higher than those of four other prediction models.
The AutoML model identified 5 important features: Glasgow Coma Scale (GCS)
score, lactate level, Clinical Frailty Scale (CFS), body mass index (BMI), and fibrin
degradation products (FDP). The decision support system demonstrated clinical
utility with net benefit across risk thresholds.

Conclusion: This study provides a trauma-specific, interpretable ML tool
that integrates GCS scoring and dynamic biomarker monitoring, enabling
early delirium risk identification in emergency polytrauma. The framework
demonstrates feasibility for integration into clinical workflows to improve trauma
care quality.

KEYWORDS

delirium, polytrauma, machine learning, predictive model, explainable artificial
intelligence

1 Introduction

Trauma-related disorders have emerged as a critical global
public health challenge. According to World Health Organization
statistics, the socioeconomic burden attributable to traumatic
injuries has risen to become the second leading contributor to the
global disease burden (Galbraith et al., 2023). As a distinct subtype
of trauma, polytrauma is characterized by complex pathophysiology,
multi-system complications, and prolonged hospitalization,
necessitating multidisciplinary collaborative care throughout
treatment (Sumann et al., 2020).While damage control resuscitation
(DCR) protocols significantly improve hemodynamic stability and
survival rates, we observe increased neurological complication rates
in this surviving cohort–particularly in patients requiring ≥6 units
of blood transfusion. This complication profile reflects emergent
pathophysiological perturbations in severely injured patients who
survive initial resuscitation, rather than a direct consequence of
DCR strategy (Kruithof et al., 2020). Among these, delirium—a
severe neuropsychiatric syndrome with substantial prognostic
implications—has been reported to affect 24% of emergency
polytrauma patients. This condition not only prolongs mechanical
ventilation duration and increases unplanned extubation risks
but also induces long-term cognitive impairment, severely
compromising patients’ quality of life (Von Rueden et al., 2017).

Although the American Guidelines for Critical Care Medicine
explicitly recommend incorporating delirium screening into
routine ICU care protocols, significant diagnostic gaps persist
in clinical practice (Safdar et al., 2024). Studies indicate that
healthcare providers actively identify delirium in 15%–20% of
cases (Tonna et al., 2021). This disparity between knowledge and
implementation may stem from three interrelated challenges: (1)
the heterogeneous clinical manifestations driven by delirium’s
complex pathophysiological mechanisms; (2) the high expertise
requirements for administering validated assessment tools like
the Confusion Assessment Method for the ICU (CAM-ICU);
and (3) the inadequacy of traditional risk factor analysis in
addressing dynamically evolving clinical features of polytrauma
patients. Current delirium prediction models predominantly focus
on geriatric or elective postoperative populations, with scarce
systematic investigations into personalized model development
for emergency trauma cohorts. This knowledge gap substantially

hinders evidence-based implementation of precision preventive
strategies (Heinrich et al., 2022).

Emerging evidence highlights the unique value of machine
learning (ML) in predicting critical illness outcomes (Li et al.,
2024; Fan et al., 2023; Tobin et al., 2024). Gong et al. developed a
predictive model achieving an AUC of 0.845 (95% CI: 0.831–0.859),
demonstrating the clinical potential of risk stratification in
delirium management (Gong et al., 2023). However, significant
challenges arise when adapting such models to emergency
polytrauma scenarios. Key limitations include: (1) omission of
trauma-specific indicators such as Injury Severity Score (ISS);
(2) insufficient capacity of linear regression methods to capture
complex variable interactions; and (3) unresolved conflicts
between rapid decision-making demands and model usability
in emergency settings (Rostam Niakan Kalhori, 2022). These
shortcomings underscore the urgent need for context-specific
predictive tools.

Building upon this rationale, our study innovatively integrates
three pivotal components: (1) comprehensive trauma care
cycle data collection; (2) adaptive ML algorithms optimized
for dynamic clinical environments; and (3) implementation
of the SHapley Additive exPlanations (SHAP) framework for
transparent interpretation of model decisions. By synergizing
advanced information technologies with traditional clinical research
paradigms, this multidisciplinary approach aims to provide an
intelligent solution for delirium prevention and management in
emergency polytrauma patients, ultimately advancing the quality of
trauma care delivery.

