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Metamizole is a commonly used analgesic drug in clinical fracturemanagement,
which does not affect the healing process under physiological conditions.
However, many fracture patients suffer from co-morbidities resulting in
ischemic conditions with impaired bone healing. The effect of metamizole
on fracture healing under ischemic conditions has not been analyzed so
far. Accordingly, in this study 44 CD-1 mice underwent ligation of the deep
femoral artery to induce mild ischemia in the right hind limb. The femur
was then fractured and stabilized with an intramedullary lag screw and the
animals were daily treated per os with 50 mg/kg metamizole (n = 23) or
vehicle (control; n = 21). Serum concentrations of the active metamizole
metabolites, 4-methyl-amino-antipyrine (4-MAA) and 4-amino-antipyrine (4-
AA), were determined 30, 60 and 90 min after administration. Bone healing
was analyzed by biomechanical, radiological, histomorphometrical andWestern
blot analysis at 2 and 5 weeks postoperatively. The plasma level of 4-MAA was
high at all time points, whereas 4-AA peaked at 90 min after administration.
Biomechanical, radiological and histomorphometrical analyses revealed no
differences between metamizole-treated and control mice, while both groups
showed a delayed fracture healing. Of interest, Western blot analyses of callus
tissue showed an increased expression of the pro-angiogenic factor Cyr61
and the osteoanabolic runt-related transcription factor 2 (RUNX2) as well as
the osteocatabolic receptor activator of NF-κB ligand (RANKL) in metamizole-
treated animals when compared to controls. Taken together, these findings
indicate that the application of metamizole does not affect fracture healing
under ischemic conditions. Therefore, treatment with this analgesic drugmay be
also recommended in fracture patients suffering from co-morbidities resulting
in tissue ischemia.
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1 Introduction

Metamizole is a commonly used non-opioid analgesic drug
for the treatment of acute and chronic pain (Vilcane et al., 2023;
Reist et al., 2018; White, 2005). In addition to its analgesic
effect, metamizole has antipyretic and spasmolytic properties
(Jasiecka et al., 2014). Metamizole itself is a pro-drug that is
hydrolyzed after enteral intake to its first active metabolite
4-methyl-amino-antipyrine (4-MAA) and subsequently to 4-
amino-antipyrine (4-AA) (Jasiecka et al., 2014; Domínguez-
Ramírez et al., 2012). Previous studies have suggested that
metamizole may target the endocannabinoid system and opioid
receptors (Jasiecka et al., 2014; Hinz et al., 2007; Levy et al.,
1995; Rogosch et al., 2012). Additionally, metamizole has been
demonstrated to inhibit cyclooxygenase (COX)-1, COX-2 and
COX-3 (Hinz et al., 2007; Campos et al., 1999; Pierre et al., 2007;
Chandrasekharan et al., 2002). Of those, COX-2 is essential for the
process of bone healing (Gerstenfeld et al., 2003; Simon et al., 2002).
However, the precise mechanism of action still remains to be fully
understood (Hinz et al., 2007).

Ischemia such as peripheral arterial disease is a common co-
morbidity of patients suffering from fractures (Ungprasert et al.,
2018). The process of bone healing requires a highly orchestrated
sequence of events to gain full osseous healing and may be
negatively influenced by ischemia caused by vascular injuries
or vascular diseases (Marsell and Einhorn, 2011; Dickson et al.,
1995). In vitro, metamizole has been shown to have a detrimental
effect on osteoblast-like cells (De Luna-Bertos et al., 2015).
However, no inhibitory effect of metamizole on bone healing
could be observed under physiological conditions in tibial fractures
of rodents (Gali et al., 2014).

To the best of our knowledge, the effect of metamizole on
bone healing under ischemic conditions remains to be elucidated.
For this purpose, a well-established murine fracture model under
ischemic conditions was used that mimics challenging clinical
healing conditions (Menger et al., 2022). Moreover, it is unclear,
which dosage of metamizole should be applied in rodents to achieve
similar plasma levels of its active metabolites compared to the
clinical use of metamizole. The aim of this study was, therefore, to
analyze the effect of a clinically relevant dosage of metamizole on
bone healing and to suggestwhethermetamizolemay be used during
fracture treatment under ischemic conditions in clinical practice.

