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Objective: This study aimed to investigate the dynamic relationship between 
chest temperature entropy, physiological load indicators, and excess post-
exercise oxygen consumption (EPOC) during incremental cycling exercise using 
high-sampling-rate infrared thermography (IRT).
Methods: Twenty-four healthy young male participants (23.7 ± 3.3 years; 178.6 ± 
9.8 cm; 78.5 ± 6.4 kg; 237.8 ± 48.7 min/week training duration; maximal oxygen 
uptake 44.06 ± 5.9 ml/kg/min; maximal power output 263.8 ± 27.4 W) performed 
an incremental cycling test starting at 60 W with workload increases of 30 W 
every 2 minutes until exhaustion. Chest thermography, oxygen consumption 
(VO₂), blood lactate, and external load were simultaneously measured, and 
entropy was used to quantify the spatial complexity of temperature distribution.
Results: Significant non-linear positive correlations were found between 
standardized entropy increase and VO₂ (R² = 0.809), blood lactate (R² = 0.719), 
and external load (R² = 0.841), while individual-level analyses confirmed strong 
associations with VO₂ (r = 0.874–0.977), lactate (r = 0.692–0.989), and external 
load (r = 0.889–0.986) (all p < 0.05). Hierarchical clustering identified three 
clusters corresponding to low, moderate, and high metabolic load states. During 
recovery, entropy was significantly associated with EPOC (R² = 0.151), though 
substantial inter-individual variation was observed (r = –0.288 to 0.907).
Conclusion: Chest temperature entropy dynamically reflects exercise-induced 
metabolic changes and partially explains recovery processes, highlighting 
its potential as a novel, non-invasive marker for monitoring exercise load 
and recovery.

KEYWORDS

thermal imaging, entropy analysis, incremental exercise protocol, oxygen consumption, 
blood lactate response 

 1 Introduction

Training Load is the quantification of training stimulus, and through systematic and 
periodic application of load, it induces acute metabolic regulation, neural activation, 
short-term physiological stress, and long-term functional adaptation (muscle hypertrophy,
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enhanced cardiovascular function), leading to the systematic 
improvement of athletic performance (Bourdon et al., 2017; 
Halson, 2014; Lu et al., 2024). Modern load monitoring systems 
assess both external and internal loads to construct a mapping 
relationship between training stimulus and physiological responses 
(Im et al., 2019). External load monitoring relies on wearable 
devices such as GPS and accelerometers, to quantify training volume 
(duration, distance, power) and intensity (speed, acceleration) 
through physical parameters (Borresen and Lambert, 2009). Power 
meters quantify mechanical work output as an objective indicator 
of external load, providing valuable information for monitoring 
training adaptation and preventing non-functional overreaching 
(Halson, 2014; Sitko et al., 2020). Internal load monitoring, on the 
other hand, uses multidimensional data such as blood biomarkers 
related to creatine kinase, testosterone/cortisol ratio, heart rate 
variability, and subjective fatigue scales to understand the body’s 
metabolic state and recovery progress (Halson, 2014).

In practical application, external load monitoring requires 
the use of sensor devices, which may interfere with the athlete’s 
freedom of movement. While the gas metabolic measurement 
system, considered the gold standard for aerobic metabolism (Poole 
and Jones, 2017), offers high reliability, it is limited by the cost of 
equipment and restricted application scenarios (Shei et al., 2022). 
Blood lactate threshold testing, though sensitive to identifying 
anaerobic thresholds, faces challenges with low time resolution 
due to discrete sampling and invasive procedures, potentially 
triggering cortisol stress responses (Faude et al., 2009). Although 
traditional monitoring technologies are well-established in sports 
science practice, their invasiveness, high costs, and the lack of 
localized physiological data may limit their application in dynamic, 
continuous, and individualized load monitoring.