2 Methods

2.1 Study design

This multicenter retrospective observational study was
conducted across six hospitals in Ya’an, China. As a retrospective
analysis, the requirement for informed consent was waived, and
the study protocol received ethical approval from all participating
institutions. We enrolled polytrauma patients admitted to these
hospitals between January 2020 and December 2024. After
applying inclusion and exclusion criteria, 956 patients were
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FIGURE 1
Patient selection flow chart.

included in the final analysis (see Figure 1 for the patient selection
flowchart).

Inclusion criteria: (1) Hospitalization for polytrauma meeting
the diagnostic criteria of the American Association for the Surgery
of Trauma (LaGrone et al., 2024); (2) ICU stay duration ≥48 h.

Exclusion criteria: (1) Age <18 years; (2) Patients who were
comatose on admission and unable to verbally communicate
with healthcare providers or family members until discharge;
(3) Pregnant women; (4) Individuals unable to communicate in
Chinese; (5) Subjects with a history of psychiatric disorders; (6)
Patients with incomplete medical records upon admission.

2.2 Delirium diagnosis and data collection

All patient data were collected and assessed by psychosomatic
physicians for delirium through medical record analysis and
Confusion Assessment Method for the ICU (CAM-ICU) scoring
conducted at 48 h post-ICU admission. This scoring method
evaluates the following four criteria: (1) Acute onset or fluctuating
mental status; (2) Inattention; (3) Altered level of consciousness;
(4) Disorganized thinking. A diagnosis of delirium was confirmed
if a patient met the first two criteria and one of the latter
two criteria (Chen et al., 2021). All delirium diagnoses were
established through retrospective chart review by two board-
certified psychosomatic physicians following a standardized
protocol. The primary physician conducted assessments using
CAM-ICU criteria applied to medical records, with a secondary
physician independently validating diagnoses across all identified
cases to ensure inter-rater reliability.

Data collection: Patient data were retrieved via electronic
medical record systems from multiple hospitals, consolidated,
and uniformly processed by a single researcher. The dataset
included: (1) Demographic information: Age, sex, height,
weight, body mass index (BMI), Clinical Frailty Scale (CFS)
(Shimura et al., 2017; Church et al., 2020), Charlson Comorbidity
Index (CCI), smoking history, and alcohol use history; (2) Clinical
parameters: Blood pressure, heart rate, body temperature, Glasgow

Coma Scale (GCS) score, Revised Trauma Score (RTS), Injury
Severity Score (ISS), and presence of traumatic brain injury
(TBI); Traumatic brain injury (TBI) diagnosis was established
through admission cranial CT scans interpreted by board-certified
radiologists, with severity quantified using the Abbreviated Injury
Scale (HEAD-AIS) specifically targeting neuroanatomical damage.
Patients were classified as TBI-positive when HEAD-AIS ≥3
(moderate-to-severe injury), consistent with AAST/WSES organ
injury grading standards. (3) Laboratory data: Fibrinogen, fibrin
degradation products (FDP), hemoglobin, C-reactive protein
(CRP), and lactate levels. All clinical parameters (including blood
pressure, heart rate, GCS score, RTS, and ISS) were documented
during the initial emergency department assessment immediately
following patient admission. All laboratory biomarkers (fibrinogen,
FDP, hemoglobin, CRP, lactate) were measured from venous blood
samples collected at triage prior to any therapeutic interventions.
TBI diagnosis was based on admission CT scans.

Missing data handling: The overall data completeness rate for
the 956 included polytrauma patients was 97.43%. Missing rates
varied across variables, with FDP exhibiting the highest missing
rate (≤1% for other variables). Missing values were imputed using
median replacement for continuous variables andmode substitution
for categorical variables.

