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DualPlaqueNet with dual-branch
structure and attention
mechanism for carotid plaque
semantic segmentation and size
prediction
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Dongmei Song3 and Xiaokai Duan1*
1Department of General Medicine, The First People’s Hospital of Zhengzhou, Zhengzhou, Henan,
China, 2First Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, China,
3Department of Ultrasound, The First People’s Hospital of Zhengzhou, Zhengzhou, Henan, China

Background: With global aging and lifestyle changes, carotid atherosclerotic
plaques are a major cause of cerebrovascular disease and ischemic stroke.
However, ultrasound images suffer from high noise, low contrast, and blurred
edges, making it difficult for traditional image processing methods to accurately
extract plaque information.

Objective: To establish a deep learning-based DualPlaqueNet model for
semantic segmentation and size prediction of plaques in carotid ultrasound
images, thereby providing comprehensive and accurate auxiliary information for
clinical risk assessment and personalized diagnosis and treatment.

Methods: DualPlaqueNet uses a dual-branch architecture combined with
attention mechanisms and joint loss functions to optimize segmentation and
regression. Notably, a multi-layer one-dimensional convolutional structure is
introduced within the Efficient Channel Attention (ECA) module. The original
dataset contained 287 carotid ultrasound images from patients at Zhengzhou
First People’s Hospital, which were divided into training, validation, and test sets.
Model training, validation, and testing were performed after preprocessing and
data augmentation of the training set. Its performance was compared with three
other models.

Results: In the plaque semantic segmentation task, DualPlaqueNet
outperformed the other three models across all metrics, achieving MIoU of
88.91 ± 1.027 (%), IoU (excluding background) of 88.22 ± 1.065 (%), DSC of
89.95 ± 1.102 (%), and Accuracy of 95.98 ± 0.073 (%). For plaque size prediction,
this model demonstrated lower MSE and MAE, along with a higher coefficient of
determination R2, proving its ability to accurately extract plaque size information
from ultrasound images.

Conclusion: The dual-branch design and attention mechanisms of
DualPlaqueNet effectively address the challenges of ultrasound images,
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achieving precise segmentation and size prediction, demonstrating its potential
as an auxiliary tool for future clinical applications.

KEYWORDS

carotid plaque, semantic segmentation, carotid ultrasound, image analysis, deep
learning

1 Introduction

In recent years, as global aging accelerates and lifestyles
change, cardiovascular diseases have gradually emerged as a major
public health threat (Azeez, 2023; Bayoumi and Karasik, 2021;
Goldsborough et al., 2022). The formation and progression of
carotid atherosclerotic plaques are considered to be key pathological
foundations for cerebrovascular diseases and ischemic stroke,
and their accurate detection and quantitative analysis are of
great significance for clinical prevention, risk assessment, and
treatment decision-making (Ihle-Hansen et al., 2023; Miao et al.,
2022). Carotid plaques not only reflect the severity of systemic
arteriosclerosis but also provide individualized health management
recommendations for patients (Hou et al., 2024; van Dam-
Nolen et al., 2022). Currently, the diagnosis of carotid plaques
requires ultrasound examinations. However, ultrasound physicians
must spend long hours in front of display screens, which can lead to
occupational ailments such as eye strain and back pain. Moreover,
diagnoses made by different sonographers are prone to subjective
errors due to varying levels of clinical expertise, and even the
same physician may demonstrate different diagnostic efficiency
depending on their level of fatigue. Therefore, automatically and
accurately segmenting plaque regions from ultrasound images while
predicting plaque size and improving efficiency has become a critical
issue that urgently needs to be addressed in the field of carotid
ultrasound image analysis.

Ultrasound imaging, due to its non-invasive, real-time, cost-
effective, and widely applicable nature, has been extensively
used for the clinical detection of carotid plaques. However,
inherent limitations of ultrasound images—such as high noise
levels, low contrast, and blurred edges—make traditional image
processing algorithms prone to interference when segmenting
plaques, and they struggle to capture the subtle morphological
features of plaques (Luo et al., 2021; Singh et al., 2023). Specifically,
the main challenges in ultrasound image analysis of carotid
plaques are: (1) intense speckle noise and echo attenuation
result in very low contrast between the plaque and surrounding
tissue; (2) calcified plaques produce strong shadowing effects,
causing fragmented boundaries and distorted morphology; (3)
considerable variability in vessel anatomy and plaque types across
patients makes model generalization difficult; and (4) probe
motion and arterial pulsation introduce dynamic artifacts, further
degrading segmentation accuracy. In recent years, deep learning
techniques, particularly convolutional neural networks (CNNs),
have achieved remarkable success in medical image segmentation,
greatly advancing the automation of medical image analysis.
At present, in addition to the research on cardiac and breast
ultrasound, many scholars are also focusing on carotid plaque
image segmentation, as shown in Table 1; (Huang et al., 2023). For
instance, Zhou et al. proposed a deep - learning - based method for