Infrared thermography (IRT) has emerged as a new tool in 
sports science research due to its non-invasive nature, mobility, and 
high spatial-temporal resolution (Costello et al., 2013). IRT captures 
infrared radiation from the body surface, generating temperature 
distribution images, and associates changes in signal intensity 
with muscle micro-damage and local metabolic rate responses 
during exercise (Masur et al., 2024). Recent studies have shown 
that IRT effectively captures local temperature changes induced 
by exercise to detect muscle activity, and the dynamic changes in 
skin temperature during exercise have become a well-established 
method to study the relationship with exercise load in sports 
science (Moreira et al., 2017). Research indicates that during 
incremental cycling tests, the maximum temperature of the bilateral 
thighs decreases significantly due to vasoconstriction triggered by 
increased metabolic demand, while temperature rises during the 
recovery period (Ludwig et al., 2016). This phenomenon is likely 
directly related to energy metabolism and blood flow distribution 
to the skeletal muscles. A similar cooling trend is also evident 
in resistance training, where the skin temperature (Tsk) in six 
regions of interest in the lower limbs decreases to varying degrees 
following 70% 1RM resistance exercise, and the temperature changes 
in the thighs and knees are negatively correlated with sympathetic 
nervous system activation (Sillero-Quintana et al., 2022). In aerobic 
load experiments, skin temperature shows a moderate positive 
correlation with maximal aerobic capacity (r = 0.6), and a stronger 
negative correlation with lactate levels (r = −0.7), supporting its 
potential as a metabolic load quantification indicator and dynamic 

monitoring tool for exercise load (Akimov et al., 2010). Under 
specific exercise modes, local skin temperature changes reflect 
muscle activation patterns and adjustments in blood flow dynamics. 
The Perpetuini team, through simultaneous collection of surface 
electromyography (sEMG) signals and infrared thermography data 
during squat-to-fatigue exercises in ten healthy participants, found 
significant positive correlations between the temperature features 
extracted using an improved Gaussian regression model (in the 
time domain, frequency domain, and non-linear features) and the 
average rectified value and median frequency of sEMG signals. In a 
study assessing thermal asymmetry in the body surface temperature 
distribution of boxers, the temperature of the posterior abdominal 
and lumbar regions was found to be 0.5 °C and 0.4 °C higher, 
respectively, compared to the anterior side, while the temperature 
of the anterior calf and fist joints was higher by 0.4 ° C and 
0.3 °C, respectively (del Estal et al., 2017). This research suggests 
that the asymmetry in body surface temperature may be related 
to the athletes’ movement patterns and specific muscle activation 
during training and competition. Additionally, a study analyzing Tsk 
changes in male endurance runners with high and moderate aerobic 
capacity during a progressive maximal load test found that the high 
aerobic capacity group had significantly higher Tsk at baseline, 60%, 
and 70% of maximal load compared to the moderate aerobic capacity 
group. Peak Tsk was positively correlated with variables such as age, 
body fat percentage, muscle mass, VO2peak, maximum speed, heart 
rate, and ventilation (Galan-Carracedo et al., 2019).

Current research on skin temperature feature extraction primarily 
focuses on traditional parameters such as average temperature, 
extreme values, and temperature difference (Perpetuini et al., 2021), 
while entropy, as a measure of the complexity of temperature 
distribution, has not been fully explored. Entropy quantifies the 
average information content of an event relative to the probability 
distribution of a random variable, and in infrared thermography it 
reflects the degree of spatial heterogeneity within a region of interest 
(ROI) (Verderber et al., 2024). During incremental cycling exercise, 
chest temperature entropy has been observed to increase progressively 
with exercise intensity and to show a stronger correlation with 
pulmonary ventilation than mean temperature measures (Bini et al., 
2011). Further studies have confirmed significant positive correlations 
between chest temperature entropy and both external power output 
and oxygen uptake during incremental load, highlighting its sensitivity 
to subtle spatial variations in skin temperature and its ability to 
capture complex thermal patterns that are not discernible through 
conventional temperature metrics (Verderber et al., 2024; Hu et al., 
2025). One experimental study investigated the effect of local cooling 
on skin blood flow during hyperemia, using multiscale entropy to 
assess the efficacy of local cooling in treating reactive hyperemia and 
the degree of skin temperature ischemia in individuals with spinal 
cord injuries (Liao et al., 2019). Another study aimed to determine 
whether changes in skin temperature characteristics could accurately 
predict the risk of pressure ulcers, observing the entropy and spectral 
indices of the skin temperature in participants. Although there were 
no significant differences in the probability of ulcer formation across 
the multiscale skin temperature measurements, the study provided a 
new tool for evaluating the regulation of skin temperature and, from 
another perspective, assessing the distribution of skin temperature and 
its relationship with metabolic information (Rapp et al., 2009). 
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The dynamic relationship between entropy in body temperature 
distribution and oxygen consumption (VO2) has not yet been 
elucidated in current research. Although studies have shown a strong 
correlation between chest temperature entropy and pulmonary 
ventilation (Bogomilsky et al., 2022), there is insufficient research 
on the quantitative relationship between blood lactate threshold 
and thermal dysregulation. Additionally, the thermal recovery 
characteristics during the excess post-exercise oxygen consumption 
(EPOC) phase remain underexplored, and the variability in the 
relationship between entropy and physiological indicators across 
individuals is not yet clear. Furthermore, there is a lack of 
synchronized validation data for temperature entropy in regions 
of interest from thermal imaging and physiological parameters 
such as VO2 and blood lactate. Therefore, this study utilizes 
an incremental cycling exercise experiment, employing IRT to 
collect chest temperature entropy data during exercise, along with 
simultaneous measurements of VO2, power output, and blood 
lactate. The study analyzes the relationship between temperature 
entropy and changes in both internal and external load during 
the incremental power phase and extends EPOC monitoring 
for 10 min post-exercise. By analyzing the entropy distribution 
of infrared thermography–derived skin temperature, this study 
quantifies metabolic and exercise load without interfering with 
movement, providing a valuable supplement to existing load 
monitoring methods. We hypothesize that chest temperature 
entropy derived from infrared thermography is positively associated 
with both internal and external loads during incremental cycling, 
and that it can effectively discriminate metabolic load states and 
characterize recovery dynamics during the EPOC phase. 

