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Risk prediction for 
gastrointestinal bleeding in 
pediatric Henoch-Schönlein 
purpura using an interpretable 
transformer model

Gahao Chen*†  and  Ziwei Yang†

The Department of Pediatrics at the Affiliated Hospital of North Sichuan Medical College, NanChong, 
Sichuan, China

Objective: Henoch-Schönlein purpura (HSP), clinically recognized as IgA 
vasculitis (IgAV), a prevalent systemic vasculitis in pediatric populations, 
frequently involves gastrointestinal (GI) tract manifestations that may lead 
to serious complications including hemorrhage and tissue necrosis. Timely 
identification of GI bleeding risk enables prompt clinical intervention and 
improves therapeutic outcomes. This study aims to develop and clinically 
validate an interpretable Transformer-based predictive model for assessing GI 
bleeding risk in pediatric patients with IgAV.
Methods: This retrospective cohort study analyzed 758 pediatric IgAV cases 
(ages 0–14 years) admitted to the Department of Pediatrics at the Affiliated 
Hospital of North Sichuan Medical College between 1 May 2020, and 31 
January 2024. Comprehensive clinical data including symptoms and laboratory 
parameters were systematically collected. GI complications were stratified into 
three severity tiers: 1) no complications, 2) abdominal pain without bleeding), 
and 3) documented rectal bleeding or hemorrhage, based on standardized 
diagnostic criteria. Five machine learning algorithms (Random Forest, XGBoost, 
LightGBM, CatBoost, and TabPFN-V2) were optimized through nested cross-
validation. Model performance was evaluated using multiple metrics: accuracy, 
precision, recall, F1-score, the Kappa coefficient, and ROC-AUC. The optimal 
model was subsequently interpreted using Shapley Additive Explanations (SHAP) 
values to elucidate feature importance.
Results: Among the evaluated models, the Transformer-based TabPFN-V2 
demonstrated superior predictive performance, achieving a validation accuracy 
of 0.88, precision of 0.88, recall of 0.87, F1-score of 0.88, Kappa coefficient of 
0.82, and AUC-ROC of 0.98. SHAP analysis revealed the five most influential 
biomarkers for global interpretability: D-dimer, total cholesterol, platelet count, 
apolipoprotein, and C-reactive protein.
Conclusion: The interpretable Transformer-based TabPFN-V2 model 
demonstrated robust predictive performance for GI bleeding risk in pediatric 
IgAV patients. Clinically accessible laboratory parameters identified by this 
model not only offer practical guidance for clinical decision-making but also
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establish a foundation for advancing medical artificial intelligence integration in 
pediatric care.
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Henoch-Schönlein purpura, machine learning, transformer architecture, 
interpretability, gastrointestinal bleeding 

Introduction

IgA vasculitis (IgAV), the most prevalent childhood systemic 
vasculitis, primarily affects small blood vessels in multiple organ 
systems including the skin, gastrointestinal (GI) tract, joints, 
and kidneys (Parums, 2024). Among these, GI complications - 
particularly abdominal pain and bleeding - represent significant 
clinical challenges (Castañeda et al., 2024; Li et al., 2024). While 
common in IgAV, severe GI hemorrhage can dramatically elevate 
pediatric mortality rates and serves as an independent risk factor 
for subsequent renal impairment (Carucci et al., 2022). The 
assessment of GI involvement remains clinically problematic due 
to several factors: 1) the subjective nature of pediatric pain 
reporting, 2) difficulties in objectively quantifying symptom severity, 
and 3) the current reliance on extensive laboratory testing for 
definitive diagnosis. These limitations frequently result in delayed 
diagnosis and treatment initiation, potentially exacerbating disease 
progression while simultaneously increasing the financial burden on 
affected families (Jhaveri et al., 2023). Ultimately, such diagnostic 
delays may adversely impact long-term patient outcomes.

Currently, predictive models for GI bleeding in IgAV 
primarily rely on conventional machine learning (ML) approaches, 
particularly random forest algorithms (Guo et al., 2025). However, 
these traditional methodologies face significant limitations in 
processing high-dimensional datasets with numerous features, 
potentially compromising both predictive accuracy and clinical 
utility. Furthermore, existing models often fail to adequately 
capture the intricate interplay among multiple clinical and 
laboratory parameters, resulting in suboptimal predictive 
performance (Nie et al., 2023). Consequently, the development and 
selection of more sophisticated modeling frameworks specifically 
optimized for tabular medical data represents a critical step toward 
enhancing both predictive capabilities and clinical decision-making 
in this domain.

TabPFN represents a transformer-based architecture specifically 
designed to enhance traditional ML algorithms for tabular data 
processing (Hollmann et al., 2025). The framework implements 
a bidirectional hierarchical attention mechanism that enables 
integrated processing of both categorical and numerical features. 
The architecture uniquely combines In-Context Learning with 
Bayesian inference, creating an efficient bridge between Bayesian 
methodologies and deep learning frameworks. The core innovation 
of TabPFN lies in its reformulation of posterior approximation 
as a supervised learning task. TabPFN architecture demonstrates 
substantial advancements through pre-training on a comprehensive 
130-million synthetic tabular prediction dataset while achieving 
state-of-the-art inference efficiency. As a groundbreaking paradigm 
in tabular learning, TabPFN has emerged as one of the most 
significant foundational models in the field. Its 2025-optimized 
iteration, TabPFN-V2, further advances these capabilities.

The inherent opacity of ML algorithms (often referred to 
as “black box” characteristics) presents a significant barrier to 
clinical adoption, as it undermines trust among both patients and 
healthcare providers (Martin et al., 2023). To address this critical 
challenge, SHapley Additive exPlanations (SHAP) has emerged 
as a powerful interpretability framework rooted in game theory 
principles (Chen, 2025). Within this framework, Kernel SHAP 
represents a particularly valuable model - agnostic interpretation 
technique - a specialized variant of Local Interpretable Model-
agnostic Explanations (LIME). This approach quantifies feature 
importance by computing Shapley values, thereby elucidating 
how each input variable contributes to the model’s predictions. 
These characteristics make Kernel SHAP particularly valuable 
in medical contexts, enabling clinicians to both understand 
prediction mechanisms and optimize early intervention strategies
(Feng et al., 2023).