automaticallymeasuring the total plaque area in B-mode ultrasound
images. Trained on a small dataset with the UNet++ integrated
algorithm, it can efficiently and accurately measure the total plaque
area (TPA) and has shown good generalization ability on datasets
acquired from different devices (Zhou et al., 2021).

To address these issues, this paper proposes a novel multi-task
joint learning model—DualPlaqueNet. The model adopts a dual-
branch network architecture that is specifically designed for the tasks
of plaque semantic segmentation and size prediction, and it achieves
information sharing and collaborative optimization between the two
tasks through a cross-fusion mechanism. Specifically, one branch of
DualPlaqueNet is dedicated to extracting global semantic features to
capture the overall morphology of plaques in complex backgrounds,
while the other branch focuses on local detailed features to precisely
delineate plaque edges and size information. By designing a joint
loss function, the model is able to simultaneously optimize both
segmentation and size prediction tasks during training, allowing
these tasks to complement each other and collectively enhance the
overall performance and robustness of the model.

Based on the research work of the DualPlaqueNet model, this
paper aims to establish a multi-task joint optimization framework
capable of performing both plaque semantic segmentation and size
prediction simultaneously. This framework not only enhances the
accuracy of plaque detection but also provides clinicians with richer
and more intuitive diagnostic information, ultimately reducing the
physicians’ workload.

2 Materials and methods

2.1 Data collection and grouping

In this study, a total of 523 patients underwent carotid
ultrasound examination. Based on inclusion and exclusion criteria,
287 patients were ultimately selected, with one high-quality image
(manually screened) chosen from each patient’s ultrasound images.
These patients were from the outpatient and inpatient departments
of Zhengzhou First People’s Hospital, and their carotid ultrasound
images constituted the original image dataset for this study.

Inclusion Criteria: Patients who underwent carotid ultrasound
examinations and were found to have carotid plaques.

ExclusionCriteria: (1) Patientswhose ultrasound reports did not
indicate the location of the plaques; (2) Patients whose ultrasound
reports did not describe the long or short diameters of the plaques;
(3) Patients who did not sign the informed consent form.

This study was conducted in accordance with the Declaration
of Helsinki and received approval from the Hospital Ethics
Committee (Ethics Review Committee of the First People’s Hospital
of Zhengzhou, No. 2024-069). Prior to collecting the carotid
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TABLE 2 Comparison of sample numbers before and after data augmentation.

Datasets Training set (images) Validation set (images) Test set (images)

Pre-Augmentation 200 28 59

Post-Augmentation 1,600 28 59

ultrasound images, all participants or their guardians signed a
consent form, ensuring the ethical compliance of the study.

Two physicians with 10 years of experience in ultrasound
confirmed the plaque locations and sizes in the carotid ultrasound
reports, and they manually annotated the plaques in the ultrasound
images. In cases of disagreement, the two physicians consulted with
a senior physician with over 25 years of clinical experience until
consensus was reached.

To effectively train, optimize, and evaluate the model, the
ultrasound image dataset was randomly divided into training,
validation, and test sets at a ratio of 7:1:2, ensuring the scientific and
reliable process of model training, validation, and evaluation.

2.2 Data preprocessing

Prior to preprocessing, patients’ personal information was
removed from the ultrasound images to protect privacy. Our
ultrasound brand involves two types, namely, Mindray-R7, China
and Siemens AG-ACUSON Seguoia, Germany. For the convenience
of subsequent analysis, the ultrasound images of these two brands
were subjected to the same preprocessing steps to standardize them.
Considering factors such as segmentation accuracy and training
speed, the images were normalized and enhanced for contrast to
improve detail representation. Additionally, to enhance the model’s
generalizability and robustness, data augmentation was performed
on the training set (Table 2). Specific augmentation techniques
included elastic deformation, rotation, scaling, and flipping
operations. These data augmentation methods not only effectively
expanded the training set and prevented model overfitting, but also
simulated different clinical scenarios and equipment variations,
thereby improving the model’s adaptability in practical applications
(Yan et al., 2024; Piao et al., 2022). Figure 1 illustrates an example of
the data preprocessing process.