2 Methods

2.1 Participants

A total of 24 young male participants were recruited from Beijing 
Sport University, all meeting the inclusion criteria: no chronic 
diseases, no lower limb injuries in the past 6 months, and regular 
participation in physical exercise. The participants had an average 
age of 23.7 ± 3.3 years, height of 178.54 ± 9.8 cm, weight of 78.5 ± 
6.4 kg, weekly exercise duration of 237.8 ± 48.7 min/week, engaging 
in activities such as cycling, running, and resistance training, 
VO2max of 44.1 ± 5.9 mL/kg/min, and maximal power output of 
263.8 ± 27.4 W. This study was conducted in accordance with the 
Institutional Review Board of Beijing Sport University (Approval 
No. 2024303H) and was approved by the Ethics Committee. All 
participants received detailed information regarding the study’s 
procedures and potential risks, and informed consent was obtained 
from each participant.

A power analysis indicated that with n = 24, the study had >80% 
power (α = 0.05, two-tailed) to detect correlations of ρ ≥ 0.55, which 
covered the majority of the observed associations. 

2.2 Thermal imaging

Infrared thermography images during exercise were captured 
using the IRay AT200 F infrared thermal imaging device (IRay 

Technology Co., CN). The camera lens has a focal length of 3.2 mm, 
a resolution of 256 × 192, image frequency of 25Hz/30Hz, thermal 
sensitivity of 60mk, and a wavelength range of 8–14 μm. The 
temperature range is from 0 °C to 60 °C, with an accuracy of ±0.5 °C, 
and the imaging distance is between 0.5m and 3 m. The field of view 
is 56 ° × 42.2 ° and the emissivity is 0.98. The thermal image captured 
corresponds to the current frame collected by the temperature 
measurement thermal imager. During the tests, the laboratory 
temperature was controlled at 23 °C with a humidity level of 52% 
± 2.1% to optimize the performance of the infrared thermography 
device. Indoor airflow was minimized to reduce the environmental 
impact on skin temperature. Participants were instructed to expose 
their torso skin throughout the cycling session while maintaining 
an upright sitting posture. The imaging area was the chest, and the 
infrared thermal imager was fixed on a stable support (80 cm from 
the body), with the temperature sensor angled toward the specific 
region of interest (ROI). After the device was powered on, it was 
left to stabilize for 10 min to complete thermal adaptation. During 
cycling, thermal images were captured every 6 s. In the pre-exercise 
resting phase, images were collected every minute, and in the
10-min recovery phase, images were captured every 6 s. To eliminate 
the influence of motion artifacts in the thermal images, the average 
entropy for the last minute of each workload phase and for every 
minute of the recovery phase was extracted as the entropy feature 
for statistical analysis. A total of at least 9,000 thermal images were 
collected throughout the experiment. 