2 Materials and methods

2.1 Animals

In total, 44 CD-1mice (26male and 18 femalemice) with a body
weight of 40 ± 7 g and an age of 130 ± 5 days were used. The animals
were bred at the Institute for Clinical and Experimental Surgery
(SaarlandUniversity, Homburg, Germany), kept at a regular 12 h (h)
light and dark cycle and had free access to tap water and standard
pellet food (Altromin, Lage, Germany).

The study was conducted in accordance with the German
legislation on protection of animals and the NIH Guidelines for
the Care and Use of Laboratory Animals and was approved was

FIGURE 1
Surgical Procedure. (A) Identification of the femoral artery and vein (a)
and epigastric artery and vein (b). Ischemia is induced by ligation of
the deep femoral artery (c). (B) Osteosynthesis of a fractured femur
after stabilization using an intramedullary lag screw at 5 weeks after
surgery. Scale bar: 2 mm.

approved by the local authorities (permission number: 35/2020;
State Office for Consumer Protection, Saarbrücken, Germany).

2.2 Surgical procedure

For the present study a well-established ischemic murine
fracture model was used, as described previously in detail
(Menger et al., 2022). For the surgical procedure, the mice were
anesthetized by an intraperitoneal injection of ketamine (75 mg/kg
body weight; Pharmacia, Erlangen, Germany) and xylazine
(25 mg/kg body weight; Bayer, Leverkusen, Germany). Briefly, a
6-mm incision was performed medial parapatellar at the right
knee in the direction of the femoral artery and vein (Figure 1A).
Moderate hind limb ischemia was induced by ligation of the right
deep femoral artery at the thigh. The artery was ligated using a
6–0 suture (black silk 6-0, non-absorbable; Ethicon, Raritan, United
States).The knee joint capsule was then opened by incisionmedial to
the patella, and the femoral condyles were exposed by lateralization
of the patella. After drilling a hole (0.5 mm in diameter) into the
intracondylar notch, an injection needle with a diameter of 0.4 mm
was drilled into the intramedullary canal. Subsequently, a tungsten
guidewire (0.2 mm in diameter) was inserted through the needle
into the intramedullary canal. After removal of the needle, the femur
was fractured by a three-point bending device. An intramedullary
titanium screw (diameter: 0.5 mm; MouseScrew™, RISystem AG,
Davos, Switzerland) was implanted over the guidewire to stabilize
the fracture. Fracture and implant position were confirmed by
radiography.

Animals were randomly assigned to one of two study groups.
Animals of the metamizole group (n = 23) received 50 mg/kg
metamizole (Novaminsulfon; Winthrop Arzneimittel, Mülheim-
Kärlich, Germany) daily per os from the day of surgery. Animals
of the control group (n = 21) received an equivalent volume of the
vehicle (NaCl 0.9%; Braun, Melsungen, Germany).

Animals were sacrificed by cervical dislocation after 2 weeks
(n = 13 in the control group; n = 15 in the metamizole group)
or 5 weeks (n = 8 in each group) postoperatively. Directly prior
to sacrifice, X-rays of the operated femurs were taken to exclude
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secondary dislocation of the metallic implants (Figure 1B). Femurs
were harvested and used for further analyses. During outcome
assessments, blinding was employed for unbiased analyses.