2.3 Model construction

The proposed DualPlaqueNet model (Figure 2) introduces
innovative improvements based on the traditional U-Net
architecture, aiming to address the semantic segmentation
of carotid plaque ultrasound images and the prediction of
plaque size. The model first adopts the U-Net encoder-decoder
structure (Tseng et al., 2023; Yi et al., 2023), extracting multi-
scale features through down-sampling and integrating low-level
details with high-level semantic information via up-sampling
and skip connections. Additionally, an attention mechanism
(Alshomrani et al., 2023; Sheng et al., 2022) is incorporated to
achieve precise segmentation of plaque regions. In this study, we
adopted and improved the Efficient Channel Attention (ECA)

module to enhance the model’s performance in plaque region
segmentation. Moreover, we deployed the ECA module at every
feature extraction layer in the encoder. The ECA module generates
channel weights through local cross-channel interaction, helping the
network more precisely capture feature information from different
channels, thereby improving segmentation performance. In the
original ECA module, a single one-dimensional convolution layer
was used to compute channel weights. We introduced a multi-
layer one-dimensional convolution structure to extract feature
information at different levels layer by layer, further optimizing
the channel weight computation process and enhancing the model’s
ability to capture complex image features.

Regarding the choice of ECA over other more advanced
attention mechanisms, this is mainly due to its efficiency and low
computational overhead. ECA uses one-dimensional convolution
to compute channel weights, making it have lower computational
complexity compared to other attentionmechanisms (such asmulti-
head self-attention or Manhattan attention). When processing
medical images, especially segmentation tasks for small targets
like plaque regions, ECA can maintain efficient inference speed
while effectively improving performance through relatively low
computational overhead. Although mechanisms like multi-head
self-attention and Manhattan attention can provide stronger
feature capture capabilities, they typically have high computational
overhead, especially when processing high-resolution medical
images, which may lead to slower training and inference
speeds. Therefore, selecting the ECA module can improve model
performance while ensuring efficient computational efficiency.

Althoughmeasuring dimensions onplaque segmentation results
is a feasible approach, this method may overlook the complexity
of the dimension prediction task. Dimension prediction is not
merely simple post-processing based on segmentation results; it
involves comprehensive understanding of multiple factors such as
plaque morphology, boundaries, and position. If the model relies
solely on segmentation results for dimension measurement, it may
ignore the detailed features of plaques, thus affecting the accuracy of
dimension prediction. Through joint training, we enable the model
to learn the low-level features and semantic information required
for dimension prediction while performing plaque segmentation.
This design allows the model to simultaneously optimize both
tasks, capture the interconnections between them, and enhance
the model’s comprehensive understanding of plaques. Therefore,
DualPlaqueNet introduces a novel branch dedicated to plaque size
prediction. This branch extracts plaque morphological information
from the deeper features of the encoder and, through a series of
convolutional and fully-connected layers, regresses the plaque’s long
and short diameters. To enable multi-task collaborative learning,
a joint loss function is employed, with an automatic parameter
tuning method used to determine the values of parameters α and
β, thus balancing the semantic segmentation loss and regression
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FIGURE 1
Example of the data preprocessing process. (A) Mindray-R7, China, (B) Siemens AG-ACUSON Seguoia, Germany.

loss to promote mutual optimization between the two tasks. In
this study, we used Cross-Entropy Loss and Mean Squared Error
Loss (MSE Loss) as the loss functions for the two main tasks.
We used α and β to control the relative importance of the
segmentation task and the size prediction task. See Equations 1, 2
for details.

Lloss = α× Lseg + β× Lsize (1)

Lloss = α[−
N

∑
i=1
[yi log(pi) + (1− yi) log(1− pi)]] + β[

1
N

N

∑
i=1
(yi − pi)

2] (2)

Where yi represents the ground truth label of the i-th sample,
pi represents the predicted probability of the i-th sample, and N
represents the total number of samples.

