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Objective: Systematically evaluate the acute effects of anodal transcranial
direct current stimulation (a-tDCS) on athletes’ sport-specific performance
and identify the optimal stimulation parameters and target brain regions for
enhancing sport-specific performance.

Methods: Search PubMed, Web of Science, CNKI, Wanfang, and other databases
to include randomized controlled trials studying the effects of anodal tDCS
on sports performance in healthy athletes. Use a random-effects model to
calculate the standardized mean difference (SMD), assess heterogeneity, and
evaluate influencing factors. Additionally, conduct three subgroup analyses: (1)
based on stimulated brain areas (M1, PFC, TC, CB); (2) based on different sports
performance domains (endurance, strength, precision skill tasks, competitive-
collaborative skills) for cluster analysis; (3) tDCS protocol parameters (current
intensity and stimulation duration).

Results: This study included 31 articles, covering 473 athletes. The meta-analysis
results showed that the acute effect of a-tDCS significantly improved athletes’
specific sports performance, with a moderate effect size (SMD = 0.39, 95%
Cl = 0.23-0.54, p < 0.001). Subgroup analysis revealed that M1 stimulation
had the most consistent effect (SMD = 0.32, 95% CI = 0.15-0.48, p < 0.001),
followed by PFC stimulation (SMD = 0.39, 95% Cl = 0.03-0.76, p = 0.03). a-tDCS
significantly enhanced athletes’ endurance performance (SMD = 0.46, 95% ClI
= 0.20-0.72, p < 0.001) and competitive-collaborative skill tasks (SMD = 0.45,
95% Cl = 0.10-0.80, p = 0.01). Analysis of stimulation parameters indicated
that a moderate current intensity of 1.6-2.0 mA (SMD = 0.38, p < 0.001) and
a stimulation duration of 16-20 min (SMD = 045, p < 0.001) were the optimal
protocols for enhancing sports performance.

Conclusion: The acute effects of a-tDCS significantly enhance athletes’
endurance and competitive-collaborative skill performance, particularly
when targeting the M1 and PFC regions. The optimal stimulation protocol
involves a moderate current intensity (1.6—-2.0 mA) and duration (16—20 min).
Future research should further optimize stimulation parameters and
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1 Introduction

With the integration of neuroscience and sports science,
transcranial direct current stimulation (tDCS), due to its simplicity,
low cost, and high safety, has become one of the most widely studied
methods among non-invasive brain stimulation (NIBS) techniques
in high-level athletic training research (Bhattacharya et al., 2022;
Chang et al, 2022; Hazime et al, 2017). tDCS involves the
application of a low-intensity direct current (typically 1-2 mA)
via scalp electrodes to modulate cortical excitability in targeted
brain regions, thereby influencing sensorimotor pathways and
behavioral outputs (Nitsche and Paulus, 2000). Although the precise
neurophysiological mechanisms underlying the effects of tDCS
remain incompletely understood, several prevailing hypotheses
suggest that alterations in cortical excitability (Notturno et al.,
2014), enhancement of synaptic plasticity (Stagg and Nitsche, 2011),
modulation of regional cerebral blood flow (Jones et al., 2015;
Paquette et al., 2011; Wachter et al, 2011), and reorganization
of functional brain network connectivity (Meinzer et al.,, 2012)
are involved.

Rather than relying on a single area, motor activity engages
a broad network of brain regions known as the motor neural
network. This study focuses on the effects of a-tDCS on four
key brain areas: the primary motor cortex (M1), dorsolateral
prefrontal cortex (PFC), temporal/temporoparietal cortex (TC),
and cerebellum (CB). tDCS can be applied using either
anodal (a-tDCS) or cathodal (c-tDCS) stimulation, with the
former typically enhancing cortical excitability by depolarizing
neurons, and the latter reducing excitability via hyperpolarization
(Jamil et al, 2017). However, some studies have reported
reversed effects, where a-tDCS decreases excitability and c-
tDCS increases it (Batsikadze et al., 2013; Hassanzahraee et al.,
2020a; 2020Db), suggesting that outcomes depend on electrode
placement, individual brain anatomy, and stimulation parameters.
Generally, a-tDCS lowers the action potential threshold and
increases motor-evoked potentials (MEPs), thus improving motor
performance, while c-tDCS can inhibit overly active neural
circuits and is sometimes used in treatments such as epilepsy
(Sudbrack-Oliveira et al., 2021).