2.3 Exercise protocol

Prior to testing, the MONARK 893E ergometer was individually 
adjusted for each participant, including saddle height, fore-
aft position, and handlebar reach, based on anthropometric 
measurements and the participant’s preferred cycling posture. 
Saddle height was set according to leg length to ensure an 
appropriate knee angle at full extension. All participants used 
the original saddle supplied with the MONARK 893E ergometer 
to maintain consistency, as saddle design and positioning can 
substantially influence rider comfort and cycling performance 
(Bini et al., 2011; Vicari et al., 2023). Participants performed 
a graded cycling protocol using a MONARK 893E ergometer, 
beginning with 3 min of seated rest without prior warm-up. The test 
began at a baseline workload of 60 W, followed by stepwise 30 W 
increments every 2 min until volitional exhaustion. Standardized 
verbal encouragement was provided at fixed intervals throughout 
the test to maintain participants’ motivation. Continuous heart 
rate monitoring was conducted using a Polar Verity Sense 
arm-worn sensor (Polar Verity Sense, Finland, Polar Electro 
Oy). Oxygen uptake (VO2) and pulmonary ventilation were 
measured in real time using the METALYZER®   3B system 
(Cortex Biophysik GmbH, Germany) and analyzed with MetaSoft 
Studio software.

During the final 30 s of each workload phase, capillary blood 
samples were collected from the right medial fingertip using 
sterile disposable lancets (BD Microtainer, BD, United States). 
Blood lactate concentrations were measured immediately using 
the Lactate Scout 4 analyzer (EKF Diagnostics, Cardiff, United 
Kingdom), which requires 0.2 μL of whole blood and provides 
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results within 12 s using pre-calibrated single-use biosensors (LS4-
SM01) (Figure 1).

2.4 Feature extraction

Thermal imaging data were securely transmitted via wireless 
protocols to a dedicated secure server with encrypted storage 
protocols. Following comprehensive data acquisition, a standardized 
post-processing pipeline was implemented: manual segmentation 
of thermal images into predefined anatomical regions of interest 
(ROIs) was conducted based on standardized anatomical landmarks 
and spatial calibration protocols, followed by exportation of two-
dimensional temperature distribution matrices for each ROI. To 
ensure spatial consistency, the ROI boundaries for matrix extraction 
were maintained across all participants using predefined coordinate 
alignment algorithms.

A multidimensional thermal response dataset was constructed 
by aggregating temperature matrices across all participants 
under varying loading conditions, subsequently subjected to 
dimensionality reduction via feature extraction. Each ROI-
specific temperature matrix was processed within the statistical 
computing environment (R version 4.2.1; R Foundation for 
Statistical Computing, Vienna, Austria) under the following 
protocol: raw temperature values were quantized to a resolution 
of 0.1 °C to mitigate instrumentation noise and normalized within 
each ROI by subtracting the minimum temperature value. The 

probability distribution required for entropy computation was 
then derived from the frequency distribution of these normalized 
temperature values. Shannon entropy was directly calculated 
without applying additional filtering or smoothing, in order to 
preserve subtle local thermal variations that might otherwise be 
obscured. Entropy-based features were extracted using the Shannon 
entropy formula (Bogomilsky et al., 2022):

H(x) = −
n

∑
k=1

p(xk) log2 p(xk) (1)

The entropy value for each ROI was calculated using Equation 1, 
where p (xk) denotes the probability of the k -th temperature value. 

2.5 Statistical analysis

In this study, all entropy calculations and temperature-related 
mean analyses were performed using R software (version 4.2.1, 
R Development Core Team, Vienna, Austria). Data visualization 
and statistical analyses were conducted using GraphPad Prism 
(version 8.0, San Diego, CA, United States) and MATLAB 2022a 
(MathWorks, Natick, MA, United States). Data are presented 
as means (M) and standard deviations (SD). To evaluate the 
relationships among temperature entropy, oxygen uptake (VO2), 
blood lactate, and exercise load (power), Spearman’s rank correlation 
analysis was exclusively employed, as some variables were not 

FIGURE 1
Test process for measuring incremental cycling
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FIGURE 2
Relationships between normalized entropy increase% and VO2 for all 
data points in the group.

normally distributed at the individual level. Prior to analysis, 
all entropy, VO2, blood lactate, and exercise load data were 
standardized using Z-scores.

Subsequently, hierarchical clustering was applied to the 
standardized data, with the optimal cluster number determined as 
3 based on the highest silhouette score. Statistical significance was 
determined based on p-values, with differences considered significant 
at p < 0.05. In addition, we established mathematical equations 
between standardized entropy and oxygen uptake, as well as between 
standardized entropy and blood lactate through polynomial fitting, in 
order to quantify the relationships among these variables. 