This study seeks to develop and validate a novel clinical 
prediction model for GI bleeding in patients with IgAV 
by leveraging state-of-the-art interpretable Transformer 
architectures. Our research employs advanced ML techniques 
to enhance both predictive performance and model
transparency.

Methods

Study population

This retrospective cohort study utilized clinical data from 
pediatric patients diagnosed with IgAV at the Affiliated Hospital 
of North Sichuan Medical College in Nanchong, Sichuan Province, 
China, between 1 May 2020 and 31 January 2024. Ethical 
approval for this study was waived by the Institutional Review 
Board of North Sichuan Medical College Affiliated Hospital 
due to the retrospective nature of the research and the use 
of anonymized patient data. The research protocol strictly 
adhered to the TRIPOD + AI reporting guidelines (Collins et al., 
2024) for predictive model studies (Supplementary Table S1). 
Notable limitations include its single-center design and current 
absence of external population validation, which necessitates 
cautious interpretation when extrapolating findings to broader 
demographics. To ensure transparency and reproducibility, the 
complete source code and optimized model parameters are 
openly accessible via GitHub (repository: https://github.com/
zhuzhuchifei/HSP24). The prediction model has been successfully 
deployed in our clinical laboratory and is slated for 
multicenter external validation in Q2 2026, pending ethical
approvals. 
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Database

According to the European Alliance of Associations for 
Rheumatology (EULAR) diagnostic criteria for IgAV (Ozen et al., 
2019), definitive diagnosis requires the presence of palpable purpura 
predominantly affecting the lower extremities, accompanied by at 
least one of the following manifestations: 1) acute diffuse or localized 
abdominal pain with associated GI symptoms; 2) arthralgia/arthritis 
confirmed by clinical examination or ultrasonographic evidence of 
joint inflammation; 3) renal involvement manifested as hematuria 
and/or proteinuria. Abdominal complications were specifically 
defined as meeting any of the following criteria: 1) acute abdominal 
pain requiring medical intervention; 2) melena or hematochezia; 
3) hematemesis; 4) persistent vomiting; 5) radiologically confirmed 
intussusception; 6) occult blood-positive stools. Exclusion criteria 
comprised: 1) receipt of glucocorticoids or immunosuppressive 
therapy within 7 days prior to admission; 2) documented history 
of peptic ulcer disease; 3) evidence of secondary vasculitis; 4) 
incomplete medical records.

Building upon established evidence in IgAV research literature 
(Li et al., 2023; Yang et al., 2022; Shen et al., 2025), clinical data 
were systematically extracted from the hospital’s electronic medical 
record system, encompassing demographic characteristics, clinical 
manifestations, laboratory tests, ultrasonography, and gastroscopy. 
The variance filtering method is employed for feature selection, 
wherein low-variance features (threshold = 0.1) are removed after 
data normalization to achieve dimensionality reduction. According to 
the severity of GI bleeding symptoms, patients were divided into three 
groups based on 21 variable data including: age (year), gender, white 
blood cell count (WBC), neutrophil count (GR), lymphocyte count 
(LY), hemoglobin (Hb), platelets (PLT), aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), albumin (ALB), total 
cholesterol (TC), apolipoprotein (APO), lipoprotein a (Lp-a), C-
reactive protein (CRP), homocysteine (HCY), lactate (LA), lactate 
dehydrogenase (LDH), hydroxybutyrate dehydrogenase (LDHD), 
creatine kinase (CK), creatine kinase-MB isoenzyme (CKMB) 
and D-dimer (D-D). Patients were categorized into three distinct 
groups based on GI manifestations: 1) No-GIS group: Complete 
absence of GI symptoms; 2) Mild-GIS group: Exhibiting transient 
GI symptoms including intermittent abdominal pain or isolated 
episodes of emesis; 3) Severe-GIS group: Characterized by significant 
GI complications including clinically evident GI hemorrhage or 
radiologically confirmed intestinal edema or documented cases of 
intussusception. All data were collected from hospital medical records 
within the 9 days preceding glucocorticoid treatment. After applying 
these rigorous selection criteria, our final cohort comprised 758 eligible 
IgAV cases for retrospective analysis. 

Approaching the issue of missing data

Analysis confirms that missing values constitute less than 5% 
of the total dataset. Imputation methodology was determined by 
distributional characteristics: variables demonstrating approximate 
normality (AST, ALB, APO, HCY, LA) underwent mean imputation 
to preserve parametric properties and central tendency, while 
non-normally distributed variables (ALT, TC, Lp, CRP, LDH, 
LDHD, CK, CKMB) necessitated median imputation due to its 

comparative robustness against outlier-induced bias. For categorical 
variables, mode imputation was implemented to maintain the 
original frequency distribution of nominal features. Furthermore, 
we continuously monitor model fairness using  IBM’s AI Fairness 360 
(AIF360) toolkit (Bellamy et al., 2019), systematically identifying 
and mitigating biases - particularly those related to gender and age 
disparities - during model analysis. 

Statistical analyses

The Kruskal–Wallis H test serves as a non-parametric method 
for comparing laboratory parameters across multiple independent 
groups, with statistically significant results prompting subsequent 
pairwise comparisons. For algorithm performance evaluation, the 
Friedman test is implemented through Orange3 library (version 
3.32.0) to detect potential significant differences among multiple 
algorithms. Upon identifying statistically significant variations, the 
Nemenyi post hoc test is employed to precisely quantify performance 
disparities between any two given algorithms. This follow-up test 
operates by calculating the critical range for differences in average 
rank values, whereby a measured difference exceeding this threshold 
indicates statistically significant performance divergence. All statistical 
interpretations adhere to the conventional significance threshold of 
P < 0.05. 