2.3 Serum analysis

To detect whether metamizole concentrations in mice are
comparable to those in humans, serum levels were analyzed
using high-performance liquid chromatography (HPLC). For this
purpose, blood samples of operated metamizole-treated animals
(n = 16) were taken under general anesthesia 30 min (min),
60 min and 90 min after the last oral administration of metamizole.
The analytical methodology was carried out as described previously
(Domínguez-Ramírez et al., 2012; Giorgi et al., 2015; Giorgi et al.,
2018). Briefly, a 15 mL polypropylene sample bottle was used for
sample extraction. A volume of 0.5 mL plasma was supplemented
with 100 µL internal standard solution (Sigma Aldrich, St. Louis,
United States) and mixed thoroughly for 30 s by vortexing.
Subsequently, 0.1 mL sodium hydroxide solution 1 N (Titrisol,
Merck, Darmstadt, Germany) was added and mixed again. The
sample was supplemented with 4 mL ethyl acetate:methylene
chloride (3:7 v/v; both Merck). Mixing was repeated for 30 s,
followed by swirling (60 oscillations/min for 10 min) and then the
mixture was centrifuged for 10 min at 10°C at 10.956 × g in a
centrifuge with a 5 cm rotor radius. The organic layer was removed
in 3 mL and placed in another 15 mL bottle. It was then dried at
40°C under nitrogen vaporization and redissolvedwith 100 µL of the
mobile phase. Finally, 50 µL of this solution was analysed by HPLC.
For both active metabolites of metamizole, 4-MAA and 4-AA,
the detection limit was 0.03 μg/mL and the limit of quantification
was 0.05 μg/mL. The concentrations for curve calibration were set
at 0.05–0.1–0.25–0.5–1–5 and 10 μg/mL for both substances. The
range of optimal linearity (regression lines) was defined for 4-MAA
in the width of y = 0.1749x - 0.0547 (r2 = 0.9989) and for 4-AA in the
range of y = 0.3291x - 0.0293 (r2 = 0.9995). The recovery rate for 4-
MAA ranged from 90.1%–95.2% and for 4-AA from 93.9%–97.1%.
The intraday and interday precision (CV%) were lower than 8.1%
and 6.8%, and 9.9% and 9.4% for 4-AA and 4-MAA, respectively.

2.4 Biomechanical analysis

For the biomechanical analysis, the fractured right and healthy
left femora of both groups were resected at 2 weeks (n = 8
in the control group; n = 10 in the metamizole group) and 5
weeks (n = 8 in each group) and freed from soft tissue. After
removing the implants, callus stiffness was measured with a non-
destructive test using a three-point bending device (Mini-Zwick Z
2.5; Zwick, Ulm, Germany), as described previously (Orth et al.,
2022). Loading was stopped individually in every case when the
actual load–displacement curve deviated more than 1% from
linearity. To ensure the reproducibility of the procedure, the bone
was positioned with the ventral side facing downwards, the femoral
head aligned to the right, and the contact stamps centered at a
distance of 6 mm from each other. The bending stiffness [N/mm]
was calculated from the linear elastic part of the load-displacement
diagram after applying a gradually increasing bending force with

1 mm/min. The unfractured left femora were also analyzed, serving
as an internal control to account for differences in bone stiffness of
metamizole-treated animals when compared to controls. All values
of the fractured femora are given as absolute values and in percent of
the corresponding unfractured femora. Using this non-destructive
approach for biomechanical analyses, the femurs could also be used
for subsequentmicro-computed tomography (µCT) and histological
investigations, resulting in a marked reduction of required animals
according to the 3R principle.

2.5 Radiological analysis

X-rays (MX-20 Faxitron; X-ray Corporation, Wheeling, IL,
United States) of the fractured femora were performed 2 weeks (n
= 8 in the control group; n = 10 in the metamizole group) and
5 weeks (n = 8 in each group) after surgery. Fracture healing was
analyzed according to the classification of Goldberg, with stage
0 indicating radiological non-union, stage 1 indicating possible
union and stage 2 indicating radiological union, as described
previously (Goldberg et al., 1985).

Moreover, µCT of the fractured femurs was performed 2 weeks
(n = 8 in the control group; n = 10 in the metamizole group)
and 5 weeks (n = 8 in each group) after surgery. Scanning was
performed at a spatial resolution of 9 μm with a standardized
setup (Skyscan 1,176; Bruker, Billerica, United States), as described
previously (Orth et al., 2022; Orth et al., 2017). To express grey
values as mineral content (bone mineral density; BMD), calcium
hydroxyapatite (CaHA) phantom rods with known BMD values
were used for calibration. On each transversal slide the region of
interest (ROI) was contoured manually defining exclusively novel
bone and excluding original cortical bone. The ROI was processed
with a threshold procedure (CTAnalyzer, Bruker), which allowed
for differentiation between bone and soft tissue. The thresholds
to distinguish between bone and soft tissue were based on visual
inspection of the images, qualitative comparison with histological
sections and previous studies investigating bone repair and callus
tissue by µCT (Orth et al., 2022; Morgan et al., 2009; Isaksson et al.,
2009). A BMD with more than 0.410 g/cm3, resulting in grey values
of 68–255 was defined as total mineralized bone. The following µCT
parameters were calculated from the callus ROI for each specimen:
bone volume (BV; mm3), tissue volume (TV; [mm3]), ratio of
BV/TV (%) and trabecular parameters, such as trabecular number
(TbN; [1/mm]), trabecular separation (TbSp; [mm]) and trabecular
thickness (TbTh [mm]).

