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Introduction: Scientists and consumer products are increasingly employing
light-based photoplethysmography (PPG) instead of electrocardiography (ECG)
assuming it accurately quantifies heart rate variability (HRV). Recent studies,
however, have demonstrated that pulse rate variability (PRV) derived from
PPG is not equivalent to HRV-derived from ECG. This study investigated the
agreement between PPG-PRV and ECG-HRV in a beat-to-beat analysis in 931
adults recruited from a tertiary academic medical center in the southeastern
United States.

Methods: Participants wore two (chest and bicep) Warfighter Monitor™ devices
(Tiger Tech Solutions, Inc.). Heart rate (HR), pulse rate (PR) and three time-
domain indices for PPG-PRV and ECG-HRV were measured. ECG-derived RR
and noise-filtered NN intervals were extracted to compute HR, SDNN (standard
deviation of NN intervals), rMSSD (root mean square of successive differences),
and pNN50 (percentage of successive NN intervals differing by >50 ms).
PPG-derived pulse-wave peaks were detected to calculate corresponding
PR/PRV metrics. Pearson correlation, Bland–Altman, and one-way ANOVA
analyses assessed linear association, bias, and mean differences across select
chronic diseases.

Results: Significant disagreement and differences were observed between ECG-
HRV and PPG-PRV (p < 0.001 for all). For rMSSD: cardiovascular: 3.04 ms, 95%CI:
1.33, 4.75, endocrine: 2.85 ms, 95%CI: 0.52, 5.18, and neurological: 4.39 ms, 95%
CI: 1.39, 7.39). For SDNN: cardiovascular: 8.50 ms, 95%CI: 5.25, 11.74, endocrine:
8.43 ms, 95% CI: 3.97, 12.90, neurological: 11.84 ms, 95% CI: 6.02, 17.67, and
respiratory: 7.23 ms, 95% CI: 1.83, 12.62). For pNN50: cardiovascular: 2.48%, 95%
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CI: 1.67, 3.3, endocrine: 2.21% 95% CI: 1.12, 3.29, neurological: 2.91%, 95% CI:
1.25, 4.32, and respiratory: 1.46%, 95% CI: 0.15, 2.77).

Discussion: PPG-PRV is a poor surrogate for ECG- HRV as it significantly
underestimated SDNN, rMSSD, and pNN50 across select chronic diseases. Given
the widespread use of PPG-based devices and ubiquitous, incorrect assumption
that PRV accurately reflects HRV, researchers, clinicians, and manufacturers
must clearly distinguish between PRV and HRV in studies and product claims.

KEYWORDS

cardiovascular, heart rate variability, pulse rate variability, pulse wave, wearable,
technology, autonomic nervous system, electrocardiogram

1 Introduction

Millions of people use wearable smart devices to monitor
their health and well-being, with the aim of tracking physiological
signals as indicators of autonomic nervous system (ANS) activity.
Fluctuations in ANS function provide critical insights into an
individual’s risk for chronic diseases such as cardiovascular
conditions (Hillebrand et al., 2013), cancer (Hu et al., 2018;Wu et al.,
2021), and type 2 diabetes (Trivedi et al., 2019). Artificial intelligence
(AI) may soon leverage these health data to assist clinicians in
non-invasively detecting chronic diseases (Secinaro et al., 2021).
However, the accuracy of health tracking and AI-driven models
depends on properly labeling and understanding these metrics.
A major concern is the use of photoplethysmography (PPG) to
measure “heart rate variability (HRV)” in wearable devices and
academic studies, despite its fundamental differences from the gold-
standard electrocardiogram (ECG) (Mejía-Mejía et al., 2020a;Mejía-
Mejía et al., 2020b). This discrepancy has provoked considerable
scientific scrutiny over PPG accuracy (Hoog Antink et al., 2021).
Given these concerns, the scientific community has an ethical
responsibility to rigorously investigate this and similar issues to
prevent widespread misinformation, potential false claims, and
barriers to life-saving interventions.