Development and validation of predictive 
models

The data preprocessing and analysis were performed using 
Python 3.10 along with the scikit-learn library (version 1.4.2). 
For ML modeling, we implemented several supervised algorithms 
including Random Forest (from scikit-learn), XGBoost (version 
1.7.3), LightGBM (version 4.1.0), CatBoost (version 1.2), and 
TabPFN (version 2.0). To comprehensively evaluate model 
performance, we employed multiple metrics: accuracy, precision, 
recall, F1-score, and the Kappa coefficient. A nested cross-validation 
(Outer layer k = 5, Inner layer k = 2) strategy was adopted to mitigate 
overfitting risks and enhance model robustness, ultimately enabling 
the selection of the optimal performing model (Figure 1).

Given the categorical nature of the target variable, model 
performance was assessed using both classification accuracy 
and Cohen’s Kappa coefficient. The Kappa coefficient serves as 
a robust metric for evaluating classification consistency beyond 
chance agreement. Its calculation involves two critical components: 
Observed Agreement (P0): The proportion of correctly classified 
instances, calculated as the sum of diagonal elements in the 
confusion matrix divided by the total number of samples. 
Expected Agreement (Pe): The hypothetical probability of random 
agreement, computed by summing the product of corresponding 
row and column marginal probabilities across all categories. This 
normalization approach ensures Kappa values range between −1 
and 1, with higher values indicating stronger model performance 
independent of class distribution in Table 1.

The final dataset was partitioned into training and validation 
subsets using an 80:20 ratio, with random_state = 42 initialized to 
ensure experiment reproducibility. 
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FIGURE 1
Selection of hyperparameters for the model.

TABLE 1  The meaning of the Kappa coefficient.

Kappa 
coefficient

−1 0 0.0∼0.20 0.21∼0.40 0.41∼0.60 0.61∼0.80 0.81∼1

Meaning Complete 
inconsistency

Accidental 
consistency

Extremely low 
consistency

General 
consistency

Moderate 
consistency

High consistency Almost identical

Tools for interpreting machine learning

We employ SHAP version 0.42.1 to interpret the optimal 
prediction model. The Kernel SHAP framework is implemented 
to conduct both global and local model interpretations. Feature 
importance ranking is determined by computing SHAP values, 
with features ordered according to their mean absolute SHAP 
values. This integration of ML with SHAP explanation methods 
establishes a robust theoretical foundation for predictive modeling 
by providing transparent, quantitative insights into model
behavior.

Results

Clinical characteristics

This retrospective study enrolled 758 pediatric patients 
diagnosed with IgAV, with a mean age of 7.2 ± 2.5 years. The 
cohort comprised 441 males (58.2%) and was stratified into three 
clinical subgroups: 303 cases (40.0%) without GI manifestations, 
231 cases (30.5%) presenting with abdominal pain, and 224 cases 
(29.6%) exhibiting rectal bleeding. The time interval from IgAV 

symptom onset to hospital admission for laboratory evaluation 
ranged from 0 to 7 days (mean: 2.7 days). Subsequent progression 
to GI bleeding occurred within 1–9 days post-admission (mean: 
3.5 days). As detailed in Table 2, statistically significant intergroup 
differences (P < 0.05) were observed across multiple laboratory 
parameters, including hematological markers (WBC, GR, Hb, 
PLT), biochemical function markers (AST, ALB, LDH, LDHD), 
lipid profile (TC, APO), and inflammatory/coagulation markers
(CRP, D-D).

Post-hoc pairwise comparisons were performed for all 
parameters demonstrating statistical significance. Table 3 further 
demonstrates statistically significant differences in the inter-group 
comparisons.

Given the variations in normal reference ranges for 
hematological markers across different age groups, we performed 
comparative analyses of WBC, GR, HB, and PLT among these 
demographic cohorts (Table 4).

Machine learning model performance

Through comprehensive evaluation of 5 ML models across both 
training and validation sets, TabPFN-V2 demonstrated superior 
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TABLE 2  Demographics of research population.

Variable Non GIB(n = 303) Mild GIB(n = 231) Severe GIB(n = 224) P value

Age (y) 7.14 ± 2.53 7.12 ± 2.49 7.22 ± 2.42 0.835

Male 180 133 128 0.852a

WBC (×109/L) 9.94 ± 3.38 11.08 ± 4.54 12.99 ± 5.38 0.000

GR (×109/L) 6.73 ± 3.06 7.61 ± 3.99 8.81 ± 4.65 0.000

LY (×109/L) 2.60 ± 1.51 2.79 ± 1.69 2.68 ± 1.68 0.669

Hb(g/L) 123.76 ± 10.06 126.30 ± 12.89 129.53 ± 13.70 0.000

PLT (×109/L) 296.80 ± 81.76 350.04 ± 110.37 354.01 ± 104.69 0.000

AST (U/L) 29.94 ± 8.47 31.98 ± 12.21 28.66 ± 9.35 0.047

ALT (U/L) 15.21 ± 15.81 15.24 ± 12.05 13.79 ± 6.25 0.209

ALB (g/L) 41.51 ± 5.15 40.26 ± 5.36 41.22 ± 7.35 0.013

TC (mmol/L) 3.76 ± 0.75 4.36 ± 2.48 4.04 ± 0.79 0.004

APO (g/L) 0.62 ± 0.17 0.72 ± 0.19 0.75 ± 0.22 0.000

Lp (mg/L)) 212.18 ± 196.88 212.39 ± 191.89 281.13 ± 254.32 0.055

CRP (mg/L) 9.68 ± 12.04 7.04 ± 5.97 10.68 ± 9.43 0.001

HCY(mmol/L) 7.68 ± 2.49 7.68 ± 3.23 7.62 ± 3.52 0.804

LA (mmol/L) 2.74 ± 1.01 2.73 ± 1.09 2.69 ± 1.08 0.831

LDH (U/L) 212.00 ± 48.95 214.18 ± 76.74 194.89 ± 59.21 0.000

LDHD (U/L) 172.76 ± 44.05 196.79 ± 89.17 157.95 ± 65.93 0.000

CK (U/L) 71.42 ± 59.69 95.64 ± 114.84 60.03 ± 32.99 0.423

CKMB (U/L) 12.56 ± 7.49 14.09 ± 9.85 13.49 ± 9.49 0.419

D-D (mg/L) 1.04 ± 0.59 1.51 ± 0.41 2.75 ± 1.05 0.000

GIB, gastrointestinal bleeding; WBC, white blood cell; GR, neutrophil count; LY, lymphocyte count; Hb, Hemoglobin; PLT, platelet count; AST, aspartate aminotransferase; ALT, alanine 
aminotransferase; ALB, albumin; TC, total cholesterol; APO, apolipoprotein; Lp-a; Lipoprotein-a; CRP, C-reactive protein; HCY, homocysteine; LA, lactate; LDH, lactate dehydrogenase; LDHD, 
lactate dehydrogenase D; CK, creatine kinase; CK-MB, Creatine kinase-MB, isoenzyme; D-D, D-dimer. Boldface indicates a statistically significant difference with P < 0.05. a Chi-square test. The 
bolded values highlight statistically significant P-values.