The selection of sport-specific tasks is critical for evaluating
the effects of tDCS. In contrast to abstract tasks, such as the
sequence reaction-time task (Ehsani et al., 2016) sport-specific tasks
offer higher ecological validity, thereby providing a more accurate
reflection of actual performance in competitive environments.
Sport-specific tasks facilitate the activation of higher potential
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through the motor transfer effect (Abernethy et al, 2005),
capitalizing on the neuromuscular adaptations acquired through an
athlete’s long-term training. Based on the theoretical framework of
sports science and the neurophysiological mechanisms of tDCS,
the study categorized sports performance into four subgroups:
endurance, strength, competitive-collaborative skills, and precision
skills. Endurance and strength reflect physical demands, involving
cardiorespiratory function and explosive power output, respectively,
primarily regulated by M1 (motor control) and dIPFC (fatigue
tolerance). Competitive-collaborative skills and precision skills
involve cognitive and fine motor functions, relying on the
autonomic and coordination functions of M1, dIPFC, TC, and CB
(Bompa and Buzzichelli, 2019).

Over the past decade, a substantial number of observational
studies have emerged globally. However, the findings have been
inconsistent. Existing literature reports that tDCS can improve
cognitive and motor functions in healthy populations (Angius et al.,
2018a; Lu et al, 2021; Teymoori et al, 2023; Zhiqgiang et al.,
2023) and clinical patients (Bornheim et al., 2022; Gonzalez-
Zamorano et al., 2024; Lee et al, 2019; Wiegand et al., 2019).
In athletes, tDCS has shown both positive and negative effects.
Several studies have reported that anodal tDCS (a-tDCS) can
enhance athletic performance. For instance, Okano et al. (2015)
found that M1 stimulation improved peak power output in cyclists,
and Pollastri et al. (2021) confirmed that dIPFC stimulation
enhanced performance in a 15 km time trial Chen et al.,, (2021)
and Zhang et al. (2024) reported that M1 stimulation improved
basketball shooting accuracy and jump height, respectively.
However, Lattari et al. (2020) found that M1 stimulation had no
significant effect on strength performance, and Mesquita et al.
(2020) reported that bilateral M1 stimulation even reduced
kicking frequency in tackwondo athletes. These inconsistencies

may arise from differences in inter-cortical competitive
inhibition, stimulation target areas, stimulation parameters,
and task types.

Previous meta-analyses on tDCS primarily focused
on the general population (Machado et al, 2019a);
Winker et al, 2024) or single outcome measures

(Lattari et al, 2018; Shyamali Kaushalya et al., 2022). This
study systematically analyzes the acute effects of a-tDCS on
athletes’ sport-specific performance by integrating Chinese
and English literature, conducting subgroup analyses of brain
regions, performance domains, and stimulation parameters,
aiming to identify optimal protocols and provide a scientific basis
for optimizing athletic training.
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2 Research methods
2.1 Registration

This study follows the PRISMA guidelines to ensure
comprehensive and transparent reporting of the methods
and results (Moher et al., 2009). The study protocol has been
registered in the PROSPERO database (Registration number:
CRD420251031580).

2.2 Literature search strategy

This study searched six Chinese and English databases, including
PubMed, Web of Science, CNKI, and Wanfang. English search terms
included: (“tDCS” OR “transcranial Direct Current Stimulation”)
AND (“athlete” OR “player” OR “sport” OR “athletic performance”
OR “physical performance”). In Chinese, the search terms were:
(“Transcranial Direct Current Stimulation/Z2 /5 LI HL I
OR “DCS” AND (“Motor Skills/i&5)$;f8” OR “Motor
Performance/iIZZ|# B> OR “Motor Learning/iZZ))5%>]” OR
“Strength and Conditioning/{4fi£”) TS=(“Athletes/izZJ /" OR
“Sports Training/#4 & Y1 Z5” OR “Competitive Sports/ S&H7123))).
Search terms in both languages were adjusted for linguistic and
cultural differences in academic terminology while maintaining
semantic equivalence to ensure comprehensive coverage of relevant
studies. To reduce cultural or regional study selection bias, the
search strategy included global (English) and regional (Chinese)
databases, supplemented by manual searches of references from
included studies to identify additional relevant articles. The search
strategy was developed by Mi Jiang (M]) and Yang Liu (YL) and
reviewed and optimized by Xu Gao (XG) to ensure consistency and
comprehensiveness across databases.