The ANS regulates many vital physiological processes and is
highly sensitive to internal (e.g., catecholamines, hormones) and
external (e.g., temperature, caffeine, exercise) stimuli (Benarroch,
2020). The downstream responses of these processes communicate
the changes occurring in ANS activity, indicating the status (normal
vs. abnormal) of ANS function. The cardiac cycle, specifically,
instantaneously reflects fluctuations in ANS activity as its electrical
impulses are highly sensitive to the catecholamines released by the
sympathetic and parasympathetic branches of the ANS. Thus, any
variations in cardiac activity, i.e., HRV, serve as a proxy measure
of changes in ANS activity and function. Importantly, cardiac
activity is easily and non-invasively measurable, most precisely,
with ECG since it directly measures the electrical activity of the
cardiac cycle (Sattar and Chhabra, 2025). The ECG captures the
de- and repolarization of electrical signals clearly delineating the
systolic and diastolic phases of the cardiac cycle, represented by the
QRS complex. Importantly, the ECG precisely measures the minute
variations occurring between each cardiac cycle, specifically the R-R
interval, that is HRV, in both time and frequency domains.

The traditional placement of ECG leads on the chest and the
difficulty associated with wearing them has driven the exploration

of alternative methods, such as PPG, for measuring “HRV” as it is
simpler to wear on the wrist/finger/etc. Regardless of placement,
PPG fundamentally differs from ECG, although they both track
cardiac activity, PPG measures fluid dynamics whereas ECG
measures electrical signals. Specifically, PPG uses optical technology
to measure dynamic fluctuations in blood volume within the field
of view of an optical sensor (Allen, 2007; Njoum and Kyriacou,
2017). Cardiac systole and diastole affect blood volume thereby
altering the intensity of light penetrating the microvasculature
(Castaneda et al., 2018; Nitzan and Ovadia-Blechman, 2022).
Blood flows smoothly throughout the arterial vasculature following
the systolic and diastolic phases of the cardiac cycle. In the
microvasculature, the microscopic blood vessels within the field
of view of an optical sensor exhibit biphasic changes in diameter,
altering the amount of light absorbed. The PPG signal is filtered
by the physical shape of the blood vessels, acting as a structural
low-pass filter. This process naturally generates smooth, pulsatile
waves with rounded peaks (Castaneda et al., 2018). The number
of pulsatile waves over time represents a pulse rate (PR). The
fundamental differences between ECG and PPG signals create
significant challenges. Unlike the ECG, where the QRS complex
clearly defines fiducial points such as the precise timing of the
“R peak,” PPG signals exhibit a smooth, wave-like pattern. This
rounded shape of the PPG wave makes it difficult to pinpoint the
exact peak, leading to discrepancies between HRV and PRV (Mejía-
Mejía et al., 2020a; Mejía-Mejía et al., 2020b). Additionally, this
discrepancy affects the quantification of amplitudes and diminishes
the subtle variations crucial to HRV analysis. Essentially, the minute
fluctuations being tracked by HRV are filtered out in PRV. Thus,
this stark difference between the PPG and ECG methodologies
and their derivatives casts significant doubt on whether PPG-
derived PRV can measure HRV with a scientifically acceptable level
of accuracy.

Despite these significant physiological differences, PPG and
its derivative, PRV, continue to be used as surrogates for ECG
and HRV. Previous studies have varied widely in methodology,
including differences in measurement sites, small and less diverse
sample sizes, and analytical approaches (Schäfer and Vagedes, 2013;
Yuda et al., 2020b; Farhan et al., 2024). These inconsistencies may
have contributed to ambiguous conclusions about the limitations
of PRV and its potential downstream consequences. Thus, the
current study aims to address the weaknesses of other studies by
employing a large-scale study using one wearable device equipped
with both ECG and PPG capabilities in a sample of 931 United
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States adults exhibiting diverse demographic and health profiles.
We hypothesized that PPG-derived PRV would exhibit poor
agreementwith standardHRVmetrics and consistently acrossmajor
health conditions, clearly demonstrating that PRV is as an invalid
surrogate for HRV.

2 Materials and methods

2.1 Study design

This is a cross-sectional study among a diverse patient
population recruited from a singleU.S.medical institution. ECG and
PPG were measured using a non-invasive armband monitor prior to
each patient’s doctor’s appointment.