performance metrics. The model achieved consistently high scores 
in the validation set, with accuracy 0.88, sensitivity 0.88, recall 0.88, 
F1-score 0.87, and the Kappa coefficient 0.82, outperforming all 
other compared models. (Table 5).

The accuracy, sensitivity, recall, and F1-score of both training 
and validation sets from five machine learning models were 
evaluated across eight performance dimensions using the Friedman 
test. The analysis yielded statistically significant results (χ2 = 26.624, 
P < 0.01). Subsequent Nemenyi post hoc testing revealed that 
the TabPFN-V2 model achieved the highest mean rank, with 
statistically significant differences (P < 0.05) observed between 
TabPFN, CatBoost, and LightGBM (Figure 2).

Area under the multi-class ROC curve

The TabPFN model demonstrated exceptional discriminatory 
performance, with both macro-average and micro-average ROC-
AUC scores reaching 0.98. When evaluated using a OvR strategy 
across clinical subgroups, the model maintained consistently 
high AUC values: 0.97 for asymptomatic cases, 0.96 for the 
abdominal pain subgroup, and 0.99 for the bleeding subgroup. 
These outstanding metrics strongly suggest that our selected features 
serve as robust predictors for GI complications in pediatric IgAV 
cases. The TabPFN model therefore represents an optimal choice for 
classification modeling with this dataset (Figure 3).
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TABLE 3  Post-hoc pairwise comparisons.

Variable Non GIB vs. Mild GIB Non GIB vs.  Severe GIB Mild GIB vs.  Severe GIB

WBC 0.014 0.000 0.000

GR 0.041 0.000 0.009

Hb 0.091 0.000 0.026

PLT 0.000 0.000 1.000

AST 0.602 0.041 0.521

ALB 1.000 0.017 0.103

TC 0.735 0.003 0.133

APO 0.000 0.000 0.413

CRP 0.613 0.000 0.017

LDH 1.000 0.000 0.000

LDHD 0.003 0.000 0.113

D-D 0.000 0.000 0.000

The bolded values highlight statistically significant P-values.

TABLE 4  Comparison of grouping hematological markers for different age groups.

Variable 0–3 years old
(n = 54)

4–6 years old
(n = 268)

7–9 years old
(n = 294)

10–14 years old
(n = 142)

P value

WBC 10.95 ± 0.52 10.75 ± 0.26 11.42 ± 0.27 11.39 ± 0.43 0.302

GR 7.50 ± 0.41 7.45 ± 0.23 7.78 ± 0.23 7.65 ± 0.39 0.623

LY 2.67 ± 0.22 2.52 ± 0.09 2.74 ± 0.09 2.92 ± 0.14 0.120

Hb 128.02 ± 1.65 126.59 ± 0.70 125.48 ± 0.75 126.46 ± 1.09 0.257

PCT 343.81 ± 12.44 328.04 ± 6.13 327.82 ± 6.11 332.59 ± 8.55 0.724

TABLE 5  Machine learning model performance.

Model  Training  Validation

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score Kappa

RF 0.79 0.86 0.77 0.79 0.78 0.82 0.77 0.78 0.66

XGBoost 0.86 0.88 0.84 0.85 0.80 0.83 0.81 0.80 0.70

LightGBM 0.77 0.86 0.73 0.75 0.70 0.83 0.73 0.72 0.69

CatBoost 0.82 0.85 0.79 0.81 0.77 0.82 0.79 0.77 0.66

TabPFN 0.95 0.96 0.95 0.95 0.88 0.88 0.88 0.87 0.82

The bolded values reflect the most favorable performance outcomes.
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FIGURE 2
Average ranking of model performance.

FIGURE 3
Area under the multi-class ROC curve.

The transformer model interpretation with 
kernel SHAP methods

The global interpretability analysis using Kernel SHAP reveals 
the feature importance ranking, highlighting the top five most 
influential variables. Each feature is represented by a distinct 
horizontal line, with colored data points (red indicating high 
contribution values and blue denoting low values) showing 
individual patient results (Figure 4). The analysis identifies the 
following key predictors for IgAV GI bleeding risk: D-dimer level, 
total cholesterol, platelet count, apolipoprotein, and C-reactive 
protein level.

Figure 5 demonstrates a positive correlation between biomarker 
levels (D-dimer, platelet count, apolipoprotein, and CRP) and GI 
symptoms, as evidenced by progressively elevated SHAP scores 
with increasing parameter values. The observed S-shaped transition 
curves suggest a critical threshold phenomenon, where surpassing 
specific biomarker thresholds triggers disease progression to 
hemorrhagic stages. These nonlinear relationships provide valuable 
insights for developing a risk stratification system, informing both 
diagnostic thresholds and prognostic evaluation in IgAV related GI 
complications.

Figure 6 reveals a dose-dependent relationship between TC 
levels and Shapley values, where increasing TC concentrations 
correlate with progressively higher SHAP scores. The predictive 
contribution peaks at a critical TC threshold of approximately 
5 mmol/L, beyond which the SHAP values demonstrate a gradual 
attenuation pattern. This biphasic response suggests a potential 
saturation effect in TC’s pathological contribution to disease 
progression.