2.6 Histomorphometric analysis

For histomorphometric analyses, bones were fixed in
4% phosphate-buffered formalin for 24 h and decalcified in
ethylenediaminetetraacetic acid (EDTA) solution for 14 days.
Dehydration was carried out in an ascending alcohol series. After
embedding decalcified bones in paraffin, longitudinal sections with
a thickness of 5 µm were stained with Safranin-O (at 2 weeks:
n = 8 in the control group; n = 10 in the metamizole group;
at 5 weeks: n = 8 in each group). At a magnification of 12.5 ×
(Olympus BX60 Microscope; Olympus, Shinjuku, Japan; Zeiss
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Axio Cam and Axio Vision 3.1, Zeiss, Jena, Germany) structural
indices were calculated based on recommendations as described
elsewhere (Gerstenfeld et al., 2005). For histomorphometric
evaluation the following parameters were measured: (i) total
periosteal callus area, (ii) bone callus area, (iii) ratio of bone
tissue area/total callus area. The total periosteal callus area was
defined as all osseous, cartilaginous and fibrous callus tissue
outside of the cortices. Pre-existing cortical bone and endosteal
callus formation were excluded. Each area was marked and
calculated using the ImageJ Analysis System (NIH, Bethesda,
United States).

2.7 Western blot

Protein expression within the callus tissue was determined
by Western blot analyses, including the expression of the
angiogenic markers Cyr61, CD31, the osteoclast markers
osteoprotegerin (OPG) and receptor activator of NF-κB ligand
(RANKL), the osteogenic marker Runt-related transcription
factor 2 (RUNX2) and the proliferation marker proliferating
cell nuclear antigen (PCNA). After harvesting callus tissue
2 weeks after surgery (n = 5 in each group), tissue samples
were transferred in lysis buffer and stored at −80°C. After
saving the whole protein fraction, proteins were separated and
transferred to membranes by standard protocols and probed
using anti-Cyr61 (AF4055; R&D Systems, Minneapolis, United
States), anti-CD31 (77,699; Cell Signaling Technology Europe,
Frankfurt, Germany), anti-OPG (MAB4591; R&D Systems),
anti-RANKL (ab62516; Abcam, Cambridge, United Kingdom),
anti-RUNX2 (EPR22858-106; Abcam) and anti-PCNA (HRP-
60097; Proteintech, Planegg-Martinsried, Germany) antibodies.
All antibodies were incubated overnight at 4°C and afterwards
for 4 h at room temperature. The appropriate peroxidase-
conjugated anti-IgG antibodies served as secondary antibodies
(R&D Systems and Dako Agilent, California, United States).
Protein expression was visualized by means of luminol-enhanced
chemiluminescence after exposure of the membrane to the Intas
ECL Chemocam Imager (Intas Science Imaging Instrument GmbH,
Göttingen, Germany). To correct for unequal loading, signals
were normalized to β-actin signals (Santa Cruz Biotechnology,
Heidelberg, Germany).

2.8 Statistics

All data are given as means ± standard error of the mean (SEM).
The needed sample size was initially computed. For parametric
data (Shapiro-Wilk test), the comparison between two groups was
carried out using Student’s t-test after determining the equality
of variance (Brown-Forsyte test), while analyses of three groups
(serum analysis) were performed by one-way ANOVA, including
the correction of the α-error according to Bonferroni probabilities to
compensate for multiple comparisons. For non-parametric data, the
comparison between two groups was carried out using the Mann-
Whitney U-test, while analyses of three groups (serum analysis)
were performed by one-way ANOVA on Ranks, followed by a
Dunn’s test for all pairwise comparisons. The statistical analyses

were performed using the SigmaPlot software 13.0 (Systat Software
GmbH, Erkrath, Germany). A p-value <0.05 was considered to
indicate significant differences.