3 Results

3.1 Correlation analysis between chest 
temperature entropy and oxygen uptake

This study performed a polynomial fitting between normalized 
entropy increase percentage and normalized Vo2, revealing a 
significant positive correlation between the two variables (R2 = 
0.8090, p < 0.001). Specifically, the increase in entropy is associated 
with an elevation in blood lactate levels, following a quadratic 
relationship represented by the equation (y = 0.2694x2 + 0.4645x 
+ 0.1494) (Figure 2).

The individual correlation analysis indicates a significant 
positive correlation between the entropy increase percentage and 
VO2 during incremental cycling. The correlation coefficients (r) 
for all individuals ranged from (r = 0.874) to (r = 0.977), with all 
correlations being statistically significant (p < 0.05) (Figure 3).

3.2 Correlation analysis between chest 
temperature entropy and blood lactate

This study performed a polynomial fitting analysis between 
normalized entropy increase percentage and normalized blood 

lactate, revealing a significant positive correlation between the two 
variables (R2 = 0.7186, p < 0.001). The fitting equation is (y = 
0.8081x2 - 0.0602x + 0.1224), indicating a strong correlation between 
entropy increase and blood lactate (Figure 4).

The individual correlation analysis shows a significant positive 
relationship between entropy increase percentage and lactate levels 
across all subjects. The correlation coefficients (r) range from 
0.692 to 0.989, with all values achieving statistical significance (p 
< 0.05) (Figure 5).

3.3 Correlation analysis of chest 
temperature entropy and external load

The polynomial fitting analysis between normalized entropy 
increase percentage and normalized external load reveals a 
significant positive correlation (R2 = 0.8412, p < 0.001). The 
fitting equation is (y = 0.1605x2 + 6.6319x + 0.1242), indicating 
a strong quadratic relationship between entropy increase and 
external load. As the entropy increase percentage rises, the 
normalized external load also increases, demonstrating their robust 
association (Figure 6).

The individual correlation analysis indicates a strong positive 
relationship between entropy increase percentage and external load 
across all subjects. The correlation coefficients (r) range from 
0.889 to 0.986, with all values being statistically significant (p 
< 0.05) (Figure 7).

3.4 Correlation analysis of chest 
temperature entropy and EPOC

The correlation analysis between chest temperature entropy 
accumulation and EPOC demonstrated a significant positive 
association. Polynomial fitting analysis generated the quadratic 
model y = 0.1831x2 + 0.2845x–0.1648 (R2 = 0.1511, p < 
0.001), statistically validating the proportional relationship between 
entropy accumulation and EPOC magnitude (Figure 8).

The correlation analysis between chest temperature entropy 
accumulation and EPOC demonstrates variable relationships 
across individuals. Significant positive correlations were observed 
in several subjects, with the strongest correlations found in S4 
(r = 0.889, p < 0.001), S11 (r = 0.889, p < 0.001), and S16 
(r = 0.907, p < 0.001). Conversely, weaker or non-significant 
correlations were noted in other subjects, such as S1 (r = 
0.077, p = 0.832), S3 (r = −0.117, p = 0.732), and S17 (r = 
−0.288, p = 0.809). These findings suggest that the relationship 
between entropy accumulation and EPOC is not consistent 
across individuals, highlighting individual variability in this 
physiological response (Figure 9).

3.5 Three-dimensional cluster analysis 
based on chest temperature entropy, 
oxygen uptake and blood lactate

The hierarchical clustering analysis, based on Z-score 
standardized entropy increase percentage, blood lactate, and VO2, 
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FIGURE 3
Individual Correlation between entropy increase percentage and VO2 for 24 individuals.

FIGURE 4
Relationships between normalized entropy increase% and blood 
lactate for all data points in the group.

identifies three clusters. Cluster 1 shows low blood lactate, VO2, 
and negative entropy increase. Cluster 2 represents a moderate 
metabolic state with moderate blood lactate, VO2, and positive 
entropy increase. Cluster 3 reflects a high metabolic demand with 
high blood lactate, VO2, and entropy increase (Figure 10).

4 Disscusion

This study reveals the value of chest temperature entropy 
in monitoring metabolic responses during incremental exercise. 