Discussion

This study develops a transformer based prediction model 
for GI complications in pediatric IgAV patients, comparing five 
algorithmic approaches. Our results demonstrate that the TabPFN 
model outperforms conventional methods (Random Forest, 
LightGBM, XGBoost, and CatBoost) in distinguishing between 
IgAV related abdominal pain and GI, exhibiting superior predictive 
capabilities. Current predictive methodologies for IgAV related 
GI bleeding predominantly rely on univariate analysis (P < 0.05 
threshold) followed by multivariate logistic regression modeling 
(Su et al., 2025; Yang et al., 2024). While logistic regression remains 
a fundamental linear approach, its limitations in handling nonlinear 
relationships often lead to exclusion of potentially valuable variables 
that fail to meet traditional statistical significance criteria. Recent 
literature has highlighted ML’s potential in predicting IgAV 
outcomes, which our findings substantiate (Guo et al., 2025).

Within our cohort of IgAV patients, 224 cases 
(29%) presented with GI, aligning with established 
epidemiological data (Sağlam et al., 2025). The TabPFN 
model achieved exceptional performance metrics (accuracy, 
precision, recall, F1-score, and the Kappa coefficient) during 
internal validation, with a macro-average ROC of 0.98. Further 
demonstrating the superiority of the TabPFN model through 
rigorous statistical validation using Friedman’s test and Nemenyi’s 
test. Systematically monitor model fairness using AIF360 to 
ensure ethical compliance with global standards and mitigate bias 
arising from data scarcity. This robust predictive capability enables 
early identification of high-risk patients, allowing clinicians to 
implement timely interventions during critical treatment windows 
to mitigate bleeding risks. While promising, the model requires 
external validation to confirm its generalizability across diverse 
clinical settings. We have successfully implemented a parameterized 
model in the local clinical laboratory. Future work will focus on 
integrating the model into the clinical decision support system 
or deploying it via Streamlit to facilitate multicenter external
validation.

The development of TabPFN stems from the inherent 
limitations of conventional ML approaches in handling tabular 
data, particularly when dealing with dataset heterogeneity and 
raw data complexity. The 2025 release of TabPFN-v2 introduces 
significant functional enhancements, expanding its capabilities 
to include not only improved categorical variable analysis 
but also inaugural support for regression tasks. Notably, the 
model natively accommodates missing values and outliers 
without requiring manual feature engineering. With optimal 
performance on small-to-medium datasets (≤10,000 samples 
and ≤500 features), TabPFN-v2 demonstrates superior accuracy 
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FIGURE 4
The global interpretability based on Kernel SHAP under the transformer model. D-D, D-dimer; TC, Total cholesterol; PLT, Platelet count; APO, 
Apolipoprotein; CRP, C-reactive protein; Hb, Hemoglobin; CK, Creatine kinase; Lp-a; Lipoprotein-a; WBC, White blood cell; ALT, Alanine 
aminotransferase; SHAP, SHapley Additive exPlanations.

FIGURE 5
Feature dependence plots. (A) Feature dependence plots of D-dimer. (B) Feature dependence plots of platelet count. (C) Feature dependence plots of 
apolipoprotein. (D) Feature dependence plots of CRP. The horizontal axis quantifies the parameter’s numerical range, while the vertical axis 
corresponds to the computed Shapley values. The color gradient reflects parameter importance, with increasing red saturation indicating higher 
marginal contributions of specific parameter values to the model’s predictive performance.
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FIGURE 6
Feature dependence plots of total cholesterol. The horizontal axis 
quantifies the parameter’s numerical range, while the vertical axis 
corresponds to the computed Shapley values. The color gradient 
reflects parameter importance, with increasing red saturation 
indicating higher marginal contributions of specific parameter values 
to the model’s predictive performance.

compared to existing methods while achieving substantially 
reduced training times. Built on a Generative Transformer 
architecture, this foundational model supports multiple advanced 
functionalities including fine-tuning, synthetic data generation, 
density estimation, and learnable embedding extraction. TabPFN’s 
unique training paradigm leverages millions of synthetic datasets, 
showcasing remarkable algorithmic development capabilities. By 
advancing modeling proficiency across diverse domains, this 
innovation holds significant potential to accelerate scientific 
breakthroughs and enhance decision-making processes in various
fields.

The clinical application of ML models is frequently constrained 
by their inherent lack of interpretability, raising concerns about their 
reliability in predicting disease outcomes (Hofweber and Walker, 
2024). To address this challenge, we employed SHAP analysis on 
the TabPFN-V2 model, utilizing Kernel SHAP methodology to 
interpret and visualize prediction results. Our analysis identified 
five significant biomarkers for IgAV associated GI bleeding:
D-dimer, total cholesterol, platelet count, apolipoprotein, and
C-reactive protein.

The rising incidence of pediatric IgAV with GI complications 
has heightened the need for early risk identification. This condition 
presents diagnostic challenges due to nonspecific early symptoms, 
frequent misdiagnosis, and high recurrence rates (Kato et al., 
2024). In this study, we demonstrated that elevated D-dimer 
levels (>2 mg/L) and elevated platelet counts (>400 × 109/L) 
exhibited significantly enhanced marginal contributions within 
the predictive model. Previous studies have indicated that the 
pathogenesis of gastrointestinal bleeding in children with IgAV 
involves the synergistic effect of increased platelet aggregation and 
D-dimer-induced microthrombus formation (Su et al., 2025). This 
threshold effect analysis quantitatively confirms that surpassing 
these biomarker thresholds substantially elevates the risk of GI 
bleeding in pediatric IgAV patients. The pathogenesis of GI 
hemorrhage appears multifactorial (Wei et al., 2023), with our 

findings specifically establishing that concurrent APO exceeding 
130 g/L and CRP levels exceeding 20 mg/L collectively elevate 
pediatric GI bleeding risk. A study found that serum APO levels are 
elevated in patients with lgAV (Wu et al., 2019). However, in patients 
with IgAV Nephritis (IgAVN), apoM loss due to kidney injury results 
in decreased serum APO concentrations. Furthermore, these apoM 
levels decline progressively with worsening renal impairment and 
show a significant inverse correlation with ISKDC (the International 
Study of Kidney Disease in Children) grading scores in IgAVN 
patients. Current evidence remains inconclusive regarding the 
specific role of APO in the pathogenesis of IgAV GI bleeding, 
warranting further investigation to elucidate potential mechanistic 
links. Through SHAP analysis, it was conclusively demonstrated 
that D-dimer, platelet count, APO, and C-reactive protein serve 
as pivotal biomarkers for IgAV GI prediction. By establishing 
optimized diagnostic thresholds for these parameters, clinicians can 
significantly enhance model predictive performance. Notably, this 
approach provides pediatricians with quantifiable decision support, 
facilitating more accurate and objective assessment of pediatric IgA 
vasculitis cases.