3 Results

3.1 Serum analysis

HPLC revealed high levels of 4-MAA at all investigated
time points after administration of metamizole (Figure 2A). 4-AA
was found to be low at 30 and 60 min and significantly higher
concentrated at 90 min after administration (Figure 2B).

3.2 Biomechanical analysis

Femurs of the metamizole and control group presented with
a low bending stiffness at 2 weeks after surgery and a higher
stiffness at 5 weeks after surgery (Figure 3). Intragroup comparisons
revealed a significant increase of bending stiffness at 5 weeks
after surgery compared to results at 2 weeks (Figures 3A,B). No
significant differences could be observed between both groups for
fractured femurs at 2 weeks (Figure 3A) and 5 weeks (Figure 3B)
and for healthy controls (Figures 3C,D). The ratio of biomechanical
stiffness between fractured and unfractured bones was very low at
2 weeks and indicated an incomplete osseous stability of fractured
femurs at 5 weeks after surgery in both groups (Figures 3E,F). This
shows a delayed bone healing in the herein used ischemic fracture
model. These results are in line with a previous study using this
animal model (Menger et al., 2022).

3.3 Radiological analysis

X-rays of animals of the control and metamizole
group showed signs of ongoing healing throughout the
study period (Figures 4A–D). Corresponding to the X-rays, the
mean Goldberg score at 2 weeks after fracture was 0.80 ± 0.13 for
metamizole-treated animals and 0.75 ± 0.16 for control animals,
whereas at 5 weeks the mean score for metamizole-treated animals
was 1.88 ± 0.12 and for control animals 2.0 ± 0.0.

µCT analyses showed no significant differences for BV and
TV at both observation time points between the two groups
(Figures 4E–H). Accordingly, the BV/TV ratio did also not
differ between metamizole-treated and control mice (Figures 4I,J).
However, the ratio showed a significant increase of bone tissue as a
fraction of TV between week 2 and 5 after surgery for each group as
an indicator for ongoing bone healing. µCT analysis of the trabecular
structures exhibited no significant differences between both study
groups for TbN (2 weeks: control: 1.91 ± 0.33; metamizole: 2.31 ±
0.27; 5 weeks: control: 2.59 ± 0.33; metamizole: 3.47 ± 0.17), TbSp (2
weeks: control: 0.55 ± 0.05;metamizole: 0.49 ± 0.06; 5weeks: control:
0.25 ± 0.02; metamizole: 0.22 ± 0.01) and TbTh (2 weeks: control:
0.09 ± 0.01; metamizole: 0.10 ± 0.01; 5 weeks: control: 0.17 ± 0.02;
metamizole: 0.15 ± 0.02).
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FIGURE 2
Serum concentrations of active metabolites of metamizole. (A) Serum concentration of 4-MAA at 30 min (white bar; n = 5), 60 min (grey bar; n = 7) and
90 min (black bar; n = 4) after administration of metamizole. (B) Serum concentration of 4-AA at 30 min (white bar; n = 5), 60 min (grey bar; n = 7) and
90 min (black bar; n = 4) after administration of metamizole. Mean ± SEM; ∗p < 0.05 vs. 60 min.