2.4 Evaluation metrics

In this study, the prediction performance of DualPlaqueNet
was compared with that of U-Net, ResUnet, and TransUNet.
For the segmentation of carotid ultrasound images, the plaque
region is considered the positive sample, while the non-plaque
region is treated as the negative sample. These are categorized as
true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). In this study, Accuracy, Mean Intersection
over Union (MIoU), and Dice Similarity Coefficient (DSC) are
used as evaluation metrics. Accuracy (ACC) reflects the ratio of
correctly predicted pixels to the total number of pixels, with higher
values indicating more precise segmentation. The Dice coefficient
quantifies the similarity between the model’s predictions and the
ground truth annotations. We have introduced the “background
excluded mIoU” calculation method, which excludes background
pixels (with a value of 0) in the mIoU calculation and only
considers the IoU of the plaque area. This method avoids the

influence of background areas on the evaluation results and more
accurately reflects the segmentation performance of the model in
patch areas. MIoU provides a more comprehensive evaluation of
the model’s performance by averaging the IoU values for each
class. The calculation Equations 3–5 for each evaluation metric
are as follows:

Accuracy = TP+TN
TP+TN+ FP+ FN

× 100% (3)

MIoU = 1
k

k

∑
i=0

TPi
FNi + FPi +TPi

(4)

Dice = 2TP
2TP+ FP+ FN

(5)

Among these, TP, FP, TN, FN, and k represent true positive, false
positive, true negative, false negative, and the number of classes,
respectively.

For the prediction of plaque size in carotid ultrasound images,
this study employs the following three statistical metrics to evaluate
the predictive performance on the test set. Mean Squared Error
(MSE) is the mean of the squared differences between the predicted
and actual values, while Mean Absolute Error (MAE) is the
average of the absolute differences between the predicted and actual
values. The smaller the MSE and MAE, the more accurate the
predictions; R2 measures themodel’s ability to explain the variability
of the data, and the closer R2 is to 1, the stronger the model’s
predictive performance. The calculation Equations 6–8 for these
three statistical metrics are as follows:

MSE = 1
n

n

∑
i=1
(yi − ̂yi)

2 (6)

MAE = 1
n

n

∑
i=1
|yi − ̂yi| (7)
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FIGURE 2
Schematic diagram of the DualPlaqueNet model architecture.

R2 = 1−
∑n

i=1
(yi − ̂yi)

2

∑n
i=1
(yi − y)

2
(8)

Here, n represents the number of samples, yi denotes the actual
values, ̂yi denotes the predicted values, and y represents the mean of
the actual values.

3 Experiments and results

3.1 Experimental environment

Themodels in this study were implemented using Python 3.12.6
and PyTorch 2.4.1, and trained on an NVIDIA RTX 4060 GPU.The

Adam optimizer (Aamir et al., 2023; Abirami et al., 2025) was used
with an initial learning rate of 0.001. All models were trained with a
batch size of 16 for 100 epochs.

3.2 Image segmentation

After image preprocessing, the DualPlaqueNet model was
trained on the data-augmented training set, while three other
models were simultaneously trained for comparison (Figure 3).
The validation set was used to tune hyperparameters and prevent
overfitting during the training process. The test set was used to
evaluate model performance on the region segmentation task and
generate automatic segmentation result images of target regions.
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FIGURE 3
Loss curves of each model on the training set and validation set. (a) The loss curve of the training set, (b) The loss curve of the validation set.

TABLE 3 Comparison of evaluation metrics between DualPlaqueNet and other network models on the same test set.

Method MIoU (%) IoU (excluding background) (%) DSC (%) ACC (%)

U-Net 84.19 ± 1.173 83.77 ± 1.168 85.46 ± 1.331 91.76 ± 0.139

ResUnet 85.27 ± 1.836 84.92 ± 1.215 86.13 ± 0.997 93.02 ± 0.226

TransUNet 86.42 ± 1.135 86.01 ± 1.098 86.79 ± 1.276 93.25 ± 0.352

DualPlaqueNet 88.91 ± 1.027 88.22 ± 1.065 89.95 ± 1.102 95.98 ± 0.073

IoU (excluding background): MIoU with background excluded, i.e., background pixels (value of 0) are excluded fromMIoU calculation, considering only the IoU of plaque regions.