2.3 Model algorithm optimization and
validation

To address the complexity of high-dimensional clinical data, we
employed an automated machine learning (AutoML) model based
on an optimization algorithm, which simultaneously performed
feature selection and hyperparameter tuning. Traditional machine
learning models were also included for performance comparison.
All analyses were conducted in MATLAB 2024b. The Flood
Algorithm (FLA) (Ghasemi et al., 2024), a novel swarm intelligence
algorithm inspired by the complex movements of water masses,
was used to optimize the AutoML framework. To enhance
optimization performance, we improved the original FLA by
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integrating sine mapping initialization and Cauchy mutation
perturbation strategies, resulting in the Improved Flood Algorithm
(IFLA). The optimization capability of IFLA was validated using
12 standard benchmark functions from the IEEE CEC-2017
test suite (Sharma and Raju, 2024), including multimodal, hybrid,
and composite functions such as Schwefel (F15), Rosenbrock
(F6), and Lunacek Bi-Rastrigin (F23). Testing parameters: variable
dimension = 10, population size = 30, maximum iterations = 500,
with 30 independent runs for statistical robustness. Notably, these
benchmark functions were used solely to evaluate the optimization
performance of the swarm intelligence algorithm and did not
participate in AutoML model training. The fitness function was
defined as a direct mapping of the objective function value, with the
optimization goal set tominimize the fitness value.Thus, a reduction
in fitness value signifies improved algorithmic performance.

2.4 Model training and evaluation

To assess model quality in terms of performance,
computational efficiency, interpretability, and robustness against
underfitting/overfitting, we implemented five-fold cross-validation.
The dataset was split into an 80% training set (for cross-validation)
and a 20% test set. This approach effectively mitigated overfitting
during training and improved prediction accuracy on the test
set. We compared the performance of widely adopted and robust
machine learning models, including logistic regression (LR),
support vector machines (SVM), extreme gradient boosting
(XGBoost), and LightGBM. These models were selected based on
their proven performance and reliability in predictive analytics
tasks. Quantitative evaluation metrics: Sensitivity (SEN), precision
(PRE), specificity (SPE), accuracy (ACC), error rate (ER), and F1-
score (F1). Primary comprehensive metrics: Area under the receiver
operating characteristic curve (ROC-AUC) and precision-recall
curve (PR-AUC). All metrics range from 0 to 1, with higher values
indicating superior classification performance.

2.4.1 Interpretability analysis
SHAP (SHapley Additive exPlanations) analysis, rooted

in game-theoretic Shapley values, was employed to quantify
feature contributions to model predictions. This method provides
both global (model-wide) and local (individual sample-level)
interpretability. Two types of SHAP visualizations were generated:
(1) SHAP Summary Plot: Each point represents a feature’s SHAP
value for a specific sample, color-mapped to reflect feature
magnitude (blue: high values, white: low values), illustrating
positive/negative relationships between features and predictions. (2)
SHAP Importance Plot: Features are ranked by global importance
based on absolute SHAP values, highlighting key predictors.

2.4.2 Clinical decision system development
An interactive clinical decision support system was developed

using MATLAB 2024a App Designer. This system integrates the
prediction model, enabling clinicians to input clinical parameters
via a structured interface and receive real-time predictions with
therapeutic recommendations. The tool provides reliable and
transparent decision-making assistance for clinical practice.

2.5 Statistical analysis

IBM SPSS v25.0 was used for conventional statistical analysis
(significance: p < 0.05). Continuous variables were expressed as
mean ± SD (normally distributed, Kolmogorov-Smirnov test) or
median (IQR), and categorical variables as percentages.

3 Results

3.1 Baseline characteristics of study
cohorts

The study included 956 patients, with 326 cases (34.1%)
diagnosed with delirium. The dataset was randomly divided into a
training set (80%, n = 764, delirium: 250 cases) and a test set (20%,
n = 192, delirium: 76 cases). Baseline characteristics of both cohorts
are summarized in Table 1.

3.2 Algorithm improvement performance
evaluation

Based on 30 independent optimization runs, boxplots were
generated to assess algorithm stability (Figure 2). The Improved
Flood Algorithm (IFLA) demonstrated superior optimization
stability compared to the original FLA and other benchmark
algorithms across most test functions. Further convergence
curve analysis (Figure 3) revealed that IFLA achieved faster
convergence rates while maintaining the lowest risk of entrapment
in local optima during iterations. These findings robustly validate
IFLA’s enhanced global search capability and computational
efficiency.

3.3 Model training performance

The AutoML model exhibited optimal predictive performance
on the training set: ROC-AUC: 0.9690; PR-AUC: 0.9611
(Table 2; Figure 4). Key features selected during model optimization
included: Glasgow Coma Scale (GCS) score, lactate level, Clinical
Frailty Scale (CFS), body mass index (BMI), and fibrin degradation
products (FDP).