Chen et al. (2024) conducted a systematic investigation 
into the relationship between the Dietary Inflammation Index 
(DII) and IgAV, demonstrating that dietary factors exert 
measurable influence on disease severity and complication 
development in pediatric IgAV patients. Their study revealed 
statistically significant associations between higher DII scores 
and multiple clinical indicators, including elevated inflammatory 
biomarkers, suboptimal nutrient intake profiles, dysregulated 
lipid metabolism parameters, and increased complication rates. 
These findings not only systematically delineate the mechanistic 
pathways connecting pro-inflammatory dietary patterns with IgAV 
pathophysiology at the molecular level, but also rigorously establish 
an evidence-based framework for developing precision nutrition
models.

Notably, blood TC levels emerged as the most straightforward 
predictive indicator for IgAV related abdominal pain and GI 
bleeding. Emerging evidence has established a compelling 
association between dyslipidemia and the clinical trajectory of 
immunoglobulin A nephropathy (IgAN), with particular emphasis 
on hypertriglyceridemia and hypercholesterolemia exacerbating 
hypertension and proteinuria - pivotal determinants of disease 
progression (Nüsken and Weber, 2022). Wang’s seminal work 
demonstrated a markedly diminished renal survival rate in IgAN 
patients with concomitant hypertriglyceridemia, underscoring its 
prognostic significance as an independent risk factor (Wang et al., 
2020). While lipid research has predominantly centered on 
IgAN populations, IgAV remains comparatively understudied. 
Importantly, the lipid spectrum encompasses diverse constituents 
including fats, phospholipids, and steroids. Our SHAP-based 
analysis identified TC as a model feature with substantial 
marginal contribution, exhibiting a dose-response relationship 
where SHAP scores peak at approximately 5 mmol/L before 
plateauing. This observation suggests that early dyslipidemia in 
IgAV may serve as a predictive biomarker for GI complications, 
thereby facilitating timely endoscopic assessment and therapeutic 
intervention. Through optimal threshold selection for TC, we 
enhanced the performance of our single-variable prediction 
model. The kernel SHAP analysis provides clinicians with 
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two key advantages: 1) comprehensive risk factor visualization 
that supplements standard model outputs, and 2) personalized 
explanatory insights into the model’s decision-making process. 
While these interpretability techniques represent significant 
progress, we acknowledge SHAP’s methodological limitations 
and emphasize the need for further validation of kernel SHAP 
approaches in clinical practice. Meanwhile, the current findings 
should be interpreted cautiously given the study’s single-center 
design, modest sample size, and inherent limitations of retrospective
analyses.

This study acknowledges several noteworthy limitations that 
warrant careful consideration. First, while our cohort size exceeds 
those reported in prior studies, it remains suboptimal relative to the 
data requirements of modern ML algorithms, potentially limiting 
model generalizability. Second, Given the inherent variability in 
dietary patterns and genetic predispositions across populations, 
the generalizability of these study findings may be constrained. 
Therefore, future investigations should prioritize multicenter studies 
involving diverse ethnic cohorts to validate these observations, 
thereby strengthening the translational applicability of the research 
outcomes. This approach will facilitate the development of more 
universally relevant clinical guidelines and intervention strategies. 
Third, despite TabPFN-V2’s established versatility in tabular data 
processing, the single-institution provenance of our dataset raises 
concerns regarding clinical translatability, necessitating rigorous 
external validation across multi-center cohorts with geographic 
and demographic diversity. A critical limitation of SHAP lies in its 
inherent inability to distinguish correlation from causation. While 
SHAP analysis enhances model interpretability, the computational 
complexity of kernel SHAP based logical operation interpretation 
presents substantial challenges in clinical deployment contexts, 
demanding prohibitive temporal and hardware resources. This 
underscores the need to investigate emerging interpretability 
frameworks specifically optimized for medical applications, 
such as the SHAP-IQ, which may offer pediatricians more 
clinically actionable insights through enhanced visualization
capabilities.

Conclusion

Our transformer based algorithm integrates multidisciplinary 
technologies with medical database information to establish 
an early warning system for IgAV associated GI bleeding 
in pediatric patients, enabling personalized treatment and 
preventive care. The study revealed multiple laboratory markers 
significantly correlated with IgAV related GI complications, 
advancing our understanding of IgAV pathophysiology and 
facilitating predictive model development for clinical guidance. 
The transformer architecture TabPFN-V2 model demonstrated 
exceptional performance in this application. Routine laboratory 
tests, serving as readily accessible parameters, offer valuable clinical 
references, empowering pediatricians to effectively identify high-
risk IgAV patients and optimize GI bleeding management. This 
approach demonstrates substantial clinical significance and lays a 
practical foundation for advancing medical-artificial intelligence
integration.

Data availability statement

The datasets presented in this study can be found in online 
repositories. The names of the repository/repositories and accession 
number(s) can be found below: https://github.com/zhuzhuchifei/
HSP24.

Ethics statement

The requirement of ethical approval was waived by the 
Institutional Review Board of North Sichuan Medical College 
Affiliated Hospital for the studies involving humans because due 
to the retrospective nature of the research. The studies were 
conducted in accordance with the local legislation and institutional 
requirements. Written informed consent for participation was 
not required from the participants or the participants’ legal 
guardians/next of kin because due to the use of anonymized 
patient data.