By analyzing the multidimensional physiological responses of 24 
participants during incremental cycling, we established for the 
first time a quantitative relationship between the temperature 
entropy parameter and the energy metabolism system during 
and after incremental exercise. The findings show that the 
standardized percentage increase in chest temperature entropy 
has a significant non-linear positive correlation with VO2, blood 
lactate concentration, and external load. The primary aim was 
to evaluate the feasibility of infrared thermography–based chest 
temperature entropy analysis for assessing both internal and external 
exercise load, as well as characterizing recovery dynamics in 
the EPOC phase; the findings supported this hypothesis. Three-
dimensional hierarchical clustering analysis grouped blood lactate, 
oxygen uptake, and chest temperature entropy into three clusters, 
corresponding to low, moderate, and high metabolic load states. 
The relationship between temperature entropy and EPOC exhibited 
considerable individual heterogeneity.

The strong positive correlation between chest temperature 
entropy and oxygen uptake (VO2) suggests that an increase in 
metabolic demand is accompanied by a rise in the disorder of the 
thermodynamic system of body surface temperature. The increase 
in entropy serves as a quantitative description of the surface 
thermal radiation patterns of skin temperature during exercise. 
During exercise, external load increases muscle work intensity, 
requiring more oxygen consumption and heat production by the 
body. Metabolic heat is regulated through superficial vasodilation 
(Stone et al., 2025; Rosbrook et al., 2024). Research shows that 
metabolic heat production during endurance exercise can increase 
by 10–20 times compared to resting, and this increase can persist 
for several hours (Lim et al., 2008). These studies suggest that 
thermoregulation ability reflects muscle work and related metabolic 
information during exercise, and this study further demonstrates 
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FIGURE 5
Individual correlation between entropy increase percentage and lactate for 24 individuals.

FIGURE 6
Relationships between normalized entropy increase% and external load for all data points in the group.
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FIGURE 7
Individual correlation between entropy increase percentage and external load (watt) for 24 individuals.

FIGURE 8
Relationships between normalized entropy accumulation and external EPOC for all data points in the group.

that the entropy of body surface chest temperature is strongly 
positively correlated with oxygen uptake levels both overall and 
individually.

The difference between this study and previous research on 
skin temperature and blood lactate lies in the introduction of 
the concept of thermodynamic entropy. For the first time, this 

study verifies the strong correlation between blood lactate and 
chest entropy during exercise, further revealing the regulatory 
role of anaerobic metabolism in thermodynamics. Adamczyk 
et al. measured the static lower limb thermal imaging and 
corresponding lactate collection before and 30 min after completion 
of a vertical jump exercise in 16 untrained men. They found 
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FIGURE 9
Individual correlation between entropy accumulation and EPOC (L/min) for 24 individuals.

FIGURE 10
Three-dimensional hierarchical clustering of entropy increase percentage, blood lactate, and VO2 based on Z-score standardization.

a weak negative correlation between the two (r = −0.29) 
(Adamczyk et al., 2014). Although skin temperature and blood 
lactate in the quadriceps region were reported to be positively 
correlated (r = 0.69), the intermittent sprint pattern resulted 
in a temporal misalignment between temperature and lactate 

sampling, which may have confounded the thermal metabolic 
signals of exercise stress and recovery (Temfemo et al., 2011). 
Recent studies have shown a moderate positive correlation (r 
= 0.43–0.48) between lower limb skin temperature and blood 
lactate during incremental exercise in sprinters and endurance 
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athletes, which turns into a negative correlation during the 
recovery phase (r = −0.54∼-0.45). However, due to the low-
frequency measurement of a single region (sampling interval 
≥2 min during exercise, 5 min during recovery), the spatiotemporal 
regulatory mechanism of the interaction between the two 
remains unclear (Korman et al., 2024). This study fills the gap in 
previous research by synchronously collecting high-sampling-rate 
thermal imaging and blood lactate data, and directly verifies the 
strong correlation between chest temperature entropy and blood 
lactate concentration, as well as the existence of individual response 
differences.