3.4 Test set validation

The AutoML model maintained strong generalizability on
the independent test set: ROC-AUC: 0.8929; PR-AUC: 0.8487
(Table 3; Figure 5).

3.5 Interpretability analysis

SHAP analysis quantified feature importance as follows
(descending order): 1-GCS score; 2-Lactate level; 3-Clinical Frailty
Scale; 4-BMI; 5-FDP (Figure 6).
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TABLE 1 Baseline demographics and clinical characteristics of training and test sets.

Factor Training set (n = 764) Testing set (n = 192)

Delirium (n =
250)

No delirium (n =
514)

P value Delirium (n = 76) No delirium (n =
116)

P value

Age (year) 77.37 ± 8.42 58.28 ± 9.44 <0.001 77.81 ± 10.15 59.68 ± 8.49 <0.001

Sex, male (%) 149 (59.6) 304 (59.1) 0.904 47 (61.8) 73 (62.9) 0.879

BMI (kg/m2) 21.14 ± 4.32 22.6 ± 3.88 <0.001 21.18 ± 4.53 22.71 ± 4.04 <0.001

CFS (score) 4.58 ± 1.15 3.23 ± 0.68 <0.001 4.61 ± 1.21 3.28 ± 0.84 <0.001

Charlson index (score) 0 (0.2) 0 (0.1) <0.001 1 (0.1) 0 (0.1) 0.022

Smoking (%) 43 (17.2) 101 (19.6) 0.417 14 (18.4) 23 (19.8) 0.809

Alcohol (%) 87 (34.8) 185 (35.6) 0.747 28 (36.8) 42 (36.2) 0.929

Systolic blood pressure
(mmHg)

137.75 ± 23.16 140.85 ± 24.16 0.092 141.13 ± 25.05 142.31 ± 24.68 0.748

GCS score (score) 14 (13–15) 15 (14–15) <0.001 14 (13–15) 15 (14–15) <0.001

GCS score (score) 14.31 ± 2.52 15.85 ± 2.43 <0.001 14.38 ± 2.62 15.79 ± 2.51 <0.001

Heart rate (bpm) 84 (71,101) 82 (71.93) 0.168 82 (75,102) 81 (70.95) 0.427

Body temperature (°C) 36.3 (36, 36.8) 36.5 (36.1.36.9) 0.747 36.4 (36, 36.8) 36 (36.2, 37) 0.814

Hemoglobin (g/L) 121.83 ± 20.67 137.56 ± 17.89 <0.001 122.74 ± 19.52 138.15 ± 20.24 <0.001

Fibrinogen (mg/dL) 259.78 ± 42.17 257.88 ± 44.35 0.537 263.53 ± 51.05 259.76 ± 48.35 0.606

FDP (mg/L) 60.56 ± 18.79 16.74 ± 8.22 <0.001 62.74 ± 17.15 17.18 ± 6.85 <0.001

Lactate (mmol/L) 2.3 (1.5, 4) 2.1 (1.6, 2.9) <0.001 2.5 (1.7, 3.4) 1.9 (1.4, 2.7) <0.001

CRP (mg/L) 9 (3.40) 5 (2.14) <0.001 8 (2.35) 5 (2.13) <0.001

RTS (score) 7.83 (7.24–7.88) 7.86 (7.84–7.94) <0.001 7.84 (7.34–7.86) 7.86 (7.84–7.94) <0.001

ISS (score) 18 (10–27) 12 (9–19) <0.001 18 (10–26) 12 (9–19) <0.001

TBI(%) 117 (46.8) 215 (41.8) 0.193 34 (44.7) 46 (39.7) 0.485

3.6 Clinical utility

3.6.1 Decision Curve Analysis
The decision curve (Figure 7) demonstrated that applying the

AutoML model to predict delirium risk provided greater clinical
net benefit compared to alternative strategies across threshold
probabilities.

3.6.2 Decision support system
To address barriers in translating AI models to clinical

practice (e.g., operational complexity), we developed an intuitive
decision support system using MATLAB 2024a. The system
allows clinicians to: Input patient features via a structured
interface; Obtain real-time delirium risk predictions at the
click of “Start Prediction”; Review evidence-based therapeutic
recommendations. This tool significantly lowers implementation

thresholds while ensuring interpretability and clinical relevance
(Figure 8).