We performed 10 repeated training sessions for DualPlaqueNet,
U-Net, ResUnet, and TransUNet. After each training session, the
optimal network parameters were saved, and then the average
values and corresponding standard deviations of evaluation metrics
for the 4 networks on the same test set were calculated. These
results are shown in Table 3. The reason for conducting 10 repeated
training sessions was primarily to evaluate the model’s stability
and generalization ability, reducing the impact of random factors
(such as parameter initialization and data order) during the training
process on the final results. Due to these random factors, each
training session may lead to different training results. Through
multiple repeated training sessions and saving the optimal network
parameters that performed best on the validation set in each training
session, we were able to calculate the average performance and
standard deviation of the model across multiple training sessions,
thereby more reliably evaluating the model’s overall performance.

Regarding the overfitting issue, we used the validation set during
the training process to select optimal parameters and ensured that
the final performance evaluation was conducted on the test set to
validate the model’s generalization ability. Saving optimal network
parameters does not mean the model has overfitted, because these
optimal parameters were selected based on performance on the
validation set, rather than solely relying on performance on the

training set.This approach better ensures the model’s generalization
ability and stability. Additionally, we also used techniques such as
early stopping during the experimental process to prevent model
overfitting, further ensuring that overfitting would not occur during
the training process. Compared with the other three network
models, DualPlaqueNet’s segmentation results were highly similar
to doctors’ manual labels (Figure 4). This figure demonstrates that
DualPlaqueNet is more sensitive to boundary information and
closer to the true label images.

3.3 Plaque size prediction

For plaque size prediction, the training procedure is identical
to that of image segmentation, using the augmented training set.
During themanual annotation process by ultrasound physicians, the
manually measured long and short diameters of the plaques were
recorded in an Excel sheet and embedded into the metadata of the
corresponding image files (written intoDICOMprivate tags). In this
study, DualPlaqueNet directly predicts the long and short diameters
of the plaques, whereas U-Net first segments the images and then
measures the segmented regions to obtain the long and short
diameters. We conducted 10 repeated training sessions for both
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FIGURE 4
Comparison of image segmentation results from models.

TABLE 4 Comparison of plaque size prediction performance between DualPlaqueNet and U-Net.

Evaluation indicators DualPlaqueNet U-net

Long diameter Short diameter Long diameter Short diameter

MSE/mm2 1.08 ± 0.236 0.12 ± 0.047 1.53 ± 0.412 0.28 ± 0.072

MAE/mm 0.85 ± 0.174 0.28 ± 0.055 0.95 ± 0.304 0.43 ± 0.091

R2 0.84 ± 0.038 0.79 ± 0.043 0.68 ± 0.088 0.55 ± 0.076

DualPlaqueNet and U-Net, saving the optimal network parameters
after each training session. The average values and corresponding
standard deviations of MSE, MAE, and R2 on the same test set were
calculated; these results are presented in Table 4. DualPlaqueNet
achieved lower average MSE and MAE values and a higher average
R2 value compared to U-Net, indicating that DualPlaqueNet has a
superior capability for predicting plaque size.

4 Discussion

In this study, a DualPlaqueNet model based on a multi-task
joint learning framework was developed and validated, aiming to
simultaneously achieve semantic segmentation and size prediction
of carotid plaques. Experimental results show that, compared
with the U-Net, ResUnet, and TransUNet models, DualPlaqueNet
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achieved significant advantages in MIoU, IoU, DSC, and ACC
metrics. In predicting the plaque’s long and short diameters, its
mean squared error andmean absolute error were both significantly
reduced relative to U-Net, and the R2 value also indicated a
higher degree of fit. In this study, we adopted and improved
the ECA (Efficient Channel Attention) module to enhance the
performance of the model in plaque region segmentation. The
design principle of the ECA module is to generate channel weights
through local cross channel interactions, reducing computational
overhead and achieving higher efficiency. The original ECA
module used a layer of one-dimensional convolution to calculate
channel weights. In this study, we introduced a multi-layer one-
dimensional convolution structure inside the ECA module, which
further optimized the calculation process of channel weights
by extracting different levels of feature information layer by
layer, enhancing the ability to capture complex image features.
And, we will add it to the feature extraction section of the
encoder. This design approach effectively overcomes the inherent
limitations of ultrasound images, such as low contrast, high noise
levels, and blurred edges, and significantly improves the model’s
sensitivity to subtle changes in plaque characteristics, thereby
maintaining high robustness and accuracy even in complex imaging
backgrounds.