FIGURE 3
Biomechanical analysis of mouse femurs. (A,B) Bending stiffness of fractured control (white; n = 8) and metamizole-treated (black; n = 10/8) femurs at
2 weeks (A) and 5 weeks (B) after surgery. (C,D) Bending stiffness of unfractured control (white; n = 8) and metamizole-treated (black; n = 10/8) femurs
at 2 weeks (C) and 5 weeks (D) after surgery. (E,F) Ratio of bending stiffness of fractured to unfractured control (white; n = 8) and metamizole-treated
(black; n = 10/8) femurs at 2 weeks (E) and 5 weeks (F) after surgery. Mean ± SEM. #p < 0.05 vs. metamizole/control at 2 weeks.
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FIGURE 4
Radiological analysis of mouse femurs. (A–D): X-ray images of femurs at 2 weeks (A,C) and 5 weeks (B,D) after surgery of control (A,B) and
metamizole-treated (C,D) animals. Scale bars: 2 mm. (E,F) Bone volume (BV) at 2 weeks (E) and 5 weeks (F) after surgery within the callus of control
(white; n = 8) and metamizole-treated (black; n = 10/8) femurs. (G,H) Tissue volume (TV) at 2 weeks (G) and 5 weeks (H) after surgery within the callus
of control (white; n = 8) and metamizole-treated (black; n = 10/8) femurs. (I,J) Ratio of bone volume to tissue volume (BV/TV) at 2 weeks (I) and 5
weeks (J) after surgery within the callus of control (white; n = 8) and metamizole-treated (black; n = 10/8) femurs. Mean ± SEM. #p < 0.05 vs
metamizole/control at 2 weeks.
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FIGURE 5
Histomorphometric analysis of mouse femurs. (A–D): Representative histological images of Safranin-O-stained femurs at 2 weeks (A,C) and 5 weeks
(B,D) after surgery of control (A,B) and metamizole-treated (C,D) animals. Scale bars: 500 µm. (E,F) Total periosteal callus area of control (white; n = 8)
and metamizole-treated (black; n = 10/8) femurs at 2 weeks (E) and 5 weeks (F) after surgery. (G,H) Fraction of bone tissue of the total callus area of
control (white; n = 8) and metamizole-treated (black; n = 10/8) femurs at 2 weeks (G) and 5 weeks (H) after surgery. Mean ± SEM. #p < 0.05 vs.
metamizole/control at 2 weeks.

3.4 Histomorphometric analysis

The histomorphometric analysis 2 weeks after surgery
demonstrated a large callus area with mostly lack of osseous
bridging in both groups (Figures 5A,C). In contrast, 5 weeks after
surgery bone tissue bridged the initial fracture site in both groups
(Figures 5B,D). The total callus area did not differ between the
two groups (Figures 5E,F). The total callus area was smaller after
5 weeks than after 2 weeks in each group as a typical sign for
remodeling of bone. Accordingly, the fraction of bone tissue of the

total callus area increased over time in both groups (Figures 5G,H),
whereas intergroup comparisons of this parameter revealed no
differences.

3.5 Western blot analysis

The Western blot analysis revealed a significantly higher
expression of the pro-angiogenic factor Cyr61 in the callus tissue
of metamizole-treated animals when compared to controls at 2
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FIGURE 6
Western blot analysis of callus tissue. (A–F): Representative Western blots and expression of Cyr61 (A), CD31 (B), OPG (C), RANKL (D), RUNX2 (E), PCNA
(F) and β-actin (A–F) within the callus tissue of control (white; n = 5) and metamizole-treated (black; n = 5) femurs at 2 weeks after surgery. Mean ±
SEM;

∗
p < 0.05 vs. control.

weeks after surgery (Figure 6A). The expression of CD31 did not
differ between the two groups (Figure 6B). The osteoclastic marker
RANKL exhibited an increased expression in the callus tissue
of metamizole-treated animals, whereas expression of OPG did
not show significant differences (Figures 6C,D). The expression of
RUNX2 as an indicator of osteoblasts was significantly higher in the
callus of metamizole-treated animals than in the callus of control
animals. The expression of the proliferation marker PCNA did not
differ between the two groups at this early time point (Figure 6F).
These findings indicate a slightly different expression profile in
metamizole-treated animals when compared to controls, indicating

a trend towards a higher angiogenic activity and accelerated bone
turnover at 2 weeks after surgery.