4 Discussion

Our study employed a multicenter retrospective design to
develop an adaptive machine learning model based on an improved
flood optimization algorithm (IFLA) for predicting delirium risk
in emergency department (ED) patients with multiple trauma.
Results demonstrated that the optimized IFLA model significantly
outperformed traditional models (e.g., logistic regression and
XGBoost) in key metrics including AUC and F1 scores. By
integrating sine mapping initialization and Cauchy mutation
perturbation strategies, the IFLA algorithm successfully overcame
the local optimum trapping inherent in the conventional FLA, a
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FIGURE 2
Comparison of swarm intelligence algorithm optimization performance.

FIGURE 3
Comparison of convergence performance of swarm intelligence algorithms.
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TABLE 2 Cross-validation performance metrics on the training set.

Models PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.5781 0.2960 0.8949 0.6990 0.3915 0.7129 0.5518

SVM — 0.0000 1.0000 0.6728 — 0.6177 0.4598

XGBoost 0.5929 0.5360 0.8210 0.7277 0.5630 0.7222 0.5360

LightGBM 0.9722 0.5600 0.9922 0.8508 0.7107 0.9482 0.9309

AutoML 0.8169 0.9280 0.8988 0.9084 0.8689 0.9690 0.9611

FIGURE 4
Training Set Performance Evaluation. Note: (A) ROC curve; (B) Precision-Recall curve.

TABLE 3 Predictive performance metrics on the testing set.

Models PRE SEN SPE ACC F1 ROC-AUC PR-AUC

LR 0.5294 0.2368 0.8621 0.6146 0.3273 0.6484 0.5234

SVM — 0.0000 1.0000 0.6042 — 0.6130 0.4972

XGBoost 0.5333 0.4211 0.7586 0.6250 0.4706 0.6098 0.4421

LightGBM 0.7333 0.5789 0.8621 0.7500 0.6471 0.8394 0.8166

AutoML 0.9286 0.6421 0.9828 0.7292 0.7351 0.8929 0.8487

finding corroborated by standard benchmark function tests. This
innovative approach aligns with the algorithmic enhancements
proposed by Gao et al. in COVID-19 prediction models (Gao et al.,
2022). Through SHAP interpretability analysis, five critical
predictors were identified: Glasgow Coma Scale (GCS) score, fibrin
degradation products (FDP), lactate levels, body mass index (BMI),
and Clinical Frailty Scale (CFS). Notably, GCS score exhibited the
highest SHAP value contribution (26.8%). The real-time decision
support system embedded in our model demonstrated favorable

clinical acceptance during ED validation, indicating substantial
translational potential.

Current delirium prediction research primarily focuses on
medical or postoperative cohorts (Tobin et al., 2024; Gong et al.,
2023; Rostam Niakan Kalhori, 2022; LaGrone et al., 2024;
Chen et al., 2021; Shimura et al., 2017; Church et al., 2020;
Ghasemi et al., 2024; Sharma and Raju, 2024; Gao et al.,
2022; Liu et al., 2025; Shpakov et al., 2023; Saviano et al.,
2023), with limited models specifically designed for trauma
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FIGURE 5
Testing Set Performance Evaluatione. Note: (A) ROC curve; (B) Precision-Recall curve.

FIGURE 6
Machine Learning Interpretability Visualization. Note: (A) SHAP summary plot; (B) SHAP importance plot.

FIGURE 7
Decision Curve Analysis for Predictive Models. Note: (A) Training set; (B) Testing set. Net benefit (Y-axis) calculated against two extreme scenarios:
“treat all” (red dashed) and “treat none” (black dashed).
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FIGURE 8
Clinical decision support system interface.