2.3 Inclusion and exclusion criteria

The literature inclusion criteria were established based on the
PICOS principle. The criteria for study inclusion were defined
as follows. Population: Athletes, defined as healthy individuals
regularly engaged in competitive or professional sports training,
with no restrictions on training level and free from injuries
or diseases; no limitations on gender or ethnicity. Intervention:
anodal transcranial direct current stimulation, high-definition
transcranial direct current stimulation (HD-tDCS), or Halo Sport
headset. Comparison: sham stimulation or no stimulation control
group. Outcomes: Comparison: Sham stimulation or no-stimulation
control group. Outcomes: Sport-specific task performance, such
as time to exhaustion (s) for endurance tasks, jump height (cm)
for strength tasks, shooting accuracy (%) for precision skills,
or serve speed (m/s) for competitive-collaborative skills. Study
Design: Randomized controlled trials (RCTs) with crossover or
parallel designs.

We excluded studies involving participants with diseases,
rehabilitation populations, or animal studies; studies not reporting
outcomes related to motor skills or physical performance; qualitative
descriptions, conference abstracts, or reviews lacking data support;
studies with incomplete or unextractable raw data; and conference
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abstracts, book chapters, or short articles in languages other than
English or Chinese.

2.4 Literature screening process

The retrieved citation information was imported into EndNote
21 software for de-duplication. Data management was carried out
using Excel, which included extracting key bibliographic details
(including title, first author, journal name, publication year, and
participant characteristics). The eligibility of studies was assessed
by two independent reviewers, Xu Gao (XG) and Yang Liu (YL),
in a standardized manner from 18 April 2025, to 20 April 2025.
Following the previously defined inclusion criteria, all articles
identified using the search strategy were screened based on their
titles and/or abstracts. If sufficient information was not available to
assess eligibility, the full-text version was obtained. Full texts of all
potentially relevant studies were reviewed by XG and YL to ensure
compliance with the inclusion criteria. Discrepancies between XG
and YL were resolved through discussion, with Mi Jiang (M]) acting
as the arbiter to reach a final consensus. If any of the included articles
lacked sufficient information or data, the authors were contacted to
obtain additional details.

2.5 Data extraction and risk of bias
assessment

Two researchers independently conducted literature screening
and data extraction. Initial screening was performed based on
titles and abstracts, with disagreements resolved through discussion
according to inclusion criteria until consensus was reached. Full-
text reviews were then conducted, and references were traced
for additional relevant studies. Researchers collected the following
information: (1) basic study details (author, year, sample size);
(2) tDCS parameters (stimulation site, current intensity, duration);
(3) outcome measures and their measurement methods; (4) study
design characteristics.

To clearly present the data, studies in the table were sorted
by publication year (from earliest to latest) to reflect temporal
trends in tDCS research; for highlighting effect differences, studies
were secondarily grouped by effect size. Additionally, the GRADE
(Grading of Recommendations Assessment, Development, and
Evaluation) method was used to assess the certainty of evidence
for primary outcomes, evaluating five dimensions: risk of bias,
inconsistency, indirectness, imprecision, and publication bias.
GRADE assessments were independently conducted by MJ and YL,
with disagreements resolved through discussion and arbitration by
XG to ensure reliability.

The Cochrane Risk of Bias Tool was used to assess the quality of
the included studies, evaluating seven dimensions of study quality,
including random sequence generation, allocation concealment,
and blinding procedures. When blinding was clearly described as
double-blind for both experimenters and participants, the study
was rated as “low risk” If only single-blind or unclear blinding
was mentioned, the study was rated as “unclear” MJ and YL
independently rated the studies, with a Kappa consistency coefficient
of 0.85, indicating high agreement. When disagreements occurred,
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discussions were held based on the evaluation criteria, with Xu Gao
(XG) acting as the arbiter until consensus was reached.

2.6 Data analysis

Statistical analysis was conducted using RevMan 5.4. Cluster
analysis was performed by grouping studies according to stimulation
brain regions (M1, PFC, TC, CB), athletic performance domains
(endurance, strength, precision skill tasks, and competitive-
collaborative skill tasks), and tDCS parameters (current intensity,
stimulation duration) to explore sources of effect heterogeneity. In
cases where a study involved multiple motor tasks, the task most
representative of the competitive performance of the respective
athlete population was selected (see Table 1 for details). For example,
backward movement jumps were measured by vertical height in
centimeters, endurance performance by time to exhaustion in
seconds, shooting accuracy by the percentage of successful hits,
and competitive-collaborative skill tasks by specific performance
metrics, such as serve speed in meters per second. For tasks
assessing reaction time or timed races, the mean result values were
multiplied by -1 to ensure all intervention effects were aligned
in the same direction (i.e., shorter reaction times indicate better
performance). Due to the varying units of outcome measures
across the included studies, the standardized mean difference
(SMD) was used as the effect size. Referring to the Cochrane
Handbook for Systematic Reviews, heterogeneity was quantitatively
assessed using the p-value and I? statistic. I* represents the level of
heterogeneity among studies, ranging from 0% to 100%. When I*
< 50%, a fixed-effect model was used for meta-analysis; otherwise,
a random-effects model was applied, and subgroup analysis was
conducted to identify and determine the mediating variables
causing heterogeneity. A p-value <0.05 was considered statistically
significant; otherwise, no statistical significance was inferred. Given
the diversity in athletic performance, stimulation parameters, and
participant characteristics, undetected heterogeneity might exist.
Therefore, this study adopted a random-effects model to pool data
(Barili et al., 2018) for a more robust estimation of the overall
effect of a-tDCS on specific athletic performance. To verify the
reliability of the results, sensitivity analysis was performed using a
fixed-effect model (Rendina-Gobioff, 2006), sequentially removing
individual studies to observe changes in the pooled effect size and
assess whether any single study significantly influenced the overall
results. The results showed that the effect sizes and confidence
intervals of both models were highly consistent, demonstrating a
certain degree of robustness.