2.1.1 Recruitment and study sample
Patients with any scheduled surgical or non-surgical procedures

(e.g., colonoscopy, Pap smear, biopsy) were recruited from a
tertiary care academic medical center in the southeastern region
of the United States from May 20, 2024 to September 23, 2024.
Patient health information was blindly extracted from medical
records by study personnel 1 week following the patient’s HRV
measurement. In total, we recruited and measured HRV and
PRV on 931 patients. The demographic profile of the study
sample was 53.4% male, 37.4% non-Hispanic White, 53.7%
Hispanic or Latino, 6.9% Black or African American and ranging
from 17 to 99 years of age. For the health profile, 47.8% of
patients were classified as obese (body mass index ≥30 kg/m2.
A significant proportion of patients exhibited at least one health
condition like cardiovascular (61.2%), respiratory (31.5%), cancer
(20.3%), endocrine (43.4%), neurological (32.5%), etc. Table 1
presents the prevalence the different types of health conditions.
All study protocols and procedures followed the principles
stated in the Declaration of Helsinki and were approved by
the Mount Sinai Medical Center Institutional Review Board.
Patients were fully informed of the study details and voluntarily
provided consent. Health markers were curated independently
by the doctors, while the HRV/PRV markers were calculated
separately, the two were then combined an analyzed in a
double-blind manner.

2.1.2 ANS function via heart rate and pulse rate
variability

Heart rate (HR), pulse rate (PR) and three, time-domainmetrics
for HRV and PRV were measured using an armband monitor
(Warfighter Monitor™ [WFM], Tiger Tech Solutions, Miami, FL)
equipped with electrocardiographic and photoplethysmographic
technology. The WFM was previously validated in similar
subpopulations (Peck et al., 2021; Peck et al., 2023; Renaghan et al.,
2023; Temme et al., 2023). Patients were fitted with WFM on the
upper left arm around the widest posterior aspect of the biceps
muscle and secured with an elastic strap. Another WFM device
was placed on the patient’s chest and simultaneously measured HR
and HRV. Patients were instructed to remain seated in an upright
position, nearly motionless and breathing at their normal rate for
5–7 min (Ajdaraga and Gusev, 2017).

2.1.3 Heart rate variability
HRV metrics were calculated using the changes in the inter-

beat intervals. RR intervals were the time between R waves on
consecutive QRS complexes and NN intervals were noise-free
RR intervals. R peaks were detected utilizing a modified Pan-
Tompkins algorithm (Elgendi, 2013). Noise-free RR intervals
were validated using established signal quality indices (SQI)
(Rahman et al., 2022). From this data, three separate time-domain
indices were derived including SDNN (standard deviation of theNN
interval), rMSSD (the root mean square of successive differences
between NN intervals), and the percentage of time in which the
change in successive NN intervals exceeds 50 ms within a given
measurement (pNN50). These HRV time-domain indices are well
known to reflect parasympathetic and sympathetic autonomic
output (Task Force of the European Society of Cardiology and
North American Society of Pacing and Electrophysiology, 1996;
Ernst, 2017; Shaffer and Ginsberg, 2017). We utilized an
ECG sampling rate of 100 Hz which provides sufficient
bandwidth to detect QRS peaks bandpass filtered between 8
and 15 Hz. Importantly, the WFM previously demonstrated
strong correlations with a standard 2-lead chest ECG (R2 = 0.95)
for measuring the frequency and variations in R-R intervals
(Peck et al., 2021).

2.1.4 Pulse rate variability
PPG technology, housed in the WFM, was used to measure

PR and PRV via blood volumetric changes. Using a derivative
based algorithm, peaks in PPG-generated pulse waves were detected
and defined as the highest amplitude reached for each pulse wave
recorded. PR was defined as the frequency of pulse wave peaks
detected in a 60 s interval. As in previous studies (Nitzan and
Ovadia-Blechman, 2022), pulsewave peaks in the current studywere
assumed equivalent to the R peak on QRS complex measured on
an ECG. Thus, the methods for extracting noise-free “RR” intervals
and subsequent indices of PRV were identical with those utilized for
HRV described above.

2.2 Statistical analysis

Theanalyses performed evaluated the relationship and agreement
betweenHR/HRV and PR/PRVmeasured via electrocardiography (at
the chest and bicep) and photoplethysmography, respectively. Pearson
correlations and Bland-Altman (Bland and Altman, 1986) analyses
were performed evaluating the agreement between ECG-Chest vs.
ECG-Bicep vs. PPG-Bicep for HR, rMSSD, SDNN and pNN50.Mean
differences inHRandHRVestimatesbetween the threemeasureswere
compared using an ANOVA. Multiple comparisons were performed
using Tukey’s test and adjusted for familywise error. Analyses were
also stratified and performed separately for five different categories
of chronic diseases including cardiovascular vs. no cardiovascular,
endocrine vs. no endocrine, neurological vs. no neurological,
respiratory vs. no respiratory and “other” vs. no “other”. Patients in a
“no” condition, did not have the respective condition, however, could
have presented with other chronic conditions. The a priori alpha level
was set atɑ<0.05.All statistical analyseswereperformed inMATLAB,
version 2021b (MathWorks, Natick, MA, United States).
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TABLE 1 Demographic and health profiles of total study sample.