populations. Conventional linear regression approaches frequently
exhibit inadequate predictive performance (AUC typically <0.85
(Matsuoka et al., 2021)) due to their limited capacity for
modeling nonlinear relationships. Compared to rapid decision
tree models developed in previous studies (Xie et al., 2022),
our model demonstrated superior adaptability for polytrauma
patients through the inclusion of trauma-specific indicators
such as Injury Severity Score (ISS). While ISS significantly
discriminated between groups, its utility as a reliable predictor
was constrained by the limited critical trauma representation in
our cohort, necessitating exclusion during model optimization.
Future large-scale studies should validate its reintegration to
enhance trauma-specific applicability. While Dana’s emergency
informatics framework emphasizes data acquisition efficiency
(Im et al., 2023), our study achieved concurrent feature selection
and parameter optimization using AutoML technology, significantly
enhancing computational efficiency. Importantly, previous research
has largely overlooked the predictive value of coagulation
markers (Stollings et al., 2021), whereas our findings highlight
the critical role of FDP dynamics in delirium risk stratification,
potentially mediated by neuroinflammatory cascades secondary
to microcirculatory dysfunction in polytrauma (Bramley et al.,
2021). Although Kang et al.'s sleep quality intervention reduced

delirium incidence (Kang et al., 2023), its reliance on subjective
clinician assessments contrasts with our objective predictive model
that enables early targeted interventions.

Model refinement and SHAP analysis identified five core
predictors, with their pathophysiological implications analyzed as
follows: (1) GCS score: As a standardized consciousness assessment
tool, GCS showed an inverse correlation with delirium risk. Severe
brain injury (GCS ≤8) may trigger thalamocortical feedback loop
dysregulation (attentional deficits), locus coeruleus norepinephrine
system hyperactivation (neurotransmitter imbalance), and blood-
brain barrier disruption (neuroinflammation via IL-6/TNF-α
infiltration) (Raquer et al., 2024). For ED physicians, dynamic
GCS monitoring (particularly in TBI patients) facilitates early
identification of high-risk individuals (GCS ≤12), enabling timely
preventive measures. (2) Lactate levels: This biomarker of tissue
hypoperfusion quantifies oxygen metabolism dysregulation.
Levels >2 mmol/L promote delirium via three pathways: 1)
astrocytic glutamate uptake inhibition (excitotoxicity); 2) microglial
TLR4/NF-κB pathway activation (neuroinflammation); 3) cerebral
acidosis impairing neurotransmitter dynamics (Qian et al.,
2024). The sharp SHAP value increase at >4 mmol/L suggests
a threshold effect. Integrating central venous oxygen saturation
monitoring for fluid resuscitation optimization (as shown
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by Taylor et al. (Taylor et al., 2022)) could reduce delirium
incidence by 19%. (3) Clinical Frailty Scale (CFS): Scores ≥5
indicate depleted physiological reserves, amplifying trauma effects
through immunosenescence (sustained inflammation), autonomic
dysregulation (circadian disruption), and altered pharmacokinetics
(sedative accumulation) (Zhang et al., 2021; Mazzola et al., 2021).
Our model ranks CFS third in SHAP importance, warranting
“precision trauma care” strategies including nutritional support
(protein ≥1.2 g/kg/day), early mobilization (bedside sitting within
24h), and benzodiazepine restriction. (4) BMI: The U-shaped
delirium risk (optimal range 18.5–24.9 kg/m2 (Feinkohl et al.,
2023)) reflects dual mechanisms: low BMI exacerbates catabolism
(neurotransmitter precursor deficiency), while obesity induces
leptin resistance (insulin resistance/BBB disruption). Obese
patients require vigilance for occult hypoperfusion from intra-
abdominal hypertension, whereas underweight patients may
benefit from enteral nutrition with branched-chain amino acids
(Fu et al., 2024). (5) FDP: Elevated FDP (>20 μg/mL) signals
coagulopathy via complement C5a activation (microvascular
NETosis) and competitive fibrinogen inhibition (hemorrhagic risk)
(Payne et al., 2024). Six-hourly FDP monitoring combined with
tranexamic acid administration may mitigate microcirculatory
dysfunction-related delirium (Lu et al., 2024).