3 Results
3.1 Study selection

Based on the search strategy, a total of 1,299 articles were
retrieved. The retrieved literature was imported into Endnote 21
software, and 430 duplicate articles were removed. By reviewing
abstracts and keywords, 486 articles irrelevant to the topic were
excluded. Subsequently, 91 full-text articles were assessed for
eligibility, and based on the PICOS criteria, 78 records were excluded
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for the following reasons: non-randomized controlled trials (n = 35),
non-athlete participants (n = 19), no sport performance outcomes (n
= 21), incomplete data (n = 2), and non-English/Chinese language
(n = 1). Ultimately, 31 articles (25 in English, 6 in Chinese) meeting
the inclusion criteria were included. The specific search process is
illustrated in Figure 1.

3.2 Characteristics of included studies

Table 1 shows that all included studies were randomized
controlled trials (RCTs) using sham stimulation as a control,
published between 2015 and 2025, with the majority (65%)
published in the last 3 years (2022-2024), highlighting recent
interest in this research field. These studies collectively involved 473
athletes from various sports, including 331 males and 152 females.
Sample sizes ranged from 8 to 30 participants. Athletes participated
in diverse sports, including endurance sports (cycling, rowing,
long-distance running), strength sports (bodybuilding, climbing,
sprinting), precision skill-tasks (shooting, golf, gymnastics, fencing),
and competitive and cooperative skill-based tasks (basketball,
volleyball, tackwondo). Stimulation targeted primarily M1, PFC,
TC, and CB, with all studies using tDCS prior to stimulation. Of
these, 23 studies used conventional tDCS, 5 used Halo-Sport, and
3 used HD-tDCS, with current intensities ranging from 1 to 2.2 mA
and stimulation durations from 10 to 30 min.

3.3 Quality assessment of included studies

The methodological quality of the 31 included studies was
generally high, with an average score of 6.56 points. Among them,
19 studies scored 7 points, 11 studies scored 6 points, and one study
received a score of 5 (see Table 2). As illustrated in Figure 2, each
item represents a type of potential bias, with risk levels denoted by
color: green for low risk, yellow for unclear risk, and red for high risk.
As Figure 2 indicates, most studies demonstrated low risk across
most bias categories. However, some concerns remain, particularly
regarding outcome assessor blinding, where a proportion of studies
showed high or unclear risk. Figure 3 further details the distribution
of risk assessments across each domain. Overall, the quality of the
included literature can be considered relatively robust.

3.4 Meta-analysis results

3.4.1 Overall analysis

In all included studies, a total of 407 participants in the
experimental group and 398 participants in the control group were
involved, evaluating the overall effect of tDCS on athletes’ sports
performance. The GRADE summary table (Figure 4) includes data
from 22 randomized trials for the M1 target area, 5 for the PFC
target area, 4 for the TC target area, and 2 for the CB target
area. There were no serious issues with risk of bias, inconsistency,
indirectness, or imprecision, and the certainty assessment was rated
as “high” for all. The forest plot (Figure 5) indicates a significant
positive effect of a-tDCS on sports performance (n = 31, SMD
= 0.39, 95% CI = 0.23 ~ 0.54, p < 0.001), with low inter-study
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)
Studies included in qualitative
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°
3 v
Studies included in qualitative
synthesis
(n=31)
—
FIGURE 1

Literature Screening Flowchart (PRISMA declaration format).

heterogeneity (I = 14%, x> = 34.70, p = 0.25). To verify the
robustness of the results, a sensitivity analysis was conducted
using a fixed-effect model. The funnel plot (Figure 6) shows the
distribution of effect sizes and standard errors for each independent
study; the graphical distribution reveals that most studies are
clustered around the symmetry axis of the funnel plot, presenting
a relatively balanced pattern with no obvious skewness, except
for one effect size, with the remaining effect sizes falling within
the funnel.