Sample characteristics Mean (SD) Min, Max

N = 931

Demographic profile

Sex (% male) 53.49% -----

Race (%)

African American or Black 6.98% -----

Asian 1.39% -----

Caucasian or White 37.49% -----

Other 0.21% -----

Ethnicity (%)

Hispanic or Latino 53.7% -----

Age (years) 60.91 (16.17) 17.0, 97.0

Health profile

Height (m) 1.69 (9.88) 1.24, 2.05

Weight (kg) 78.62 (18.22) 39.92, 157.40

Body Mass Index (kg/m2) 27.32 (5.69) 14.29, 52.72

No. of Comorbidities

0 10.09% -----

1 17.19% -----

2 24.70% -----

3 23.73% -----

≥4 24.27% -----

Heart Rate (bpm)

ECG chest 72.26 (14.30) -----

ECG bicep 72.30 (14.40) -----

PPG bicep 72.49 (14.55) -----

rMSSD (ms)

ECG chest 43.10 (13.40) -----

ECG bicep 43.14 (13.27) -----

PPG bicep 37.49 (11.66)a,b -----

SDNN (ms)

ECG chest 77.23 (26.40) -----

ECG bicep 77.21 (26.88) -----

PPG bicep 64.10 (21.91)a,b -----

(Continued on the second column)

TABLE 1 (Continued) Demographic and health profiles of total
study sample.

Sample characteristics Mean (SD) Min, Max

pNN50 (ms)

ECG chest 22.10 (6.39) -----

ECG bicep 22.08 (6.06) -----

PPG bicep 18.12 (5.24)a,b -----

aDenotes statistically significance (p < 0.00001) between PPG bicep and ECG chest.
bDenotes statistically significance (p < 0.00001) between PPG bicep and ECG bicep.
See Supplementary Table S1 for complete list of comorbidities.

3 Results

The degrees of agreement between ECG-Chest, ECG-
Bicep and PPG-Bicep for HR and HRV using Bland-Altman
plots and Pearson correlations are depicted in Figures 1, 2.
The estimated mean differences between these measurement
methods are in Table 2. For HR, the degree of agreement for
the ECG measurement methods and ECG vs. PPG were high,
with near-zero mean differences ranging from −0.2 to 0.05
none of which reach statistical significance (see Table 2). In
further support, the Pearson correlation coefficients ranged
between 0.98 and 0.99, suggesting a strong relationship between
ECG-chest, ECG-bicep, and PPG-bicep regarding accurately
measuring HR and PR.

3.1 General findings

For the three, time-domain HRV metrics, there were
significantly less agreement between ECG (chest and bicep) and
PPG based metrics (see Figure 1; Supplementary Table S2). The
PPG-derived PRV consistently underestimated rMSSD, SDNN, and
pNN50 when compared to ECG-Chest and ECG-Bicep. For rMSSD,
statistically significant differences were found for ECG-Bicep vs.
PPG-Bicep (mean difference = −5.6 ms, 95% CI: −4.2, −7.1, p <
0.00001). The comparison between ECG-Chest and PPG-Bicep
exhibited a nearly identical statistical difference (mean difference
= −5.6 ms, 95% CI: 4.2, 7.0). Similarly, the Pearson correlation
coefficients were smaller between the ECG and PPG measures for
rMSSD (r = 0.99 vs. 0.75). Like rMSSD, the degree of agreement
between ECG and PPG measurement methods for SDNN was wide.
PPG-Bicep significantly underestimated SDNN in both the ECG-
Bicep vs. PPG-Bicep (mean difference: −13.1 ms, 95% CI: −10.3,
−15.9, p < 0.00001) and ECG-Chest vs. PPG-Bicep (mean difference:
−13.1 ms, 95% CI: −10.3, −15.9, p < 0.00001). The PPG-Bicep also
exhibited a lower Pearson correlation coefficient compared to the
ECG-Chest (r = 0.99 vs. 0.84). The same differences were observed
for pNN50, where the PPG-Bicep showed lower agreement with
ECG-Chest and ECG-Bicep (mean difference: −3.9 ms, 95% CI:
−3.3, −4.6, p < 0.00001). Additionally, the Pearson correlation
coefficient was the lowest, indicating poorer agreement for pNN50
with the ECG-Chest (r = 0.99 vs. 0.67).
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FIGURE 1
Bland Altman Plots Evaluating Agreement Between ECG and PPG Methods in Measuring HRV Metrics. [(A), top row, left] HR: ECG chest vs. ECG bicep [(B),
top row, right] HR: ECG chest/bicep vs. PPG bicep, [(C), 2

nd row, left] rMSSD: ECG chest vs. ECG bicep, [(D), 2
nd row, right] rMSSD: ECG chest/bicep vs. PPG bicep,