4 Discussion

The present study analyzed for the first time the effects of
metamizole on bone healing under ischemic conditions in a well-
established murine model of delayed fracture healing. For this
purpose, metamizole was administered in a dosage that should
mimic clinical treatment.
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Metamizole is a commercially available pro-drug that is only
detectable for approximately 15 min in the blood after intravenous
administration (Jasiecka et al., 2014). This parent substance is
not clinically effective before its conversion into the two active
metabolites 4-MAA and 4-AA (Fendrich, 2000). Therefore, the
serum concentrations of 4-MAA and 4-AA were assessed in the
present study. While 4-MAA is an early metabolite of metamizole
and a result of the gastric passage, 4-AA develops from 4-MAA
during a later metabolization step after absorption (Jasiecka et al.,
2014). Herein, we detected a high concentration of 4-MAA
30 min after application, which remained constant throughout the
period of subsequent measurements until 90 min. This is in line
with previous studies demonstrating a maximum concentration of
4-MAA 1.2–2.0 h after oral administration (Jasiecka et al., 2014).
In contrast, the concentration of 4-AA was low at early time points
and significantly increased at 90 min after application, which may
reflect the metabolization step of 4-MAA at a later time point. Thus,
these results reveal an intake and metabolization of metamizole
as it would be also expected during clinical use. In patients,
4,000 mg of metamizole is considered to be the maximum daily
dosage for adults and adolescents aged 15 and older (Stromer and
Palladini, 2022).This daily dosage represents a commonprescription
for the analgesic treatment after bone injuries and corresponds
to approximately 50 mg/kg body weight in an average adult of
80 kg body weight. Moreover, this dosage has been used in mice
previously (Soncini et al., 2012). Accordingly, this dosage was also
chosen in the present study for the treatment of mice.

Fracture healing is a well-orchestrated process in which
angiogenesis and osteogenesis play pivotal roles (Cui et al., 2013).
Ischemia is one of themajor risk factors for complications in fracture
healing (Haffner-Luntzer et al., 2019). Indeed, previous studies could
show that 46%of fracture patientswith vascular injuries exhibit bone
healing problems and co-morbidities associated with a decreased
vascularity such as diabetes, ageing and smoking influence the
bone healing process due to a reduced blood flow to the fracture
site (Miclau et al., 2017; Jiao et al., 2015; Hernigou and Schuind,
2013). In line with these results, it has been shown that fractures
under ischemic conditions often result in non-union formation
(Lu et al., 2007). The herein used animal model is characterized
by a mild ischemia and has shown to induce delayed fracture
healing without preventing bone regeneration (Menger et al., 2022).
In the present study, intragroup comparisons between 2 and 5
weeks after surgery indicated successful osseous bridging of the
fracture site. This was demonstrated in both groups by the increased
biomechanical bending stiffness, the increased ratio of BV/TV in
the µCT analysis and signs of remodeling histomorphometrically.
However, the reduced biomechanical stability of injured femurs
of approximately 50%–60% compared to healthy femurs at 5
weeks after surgery indicates that the process of bone healing
is not yet completed at this late time point after surgery.
Thus, the process of delayed bone healing without non-union
formation by using this animal model could be confirmed in the
present study.

Fractures that need to heal under pathological conditions, such
as ischemia, are most likely to be negatively affected in their healing
process and may even fail to heal (Haffner-Luntzer et al., 2019;
Lu et al., 2007). Of interest, metamizole has been shown to increase
apoptosis in osteoblast-like cells in vitro and to inhibit COX-1,

COX-2 and COX-3, of which COX-2 is essential for bone healing
(Gerstenfeld et al., 2003; Simon et al., 2002; De Luna-Bertos et al.,
2015).However, under physiological conditions,metamizole did not
exert a detrimental effect on bone healing in non-stabilized tibial
fractures of rats (Gali et al., 2014). In line with these findings, we also
did not detect any negative effects of metamizole on bone healing
under ischemic conditions, as demonstrated by our biomechanical,
radiological and histomorphometric results. However, under
the challenging conditions of our model, metamizole slightly
changed the protein expression pattern in the callus tissue at
2 weeks after surgery when compared to controls. In fact, the
significantly increased expression of Cyr61, RUNX2 and RANKL
in the metamizole group demonstrate an impact of metamizole
and its metabolites on the angiogenic and osteo-genic mechanisms
of the bone healing process under ischemic conditions. While
increased expression of Cyr61 and RUNX2 indicate an angiogenic
and osteoanabolic effect, the increased expression of RANKL
without differences in OPG expression may indicate an increased
osteocatabolic effect (Frey et al., 2012; Orth et al., 2019; Wada et al.,
2006). Metamizole may, therefore, have increased the
bone turnover with neither accelerating nor preventing
bone healing.

In conclusion, the present study demonstrates that the
application of metamizole does not affect fracture healing under
challenging ischemic conditions. Although caution is naturally
required, when transferring results from animal studies to
applications in humans, treatment with metamizole may be also
recommended for analgesia in fracture patients suffering from
co-morbidities resulting in tissue ischemia.
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