This study demonstrates a strong correlation between chest 
temperature entropy and external load (watt) both at the overall and 
individual levels during incremental exercise, suggesting that the 
thermoregulation mechanism of the body may exhibit significant 
dynamic changes at different intensities of exercise. However, this 
study demonstrates the sensitivity of thermoregulation (entropy 
increase) in the chest region to both internal and external load 
increases. This region covers key respiratory muscles, including 
the heart, intercostal muscles, and external intercostal muscles 
(De Troyer et al., 2005), all of which increase metabolic activity 
during exercise, generating significant heat. Compared to the limbs, 
the chest has a thinner subcutaneous fat layer, which reduces 
thermal conductivity resistance, making it easier for deep tissue 
heat to be transferred to the skin surface (Rodríguez de Rivera et al., 
2022; Neves et al., 2015). The surface thermal radiation pattern 
during exercise may be regulated by multiple systems. It is 
believed that IRT captures the Psr, which reflects the regulation 
of body surface blood vessels during exercise. Sympathetic 
nervous system activation, driven by the sympathetic-adrenal axis, 
releases norepinephrine and neuropeptide Y, which mediate the 
constriction of skin arterioles via α-adrenergic receptors, thereby 
regulating cutaneous blood circulation (Ootsuka and Tanaka, 2015). 
Meanwhile, increased muscle metabolic heat leads to elevated 
venous blood temperature. When venous blood temperature 
exceeds the core temperature threshold, the hypothalamus activates 
the vasodilation system through cholinergic non-adrenergic 
pathways, promoting the expansion of subcutaneous blood vessel 
networks (Demachi et al., 2013). At this point, heat is transferred 
from deep tissues to the skin surface through superficial veins 
and perforator vessels, forming a branching radiation pattern of 
the vascular tree to enhance skin thermal convection efficiency 
(Demachi et al., 2013; Hillen et al., 2020). This radiation pattern 
reflects the compensatory mechanism of the body to maintain 
core temperature stability by enhancing superficial blood flow 
heat dissipation under critical thermal load conditions. This study 
quantitatively characterizes the dynamic heterogeneity of chest skin 
thermal radiation patterns through entropy analysis and provides 
evidence for their significant synchronous dynamic correlation 
with blood lactate concentration, external load, and oxygen uptake 
during incremental exercise, as well as the existence of individual 
differences.

EPOC refers to the physiological phenomenon where oxygen 
consumption remains elevated above resting levels after exercise 
(Gaesser and Brooks, 1984). EPOC magnitude and duration vary 
according to exercise intensity and modality, with intermittent 
exercise generally producing a greater and more prolonged effect 
compared to continuous aerobic exercise (LaForgia et al., 2006). 

EPOC at different exercise intensities helps assess an individual’s 
recovery capacity and adaptability to exercise load. This study 
further supports the relationship between chest temperature 
entropy and EPOC. The overall correlation is weak, likely because 
thermoregulation during exercise is primarily controlled by blood 
circulation and heat dissipation mechanisms (Moreira et al., 2017). 
In contrast, the oxygen consumed during EPOC is mainly used 
to restore internal balance disrupted during exercise, including 
processes such as replenishing ATP and phosphocreatine, lactate 
clearance, and muscle glycogen resynthesis (Panissa et al., 2021). 
Moreover, the recovery of skin temperature lags behind the 
recovery of the energy metabolism system. During the post-exercise 
period, peripheral vasodilation persists after muscle contraction 
ceases, partly due to reduced venous return and sustained dilation 
of cutaneous vessels, contributing to post-exercise hypotension 
(Seeley et al., 2021). This vasodilatory response is mediated in 
part by cholinergic active vasodilation, which increases skin blood 
flow to dissipate heat generated during exercise (Francisco et al., 
2023). In addition, nitric oxide released during recovery can 
directly relax cutaneous arterial smooth muscle, enhancing heat 
dissipation and potentially increasing local skin temperature in 
active muscle regions (Amato et al., 2025). These physiological 
processes may explain the observed elevation in chest temperature 
entropy during early recovery. Individual differences may be 
explained by the interaction of multiple factors, such as training 
experience, body composition, and local tissue metabolic states 
(Formenti et al., 2013; Priego Quesada et al., 2015; Weigert et al., 
2018). Post-exercise metabolic rate may be related to cardiovascular 
fitness, mitochondrial and cellular remodeling, and autonomic 
nervous regulation efficiency (Greer et al., 2021). Although 
there is considerable individual heterogeneity and nonlinear 
associations between post-exercise thermal metabolic parameters 
and physiological recovery indicators, dynamic data from skin 
temperature fields obtained using infrared thermography, combined 
with entropy analysis of nonlinear dynamic features, can quantify 
the post-exercise thermal balance reconstruction process. This 
provides new biophysical markers for establishing a non-invasive, 
low-cost recovery monitoring system.