[(E), 3rd row, left] SDNN: ECG chest vs. ECG bicep, [(F), 3
rd row, right] SDNN: ECG chest/bicep vs. PPG bicep, [(G), 4

th row, left] pNN50: ECG chest vs. ECG bicep

and [(H), 4th row, right] pNN50: ECG chest/bicep vs. PPG bicep.
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FIGURE 2
Pearson Correlations Evaluating the Relationships Between ECG and PPG Methods in Measuring HRV Metrics. [(A), top row, left] HR: ECG chest vs.
ECG bicep [(B), top row, right] HR: ECG chest/bicep vs. PPG bicep, [(C), 2

nd row, left] rMSSD: ECG chest vs. ECG bicep, [(D), 2
nd row, right] rMSSD: ECG chest/bicep

vs. PPG bicep, [(E), 3
rd row, left] SDNN: ECG chest vs. ECG bicep, [(F), 3

rd row, right] SDNN: ECG chest/bicep vs. PPG bicep, [(G), 4
th row, left] pNN50: ECG chest vs.

ECG bicep and [(H), 4th row, right] pNN50: ECG chest/bicep vs. PPG bicep.
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TABLE 2 Mean differences in HR and HRV between ECG-Bicep and PPG-Bicep methodologies by certain morbidities.

Morbiditya HR (bpm) rMSSD (ms) SDNN (ms) pNN50 (%)

Mean
(95%CI)

p-value Mean
(95%CI)

p-value Mean
(95%CI)

p-value Mean
(95%CI)

p-value

Cardiovascular

 Yes 0.05 (−1.79, 1.91) 1.00 3.04 (1.33, 4.75) <0.00001 8.50 (5.25, 11.74) <0.00001 2.48 (1.67, 3.3) <0.00001

 No 0.04 (−2.29, 2.36) 1.00 9.76 (7.61, 11.9) <0.00001 20.42 (16.33,
24.50)

<0.00001 6.27 (5.24, 7.29) <0.00001

Endocrine

 Yes −0.21 (−2.73,
2.30)

1.00 2.85 (0.52, 5.18) 0.0051 8.43 (3.97, 12.90) <0.00001 2.21 (1.12, 3.29) <0.00001

 No −0.17 (−2.38,
2.02)

1.00 7.79 (5.75, 9.83) <0.00001 16.71 (12.80,
20.62)

<0.00001 5.29 (4.33, 3.29) <0.00001

Neurological

 Yes −0.20 (−3.53,
3.12)

1.00 4.39 (1.39, 7.39) 0.00027 11.84 (6.02, 17.67) <0.00001 2.91 (1.25, 4.32) <0.00001

 No −0.18 (−2.50,
2.13)

1.00 6.25 (4.17, 8.33) <0.00001 13.73 (9.69, 17.78) <0.00001 4.45 (3.47, 5.43) <0.00001

Respiratory

 Yes −0.22 (−3.23,
2.79)

1.00 2.66 (−0.14, 5.46) 0.0805 7.23 (1.83, 12.62) 0.00128 1.46 (0.15, 2.77) 0.00016

 No −0.18 (−2.22,
1.86)

1.00 7.03 (5.12, 8.93) <0.00001 15.84 (12.17,
19.50)

<0.00001 5.10 (4.21, 5.99) <0.00001

Other

 Yes −0.21 (−2.28,
1.87)

1.00 3.94 (2.06, 5.81) <0.00001 10.21 (6.59, 13.82) <0.00001 2.82 (1.94, 3.72) <0.00001

 No −0.16 (−3.01,
2.68)

1.00 8.86 (6.29, 11.43) <0.00001 18.60 (13.65,
23.55)

<0.00001 6.07 (4.85, 7.29) <0.00001

ayes’ indicates that patients were diagnosed with this type of condition yet could have diagnoses of other conditions; ‘no’ indicates that patients were not diagnosed with this type of condition yet
could have had diagnoses of other conditions. bpm, beats per minute; ms, milliseconds.