Currently, both domestic and international scholars have
conducted extensive exploration and research in the field of
carotid plaque detection and other medical image segmentation
tasks (Chen et al., 2021; Flannery et al., 2021; Wang et al., 2021).
Traditional image processing-based algorithms often focus on
methods such as edge detection, which are limited by their
sensitivity to noise and difficulty in characterizing complex lesion
areas (Tsantis et al., 2014; Alshayeji et al., 2017; Zheng et al., 2015).
In recent years, the introduction of deep learning technologies,
such as CNNs, has provided a new breakthrough for addressing
segmentation challenges in ultrasound and other medical images.
For example, Yanhan Li et al. (Li et al., 2022) proposed a novel
deep convolutional neural network model, FRDD-Net, for the
automatic segmentation of carotid plaque ultrasound images. By
incorporating a feature remapping module and a dense decoding
mechanism, this model enhances feature extraction and utilization
efficiency, overcoming the limitations of existing methods when
dealingwith low-quality images and irregular plaques. Experimental
results indicate that FRDD-Net performs excellently on multiple
datasets, demonstrating its potential and robustness in medical
image segmentation tasks. Avesta A et al. (Avesta et al., 2023)
proposed a brain image segmentation method based on a 3D
Capsule Network (CapsNet), and compared it with traditional
U-Net and nnUNet models. The experimental results show that
CapsNet demonstrates significant advantages when processing
the test set. Its segmentation accuracy is significantly higher than
that of U-Net, and there is also a significant improvement in
computational efficiency. CapsNet not only effectively segments
brain structures but also requires lower memory and trains faster.
Dong P et al. (Dong et al., 2024) introduced a UNet++ model
enhanced with a dual-path attention mechanism (DPAM-UNet++)
for the automatic segmentation of thyroid nodule ultrasound
images. By integrating a dual-path attention module into the skip
connections of UNet++, the model is able to effectively capture
global contextual information, thereby improving the segmentation

performance for small nodules and multiple nodules. Experimental
results indicate that DPAM-UNet++ outperforms traditional
segmentation models across multiple performance metrics,
particularly in enhancing boundary precision and handlingmultiple
nodules. Compared to the aforementioned works, this study
leverages the advantages of traditional deep learning frameworks
while organically integrating plaque semantic segmentation and
size prediction through a multi-task joint optimization strategy.
This approach enables comprehensive information sharing and
complementarity, helping to overcome the limitations of single-
task methods in information extraction, thereby providing a more
comprehensive and efficient technical means for the quantitative
analysis of carotid plaques.

The DualPlaqueNet model presented in this study embodies
both foresight and practical value in its design. By introducing
a dual-branch structure and a cross-fusion strategy, the model
achieves collaborative learning of plaque morphology and size
information. This multi-task joint learning approach overcomes the
limitations of previous single-objective optimizations, effectively
enhancing the model’s performance in the complex environments
of ultrasound imaging. Additionally, the embedded attention
mechanism allows the model to automatically focus on key
feature regions, further improving the extraction of both global
semantic information and local detail features, thereby optimizing
plaque region segmentation and size prediction. Nevertheless,
there are certain limitations to this approach. First, the model’s
training and validation were conducted on a single-center dataset
with a relatively limited amount of data, which might lead to
insufficient generalization performance in multi-center or multi-
device application scenarios. Second, the inherent noise and
variability in ultrasound images can result in local misjudgments,
especially in regions with fuzzy edges or low contrast. Moreover,
although multi-task learning facilitates feature sharing to a certain
extent, the challenge of balancing the different tasks still requires
further investigation. How to adaptively adjust task weights under
varying data distributions remains a direction for future research.
In summary, DualPlaqueNet shows significant advantages in
improving automated plaque detection and quantitative analysis,
offering considerable support to ultrasound physicians and
enhancing the diagnostic efficiency for carotid plaques. However, for
its practical application and broader clinical promotion, continuous
optimization is necessary. This includes increasing sample sizes,
incorporating multi-center data, and further refining the model
architecture to ensure stable and efficient performance in a wider
range of clinical scenarios.

5 Conclusion

This study proposes the DualPlaqueNet model, which
integrates a dual-branch structure and attention mechanism.
Through comparisons with models such as U-Net, ResUnet, and
TransUNet, it was found that DualPlaqueNet demonstrates excellent
performance in both semantic segmentation and size prediction
tasks for carotid artery plaques, showing promise as a tool to
assist in early screening and risk assessment of cerebrovascular
diseases.
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