Based on the hierarchical clustering analysis results of 
incremental exhaustion exercise, chest temperature entropy 
demonstrates distinct stratified characteristics at different exercise 
intensities, effectively reflecting changes in metabolic states. The 
clustering analysis shows that chest temperature entropy has a 
good classification effect with the two exercise intensity markers, 
blood lactate and VO2. The three clusters correspond to low, 
moderate, and high physiological metabolic states at different 
exercise intensities. Chest temperature entropy can be used as an 
effective indicator for assessing exercise intensity, corresponding 
well with traditional physiological markers such as blood lactate and 
VO2. Compared to previous studies that used three-dimensional 
K-means clustering of VO2, entropy increase, and power into 
three clusters (Hu et al., 2025), this study further demonstrates 
the relationship between chest entropy increase and changes 
in internal load through hierarchical clustering, revealing the 
adaptability of using chest temperature entropy in exercise load 
assessment.

The strength of this study lies in the use of high-temporal-
resolution infrared thermography to synchronously collect chest 
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temperature entropy together with key exercise load monitoring 
indicators such as oxygen uptake, blood lactate concentration, and 
external power output during incremental exercise and recovery. 
This approach enabled a quantitative assessment of the association 
between thermoregulatory processes and metabolic responses, and 
the study provides the first empirical evidence of significant dynamic 
correlations between chest temperature entropy and traditional 
load monitoring indicators, supporting its potential feasibility as 
an exercise load assessment tool. Although this study demonstrates 
the potential of chest temperature entropy in monitoring metabolic 
responses during incremental exercise, it still has several limitations. 
Due to the need to expose the chest region for thermal imaging data 
collection, and for privacy protection and ethical considerations, 
this study included only 24 healthy young male participants. This 
design avoids the confounding effect of gender on temperature 
entropy but limits the generalizability of the findings to women 
or other age groups. Future work will explore ROIs that do 
not require direct chest exposure, enabling the safe inclusion of 
female participants and extending the applicability of this method 
to more diverse populations. Additionally, EPOC data were only 
collected during the first 10 min post-exercise, while excess post-
exercise oxygen consumption can persist for several hours after 
high-intensity exercise. The lack of continued monitoring during 
the later recovery phase may have led to an underestimation of 
the dynamic correlation strength between temperature entropy 
and EPOC. Furthermore, due to the invasive nature of blood 
lactate monitoring, lactate concentration data were not collected 
during the recovery phase, preventing the exploration of the 
relationship between lactate metabolic recovery and changes in chest 
temperature entropy. 

5 Perspective

The present findings suggest that infrared thermography–based 
chest temperature entropy analysis holds potential as a tool 
for monitoring exercise load. This method is non-invasive and 
relatively low-cost, enabling data acquisition without interfering 
with the activity itself and minimizing additional physiological or 
psychological stress on participants. As a complement to existing 
load monitoring systems, the temperature entropy parameter 
may offer an additional dimension of information related to 
thermoregulation and metabolic dynamics. Because this technique 
does not require wearable sensors, it could, in principle, be 
applied in open environments, in simultaneous monitoring 
of multiple individuals, and under non-laboratory conditions, 
offering practical applicability. Future studies with larger sample 
sizes and diverse activity contexts, combined with automated 
image extraction and computation techniques, are warranted 
to validate its stability and enhance its efficiency for real-world 
monitoring. 

6 Conclusion

This study, using high-sampling-rate infrared thermography and 
simultaneous measurement of internal and external loads, is, to our 
knowledge, the first to reveal the quantitative relationship between 

chest temperature entropy and VO2, blood lactate concentration, 
and external load during exercise. It was found that the percentage 
increase in chest temperature entropy is significantly positively 
correlated in a non-linear fashion with these indicators, as 
well as positively correlated across individuals. Three-dimensional 
hierarchical clustering analysis shows that chest temperature 
entropy effectively distinguishes between low, moderate, and high 
metabolic load states and provides a good classification performance 
when compared to traditional physiological markers such as blood 
lactate and VO2. Furthermore, the relationship between chest 
temperature entropy and EPOC displays considerable individual 
heterogeneity. This study provides a quantitative surface thermal 
radiation pattern analysis through high-sampling-rate infrared 
thermography, offering a new biophysical marker for non-invasive 
monitoring of exercise load and recovery processes.
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