3.1.1 Stratified results
The mean differences in HRV between PPG-Bicep and ECG-

Bicep across 5 chronic disease categories are noted in Table 2.
The significant mean differences in rMSSD were as follows:

cardiovascular: 3.04 ms, 95% CI: 1.33, 4.75, p < 0.00001, endocrine:
2.85 ms, 95% CI: 0.52, 5.18, p < 0.00001, neurological: 4.39 ms, 95%
CI: 1.39, 7.39, p = 0.00027, and other: 3.94 ms, 95%CI: 2.06, 5.81, p <
0.00001. No significant differences in rMSSD were observed for the
respiratory category: 2.66 ms, 95% CI: −0.14, 5.46, p = 0.0805.

For SDNN, significant differences between ECG-Bicep and
PPG-Bicep were observed for cardiovascular: 8.50 ms, 95% CI: 5.25,
11.74, p < 0.00001, endocrine: 8.43 ms, 95% CI: 3.97, 12.90, p <
0.00001:, neurological: 11.84 ms, 95% CI: 6.02, 17.67, p < 0.00001,
respiratory: 7.23 ms, 95% CI: 1.83, 12.62, p = 0.00128, and other:
10.21 ms, 95% CI: 6.60, 13.82, p < 0.00001.

For pNN50, significant differences between ECG-Bicep and
PPG-Bicep were observed for cardiovascular: 2.48%, 95% CI: 1.67,

3.3, p < 0.000018, endocrine: 2.21% 95% CI: 1.12, 3.29, p < 0.00001,
neurological: 2.91%, 95% CI: 1.25, 4.32, p < 0.00001 respiratory:
1.46%, 95% CI: 0.15, 2.77, p = 0.00016, and other: 2.82%, 95% CI:
1.94, 3.72, p < 0.00001).

3.1.2 Graphical interpretations
Figures 3–5 depict the comparisons in the distributions for each

chronic disease category for rMSSD, SDNN and pNN50. Across all
conditions, the distributions for all HRVmetrics derived from PPG-
Bicep were narrower and exhibited a leftward shift.

4 Discussion

This large-scale, unique study examined the agreement between
PR/PRV and HR/HRV in a beat-to-beat analysis using a diverse
sample of adults. The major findings of our study were 1)
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FIGURE 3
Histogram Plots for SDNN (ms) Measured by ECG and PPG Across Several Common Chronic Diseases. ECG location–chest and bicep. PPG
location–bicep.

for the total sample, PRV metrics measured by PPG exhibited
poor agreement with all HRV metrics measured by ECG at the
chest and bicep locations, 2) across all major chronic conditions
evaluated, statistically significant differences between PRV and
HRVwere observed with PRV consistently underestimating rMSSD,
SDNN and pNN50, 3) marked differences were observed between
the ECG (electrical) and PPG (fluid) waveforms and, 4) no
statistically significant differences were found between PR and HR
values for ECG and PPG methodologies. Here, PRV significantly
underestimated HRV, rendering it an unacceptable surrogate that
is strongly attributed to the striking differences in their respective
methodologies.

In the current study, PRV consistently demonstrated poor
agreement with all HRV metrics evaluated. Specifically, PRV
exhibited lower values compared to HRV, showing a bias towards

underestimation. This observation is rather intuitive given the
marked dissimilarities in PPG and ECG methodologies. PPG does
not measure the electrical activity of the heart like an ECG
(Mejía-Mejía et al., 2020a; Mejía-Mejía et al., 2020b), but rather
the blood volume changes occurring following each phase of
the cardiac cycle, presenting two significant issues. First, several
factors influence blood volume independently of cardiac activity,
such as arterial stiffness and blood pressure. These factors can
introduce substantial changes in signal morphology (Fine et al.,
2021; Pi et al., 2021; Rovas et al., 2023), which in turn could lead to
differences in PRV metrics, ultimately weakening their correlation
with HRV. Further, higher amounts of melanin (Bermond et al.,
2023) and subcutaneous adipose tissue distort the scattering of light,
affecting the amount of light penetrating the skin and intensity
of light absorbed (Ajmal et al., 2021). Additionally, tattoos, which
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FIGURE 4
Histogram Plots for rMSSD (ms) Measured by ECG and PPG Across Several Common Chronic Diseases. ECG location–chest and bicep. PPG
location–bicep.