Author contributions

GC: Project administration, Formal Analysis, Writing – 
review and editing, Methodology, Funding acquisition, Validation, 
Supervision, Software, Investigation, Data curation, Visualization, 
Conceptualization, Resources, Writing – original draft. ZY: Funding 
acquisition, Supervision, Writing – review and editing, Writing 
– original draft, Resources, Data curation, Investigation, Project 
administration. 

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This work was 
supported by Nanchong Social Science Research Initiative: 14th 
Five-Year Plan Project 2025 (NC25C189), 2024 Nanchong Social 
Science Planning: Healthy City Development Research Initiative 
(NC24JK18), Affiliated Hospital of North Sichuan Medical College 
Research Development Plan (2023JC019), Scientific Research 
Development Plan Project of North Sichuan Medical College 
(CBY21-QA55).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2025.1630807
https://github.com/zhuzhuchifei/HSP24
https://github.com/zhuzhuchifei/HSP24
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen and Yang 10.3389/fphys.2025.1630807

artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 

reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

Supplementary material

The Supplementary Material for this article can be 
found online at: https://www.frontiersin.org/articles/10.3389/
fphys.2025.1630807/full#supplementary-material

References

Bellamy, R. K. E., Dey, K., Hind, M., Hoffman, S. C., Houde, S., Kannan, K., et al. 
(2019). AI fairness 360: an extensible toolkit for detecting and mitigating algorithmic 
bias. IBM J. Res. Dev. 63 (99), 1–4. doi:10.1147/JRD.2019.2942287

Carucci, N. S., La, B. G., Peruzzi, L., La, M. A., Silipigni, L., Alibrandi, A., et al. 
(2022). Time of onset and risk factors of renal involvement in children with Henoch-
Schönlein purpura: retrospective Study. Child. (Basel) 9 (9), 1394. Epub 2022/09/15. 
doi:10.3390/children9091394

Castañeda, S., Quiroga-Colina, P., Floranes, P., Uriarte-Ecenarro, M., Valero-
Martínez, C., Vicente-Rabaneda, E. F., et al. (2024). IgA vasculitis (Henoch-Schönlein 
purpura): an update on treatment. J. Clin. Med. 13 (21), 6621. Epub 2024/11/4. 
doi:10.3390/jcm13216621

Chen, J. (2025). Development of a machine learning model related to explore the 
association between heavy metal exposure and alveolar bone loss among US adults 
utilizing SHAP: a study based on NHANES 2015-2018. BMC Public Health 25 (1), 455. 
Epub 2025/02/04. doi:10.1186/s12889-025-21658-y

Chen, J., Chen, P., Song, Y., Wei, J., Wu, S., Wu, F., et al. (2024). The relationship 
between the severity and complications of Henöch-Schönlein purpura in children 
and dietary inflammatory index: a retrospective cohort study. PeerJ 12, e18175. Epub 
2024/09/24. doi:10.7717/peerj.18175

Collins, G. S., Moons, K. G. M., Dhiman, P., Riley, R. D., Beam, A. L., Van Calster, 
B., et al. (2024). TRIPOD+AI statement: updated guidance for reporting clinical 
prediction models that use regression or machine learning methods. BMJ 385, q902. 
Epub 2024/04/16. doi:10.1136/bmj.q902

Feng, J., Liang, J., Qiang, Z., Hao, Y., Li, X., Li, L., et al. (2023). A hybrid stacked 
ensemble and Kernel SHAP-based model for intelligent cardiotocography classification 
and interpretability. BMC Med. Inf. Decis. Mak. 23 (1), 273. Epub 2023/11/28. 
doi:10.1186/s12911-023-02378-y

Guo, Q., Xia, S., Ding, Y., and Liu, F. (2025). Predictive laboratory markers 
for gastrointestinal complications in children with Henoch-Schönlein Purpura. J. 
Multidiscip. Healthc. 18, 279–288. Epub 2025/01/21. doi:10.2147/JMDH.S499808

Hofweber, T., and Walker, R. L. (2024). Machine learning in health care: ethical 
considerations tied to privacy, interpretability, and bias. N. C. Med. J. 85 (4), 240–245. 
Epub 2024/07/11. doi:10.18043/001c.120562

Hollmann, N., Müller, S., Purucker, L., Krishnakumar, A., Körfer, M., Hoo, S. B., et al. 
(2025). Accurate predictions on small data with a tabular foundation model. Nature 637 
(8045), 319–326. Epub 2025/01/08. doi:10.1038/s41586-024-08328-6

Jhaveri, K. D., Bensink, M. E., Bunke, M., Briggs, J. A., Cork, D. M. W., and Jeyabalan, 
A. (2023). Humanistic and economic burden of IgA nephropathy: systematic literature 
reviews and narrative synthesis. Pharmacoecon Open 7 (5), 709–722. Epub 2023/04/27. 
doi:10.1007/s41669-023-00415-0

Kato, S., Gold, B. D., and Kato, A. (2024). Gastrointestinal manifestations and 
pathogenesis in childhood immunoglobulin A vasculitis. Front. Pediatr. 12, 1459394. 
Epub 2024/10/21. doi:10.3389/fped.2024.1459394

Li, Y., Zhang, X., Liu, H., Li, G., Guan, W., Zhang, T., et al. (2023). Severe 
gastrointestinal involvement in pediatric IgA vasculitis: a retrospective single-
center cohort study in China. Front. Pediatr. 11, 1194214. Epub 2023/08/08. 
doi:10.3389/fped.2023.1194214

Li, C., Sun, L., Feng, X., and Lei, C. (2024). Gastrointestinal bleeding in 
children with Henoch-Schönlein purpura combined with prognostic nutrition index 

May predict endoscopic duodenal ulcers during hospitalization: a single-center 
retrospective case-control study. Med. Baltim. 103 (22), e38321. Epub 2024/05/31. 
doi:10.1097/MD.0000000000038321

Martin, S. A., Townend, F. J., Barkhof, F., and Cole, J. H. (2023). Interpretable machine 
learning for dementia: a systematic review. Alzheimers Dement. 19 (5), 2135–2149. Epub 
2023/02/03. doi:10.1002/alz.12948