Despite constructing this automated prediction model,
limitations persist in data quality and clinical implementation: Data
source bias: Though standardized across six regional hospitals,
geographical disparities in trauma protocols and monitoring
standardization may introduce bias. While multicenter recruitment
enhances external validity, the moderate cohort size limited
subgroup analyses for rare trauma phenotypes. We also recognize
inherent inter-hospital variability in scoring systems despite
standardized training. Future large-scale validation should prioritize
algorithmic adaptation to institution-specific documentation
patterns using federated learning frameworks. While median
imputation mitigates leakage risk, FDP remains susceptible to bias
due to its higher missing rate (2.6%). Future studies should employ
advanced methods like multiple imputation chained equations
(MICE) for variables exceeding 2% missingness. Retrospective
acquisition of FDP values, though demonstrating critical prognostic
value, necessitates future validation of our dynamic prediction
updating protocol in prospective studies employing point-of-
care viscoelastic testing to eliminate turnaround delays. Model
constraints: Missing core variables and incomplete capture
of nonlinear interactions may reduce sensitivity in complex
trauma scenarios. Temporal resolution: Static-input prediction
systems face intrinsic latency in dynamic ED environments
requiring real-time biomarker feedback (e.g., rapidly changing
lactate/FDP). Study design limitations: While retrospective
validation provides preliminary evidence, prospective cohorts
remain essential for examining delirium’s temporal progression
and intervention dynamics.

The Intensive Care Big Data Steward Consensus publishes
future industry standards in this area (Su et al., 2024), this
consensus makes 29 recommendations on the following five parts:
Concept of intensive care big data, Important scientific issues,
Standards and principles of database, Methodology in solving
big data problems, Clinical application and safety consideration
of intensive care big data. Aligned with the Intensive Care Big

Data Consensus, our future research framework will embed its
29 evidence-based recommendations across five core dimensions:
establishing harmonized multimodal trauma databases adhering to
standardized ICU data protocols, implementing federated learning
architectures for privacy-preserving multicenter integration,
applying advanced AutoML optimization for feature engineering,
developing clinical translation pathways within evidence-based
safety parameters, and creating real-time SHAP interpretability
dashboards for predictive governance.This structuredmethodology
will operationalize the consensus guidelines—particularly regarding
scientific question formulation, database standardization, and
ethical computational methods—as applied to dynamic delirium
prediction in trauma ecosystems. It includes the following aspects:
(1) Data integration: Establish multimodal trauma databases
incorporating real-time vital signs, continuous EEG, and cytokine
profiles to transcend retrospective “time-slice” limitations. Our real-
time data pipeline implements sliding-window RNNs for hourly
risk-score updates coupled with automatic quarterly calibration
audits against AAST/WSES standards, ensuring temporal relevance
through federated learning with patient-level partitioning. (2)
Algorithm enhancement: Develop spatiotemporal architectures
(e.g., temporal convolutional networks for biomarker trends, graph
neural networks for multi-organ injury topology) to transition from
“point prediction” to “process warning.” We implement federated
learning and ensemble transition strategies where legacy models
are progressively weighted with PAN-GAN-synthesized newer
cohorts, enabling continuous adaptation to clinical practice shifts
duringmodel development. (3) Clinical translation: Implement edge
computing-embedded decision systems integrated with bedside
monitors/laboratory streams during the “golden hour” of trauma
care. Edge-computing-embedded decision systems integrated
with bedside monitors/laboratory streams during the “golden
hour” now incorporate SHAP-based performance dashboards
triggering alerts for critical predictor drift (e.g., >1.5σ change in
GCS or FDP contributions). Future iterations should integrate
multimodal neurological assessments such as the Full Outline
of UnResponsiveness (FOUR) scale to enhance sensitivity in
patients with communication barriers (e.g., intubation, aphasia).
To advance translational implementation, our research road now
explicitly prioritizes EHR interoperability through three parallel
initiatives: Development of HL7 FHIR-compliant APIs enabling
automated data exchange with hospital information systems at
participating centers; Design of clinician-centered mobile interfaces
with offline functionality to support bedside risk stratification
during resuscitation, featuring real-time SHAP visualizations when
FDP trends exceed >1.5σ baseline deviations; Prospective workflow
integration trials launching Q4-2026 to quantify adoption metrics
and time-motion efficiency gains using the System Usability Scale
across three trauma networks. This aligns with our prioritization
of spatiotemporal feature engineering and edge-computing
integration, potentially improving real-time risk stratification
during the “golden hour” of trauma care. Synergizing evidence-
based medicine with AI could enable personalized interventions
(e.g., circadian modulation for high-CFS patients, anticoagulant
optimization for coagulopathic cases), ultimately creating a closed-
loop “prediction-intervention-verification” ecosystem through
SHAP-guided precision pathways.
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