introduce pigments and scarring, can further interfere with light
scattering and absorption, potentially distorting the PPG signal and
affecting the accuracy of measurements (Scardulla et al., 2023).
Second, the waveforms generated from PPG signals are in stark
contrast to the QRS complex derived from ECG (see Figure 6).
The structure of the vasculature naturally creates a low-pass
filter. This reduces high-frequency signals resulting in a waveform
with smooth, rounded peaks. Consequently, identifying fiducial
points becomes increasingly difficult with the highest amplitude of
each pulse wave generated assumed synonymous to the R peak.
Further, a lack of synchronicity in the PPG waves and ECG-QRS
complexes exists (Figure 6), likely due to the inertial resistance in
the vasculature affecting the acceleration and deceleration of blood
volume changes between the systolic and diastolic phases of the
cardiac cycle.

The multitude of factors affecting PPG significantly reduces its
granularity, affecting its accuracy in measuring HRV. Figures 3–5
effectively demonstrate the decreased precision of PPG and its
derivatives with narrower distributions observed across all chronic
conditions evaluated. This phenomenon equivalently occurred in
both males and females. Detecting the subtle variations between
heartbeats is paramount in ascertaining critical information onANS
activity and function. Although PRV and HRV both showed lower
values for rMSSD, SDNN and pNN50 among patients exhibiting
a chronic condition, a larger leftward shift was observed for the
cardiovascular, endocrine, neurological, respiratory and “other”
distributions. Many studies previously demonstrated unhealthy
patients often present with lower HRV patterns indicating abnormal
ANS activity (Hu et al., 2018; Trivedi et al., 2019; Escutia-
Reyes et al., 2021; Wu et al., 2021). However, as shown here, the
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FIGURE 5
Histogram Plots for pNN50 (%) Measured by ECG and PPG Across Several Common Chronic Diseases. ECG location–chest and bicep. PPG
location–bicep.

sensitivity of PRV to abnormalities in ANS activity is lower than
that of HRV, which could critically impact clinicians’ ability to
accurately assess the type and severity of a condition, ultimately
influencing treatment decisions. As such, for patients to experience
improved health outcomes, clinicians must utilize a highly precise
methodology for measuring HRV that captures both the direction
and magnitude of its patterns.

Our study uniquely utilized ECG and PPG from a single device.
The ECG-Bicep measure reached a near-perfect correlation for all
HRV metrics and showed no significant differences with the ECG-
Chest measure, highlighting two important points. First, the poorer
performance of PPG in measuring HRV compared to the ECG
cannot be attributed to differences in measurement site, as previous
studies have consistently suggested. In the current study, the poor
agreement and significant differences observed between PRV and
HRV were nearly identical at the chest and bicep locations and

independent of PPG wavelength (red, green and infrared). Second,
ECG technology can be utilized in non-clinical settings and with
non-invasive, wearable devices, like the WFM used in the current
study. While PPG technology does not provide accurate HRV it
does provide significant value in measuring other health-related
metrics. For instance, PPG is used for measuring blood oxygen
saturation levels and changes in blood properties (e.g., clotting, PPG
dropouts), etc., In clinical healthcare settings (Schultz-Ehrenburg
and Blazek, 2001). Thus, utilizing PPG as a standalone methodology
for measuring these other health metrics in conjunction with
ECG-derived HRV, provides a more accurate and comprehensive
health profile (Yuda et al., 2020a).

While former studies documented similar significant differences
between PRV and HRV values, authors often concluded that PPG
was a “reasonable”, non-invasive alternative (Kiran Kumar et al.,
2021). For example, Sarhaddi et al., 2022, investigated the validity

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2025.1630032
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Kantrowitz et al. 10.3389/fphys.2025.1630032

FIGURE 6
ECG and PPG Signal Output from the Warfighter Monitor™ over a 10-s interval.