Nie, D., Zhan, Y., Xu, K., Zou, H., Li, K., Chen, L., et al. (2023). Artificial intelligence 
differentiates abdominal Henoch-Schönlein purpura from acute appendicitis in 
children. Int. J. Rheum. Dis. 26 (12), 2534–2542. Epub 2023/10/31. doi:10.1111/1756-
185X.14956

Nüsken, E., and Weber, L. T. (2022). IgA vasculitis nephritis. Curr. Opin. Pediatr. 34 
(2), 209–216. Epub 2022/04/01. doi:10.1097/MOP.0000000000001120

Ozen, S., Marks, S. D., Brogan, P., Groot, N., de Graeff, N., Avcin, T., et al. 
(2019). European consensus-based recommendations for diagnosis and treatment of 
immunoglobulin A vasculitis-the SHARE initiative. Rheumatol. Oxf. 58 (9), 1607–1616. 
Epub 2019/09/01. doi:10.1093/rheumatology/kez041

Parums, D. V. (2024). A review of IgA vasculitis (Henoch-Schönlein purpura) 
past, present, and future. Med. Sci. Monit. 30, e943912. Epub 2024/01/28. 
doi:10.12659/MSM.943912

Sağlam, M. K., Yıldırım, S., Ergüven, M., and Sungur, M. A. (2025). Gastrointestinal 
features of pediatric iga vasculitis and their association with renal complications: an 
observational study. Eur. J. Pediatr. 184 (5), 320. Epub 2025/05/01. doi:10.1007/s00431-
025-06157-x

Shen, L., Miao, L., and Xu, L. (2025). Risk factors associated with renal injury 
in patients initially diagnosed with IgA vasculitis. Front. Pediatr. 13, 1584768. Epub 
2025/07/29. doi:10.3389/fped.2025.1584768

Su, D., Yang, M., Wang, X., Li, G., and Hong, S. (2025). Risk factors for gastrointestinal 
bleeding in children with Henoch-Schönlein purpura. Front. Pediatr. 13, 1587535. Epub 
2025/04/23. doi:10.3389/fped.2025.1587535

Wang, J., He, L., Yan, W., Peng, X., He, L., Yang, D., et al. (2020). The role of 
hypertriglyceridemia and treatment patterns in the progression of IgA nephropathy 
with a high proportion of global glomerulosclerosis. Int. Urol. Nephrol. 52 (2), 325–335. 
Epub 2020/01/18. doi:10.1007/s11255-019-02371-3

Wei, H., Ci, D. Y. Z., Yi, X. L. M., and Bai, M. Y. J. (2023) “Risk factors 
associated with different types of Henoch-Schönlein purpura in Tibetan 
patients at high altitude,”Beijing Da Xue Xue Bao Yi Xue Ban. Beijing: Peking 
University, 55, 923–928. Epub 2023/10/01. doi:10.19723/j.issn.1671-167X.
2023.05.022

Wu, J., He, L., Bai, L., Tan, L., and Hu, M. (2019). Apolipoprotein M serum levels 
correlate with IgA vasculitis and IgA vasculitis nephritis. Dis. Markers 2019, 1825849. 
Epub 2019/12/11. doi:10.1155/2019/1825849

Yang, Y., Shu, J., Mu, J., He, Q., Chen, F., Hu, Y., et al. (2022). Clinical analysis of 
99 children with Henoch-Schönlein purpura complicated with overt gastrointestinal 
bleeding. Clin. Rheumatol. 41 (12), 3783–3790. Epub 2022/08/08. doi:10.1007/s10067-
022-06323-8

Yang, X., Lu, R., Liu, Q., Zhang, J., Yan, H., and Lu, H. (2024). Analysis of 
the influencing factors of abdominal Henoch-Schonlein purpura in children with 
gastrointestinal bleeding and the clinical value of PLR. Am. J. Transl. Res. 16 (8), 
3867–3874. Epub 2024/08/15. doi:10.62347/NNRB3322

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2025.1630807
https://www.frontiersin.org/articles/10.3389/fphys.2025.1630807/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2025.1630807/full#supplementary-material
https://doi.org/10.1147/JRD.2019.2942287
https://doi.org/10.3390/children9091394
https://doi.org/10.3390/jcm13216621
https://doi.org/10.1186/s12889-025-21658-y
https://doi.org/10.7717/peerj.18175
https://doi.org/10.1136/bmj.q902
https://doi.org/10.1186/s12911-023-02378-y
https://doi.org/10.2147/JMDH.S499808
https://doi.org/10.18043/001c.120562
https://doi.org/10.1038/s41586-024-08328-6
https://doi.org/10.1007/s41669-023-00415-0
https://doi.org/10.3389/fped.2024.1459394
https://doi.org/10.3389/fped.2023.1194214
https://doi.org/10.1097/MD.0000000000038321
https://doi.org/10.1002/alz.12948
https://doi.org/10.1111/1756-185X.14956
https://doi.org/10.1111/1756-185X.14956
https://doi.org/10.1097/MOP.0000000000001120
https://doi.org/10.1093/rheumatology/kez041
https://doi.org/10.12659/MSM.943912
https://doi.org/10.1007/s00431-025-06157-x
https://doi.org/10.1007/s00431-025-06157-x
https://doi.org/10.3389/fped.2025.1584768
https://doi.org/10.3389/fped.2025.1587535
https://doi.org/10.1007/s11255-019-02371-3
https://doi.org/10.19723/j.issn.1671-167X.2023.05.022
https://doi.org/10.19723/j.issn.1671-167X.2023.05.022
https://doi.org/10.1155/2019/1825849
https://doi.org/10.1007/s10067-022-06323-8
https://doi.org/10.1007/s10067-022-06323-8
https://doi.org/10.62347/NNRB3322
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

	Introduction
	Methods
	Study population
	Database
	Approaching the issue of missing data
	Statistical analyses
	Development and validation of predictive models
	Tools for interpreting machine learning

	Results
	Clinical characteristics
	Machine learning model performance
	Area under the multi-class ROC curve
	The transformer model interpretation with kernel SHAP methods

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