of a Samsung smartwatch (PPG device) and showed moderate
correlations with ECG (SDNN: 0.80, rMSSD: 0.78, Low-Frequency
(LF): 0.78, high-frequency (HF): 0.78 and LF/HF: 0.62), yet
concluded the PPG provided “acceptable” values. Another study
by Cao et al. (2022) evaluating the Oura Ring, showed poor-to-
moderate correlationswith six out of sevenHRV indices (0.35–0.82),
yet concluded the Oura Ring provided “acceptable” levels of validity.
Similar reports were found in a study by Natarajan et al. (2020a)
which investigated HRV with PPG using data derived from FitBit
wearable devices in a sample of 8 million people. The most striking
concern of this study, and many others using commercial devices
(Natarajan et al., 2020b; Gupta et al., 2023), is the widespread
replacement of PRV with HRV, which occurs not only in scientific
studies published in top-tier, peer-reviewed journals (e.g., the
Lancet, Nature Publishing Group) but also marketed as such by
many companies manufacturing wearable devices (de Vries et al.,
2023, Gaur et al., 2024, Jasinski et al., 2024, Wyatt et al., 2020.
Perhaps, in some circumstances, “reasonable” is “good enough”.
However, in the context of healthcare, “good enough” is unacceptable
and dangerous.

4.1 Consequences and implications for
clinical application

Healthcare agencies are rapidly integrating AI for improving
patient outcomes, interpreting diagnostic testing and tracking
health metrics (Secinaro et al., 2021; Alowais et al., 2023). To
accomplish this, AI analyzes large amounts of patient data to
detect patterns and relationships of varying health-related outcomes.
Critically, algorithm prediction and decision accuracy entirely
depend on the quality of training and test data (Akinrinmade et al.,
2023). Thus, using inaccurate and improperly labelled HRV
data derived from PPG to train AI models will result in
poor outcomes (“garbage in = garbage out”). Examples of the
significant health-related consequences include misidentifying
systemic physiological changes indicative of disease, leading to a
misdiagnosis, poor tracking of disease progression, and selection
of ineffective treatments. Moreover, non-representative AI models

may further widen the existing health disparities observed among
minority race/ethnic groups (Arora et al., 2023). Given this, using
properly labeled HRV data only derived from highly accurate
methodologies (i.e., ECG) could not be more imminent and
necessary (Challen et al., 2019).

Until the relevant scientific and clinical communities recognize,
accept and establish ECG-HRV and PPG-PRV as distinct,
standalone measures of ANS activity, clinical recommendations
for using and interpreting data collected via wearable devices will
remain undeveloped. The findings from the current study call to
action the need for clinicians to exercise caution when interpreting
PPG-PRV data by understanding its fundamental differences from
HRV. Further, if clinicians continue collecting PPG data, utilizing it
as a marker of ANS activity, it is imperative to label and interpret it
as PRV and a separate metric from HRV.

4.2 Strengths and limitations

This study has several strengths. First, we conducted one of the
largest andmost diverse studies measuring both ECG and PPG. Our
sample included 931 individuals exhibiting diverse demographic
and health profiles, which likely better represents the United States
adult population as nearly 42% of United States adults present
with at least one chronic disease morbidity. Previous studies often
included only young, healthy individuals, thereby significantly
reducing the generalizability of their findings. Second, the ECG and
PPG methods measured HRV from the same device and location,
controlling for any differences possibly attributed to these factors.
Third, we included an additional ECG measurement location (at
the chest), to validate the differences in ECG and PPG observed
at the bicep location. This study also has some limitations. First,
our study employed a cross-sectional design limiting conclusions on
longitudinal findings. Second, our study only included adults and
thus, we cannot generalize our findings to individuals under the
age of 18 years who likely exhibit different physiological responses
affecting PRV and HRV. Third, factors influencing HRV such as
medication use, activity levels, sleep quality, etc., were notmeasured,
potentially influencing the interpretations of our study findings.

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2025.1630032
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Kantrowitz et al. 10.3389/fphys.2025.1630032

Lastly, other markers of ANS function exist like blood pressure,
cardiac output, vascular resistance, etc., all of which were not
included, precluding a comprehensive assessment of ANS function.

4.3 Conclusion

Our study demonstrated significant disagreement between PRV
and HRV derived from PPG and ECG methodologies, respectively.
PPG-based PRV underestimated all ECG-based HRV metrics at
both the bicep and chest measurement sites and across several
chronic diseases exhibited by a large proportion of US adults.
Importantly, PPG appeared to non-uniformly underestimate HRV,
eliminating the possibility of utilizing a correction factor. While
PPG accurately measures other healthmetrics, it serves as an invalid
surrogate for HRV, greatly attributed to its demonstrable differences
inmethodology relative to ECG.We strongly recommend that future
investigations employ longitudinal studies to track changes in ECG-
HRV and PPG-PRV, evaluate the influences of demographics like
age, race, ethnicity, sex, etc., and incorporate other metrics of ANS
activity to explore deeper insights and causal relationships.
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