3.4.2 Subgroup analysis by stimulation target area

A subgroup analysis was conducted based on different cortical
stimulation targets (Figure7). The results demonstrated that
stimulation over the M1 and dorsolateral dIPFC yielded statistically

Frontiers in Physiology

significant effects. Specifically, stimulation of M1 (n = 22) produced
a moderate and significant positive effect on athletic performance
(SMD = 0.32, 95% CI = 0.15 ~ 0.48, p < 0.001), highlighting its
critical role in motor control. Similarly, stimulation of the PFC
(n = 5) showed a moderate effect size (SMD = 0.39,
95% CI = 0.03 ~ 0.76, p = 0.03), which may be attributed to its
involvement in cognitive control and fatigue regulation. In contrast,
the effects of stimulation over the TC (n = 4, SMD = 0.72, 95%
CI=-0.03 ~ 1.48, p = 0.06) and the CB (n = 2, SMD = 0.37, 95%
CI=-0.43 ~1.88, p = 0.36) did not reach statistical significance,
likely owing to the limited number of included studies. Additionally,
no significant differences were observed between subgroups
(X2 =1.16,df = 3, p = 0.76), indicating comparable effect sizes across
different target regions where significant results were obtained.
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TABLE 2 Quality assessment table for included studies.

10.3389/fphys.2025.1631905

Random Allocation Blinding of Blinding of | Incomplete Selective Other Score/
sequence concealment participants outcome outcome reporting  sources points
generation and assessment| data of bias
personnel
Okano et al. + + + + + + + 7
(2015)
Kamali et al. + + + + + + + 7
(2019b)
Kamali et al. + + + + + + + 7
(2019a)
Mesquitaetal. | + + + - + + + 6
(2019)
Lattari et al. + + + + + + + 7
(2020)
Mesquita etal. | + + + - + + + 6
(2020)
Chen et al. + + + - + + + 6
(2021)
Pollastri et al. + + + + + + + 7
(2021)
Penna et al. + + + ? + + + 6
(2021)
Machado et al. + + + - - + + 5
(2019b)
Nikooharf + + + - + + + 6
Salehi et al.
(2022)
Liang et al. + + + - + + + 6
(2022)
Gallo et al. + + + + + + + 7
(2022)
Park et al. + + + - + + + 6
(2023)
Fortes et al. + + + + + + + 7
(2022)
Zhuangzhuang | + + + + + + + 7
(2024)
Zhigiang et al. + + + + + + + 7
(2023)
Moreira et al. + + + + + + _ 6
(2023)
Luo et al. + + + + + + + 7
(2023)
Anoushiravani + + + - + + + 6
etal. (2023)
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TABLE 2 (Continued) Quality assessment table for included studies.

Random Allocation Blinding of Blinding of Incomplete Selective Other Score/
sequence concealment| participants outcome outcome reporting sources points
generation and assessment data of bias
personnel
Etemadi et al. + + + + + + + 7
(2023)
Kamali et al. + + + - + + + 6
(2023)
Yang et al. (2024) + + + + + + + 7
Zhang et al. + + + + + + + 7
(2024)
Minghao and + + + + + + + 7
Zheng (2024)
Jie et al. (2024) + + + + + + + 7
Yang et al. (2024) + + + + + + + 7
Zhuangzhuangetal.| + + + ? + + + 6
(2024)
Rochaetal. (2024) | + + + + + + + 7
Ramos et al. + + + + + + + 7
(2024)
Dai et al. (2024) + + + + + + + 7

Note: Low risk of bias is indicated by “+”, high risk by “~”, and unclear risk by “?”. A score of 1 point is awarded for low risk of bias; no points are given for high or unclear risk.

Random sequence generation (selection bias) _

Allocation concealment (selection bias) _

Blinding of participants and personnel (performance bias) _
Blinding of outcome assessment (detection bias) _:_
Incomplete outcome data (attrition bias) _

Selective reporting (reporting bias) _

other bias [

0% 25% 50% 75%  100%

. Low risk of bias |:| Unclear risk of bias . High risk of bias
FIGURE 2
Risk of bias graph.
3.4.3 Subgroup analysis by type of athletic significant moderate effect (n = 12, SMD = 0.46, 95% CI = 0.20 ~
performance 0.72, p <0.001) was observed for endurance-related tasks, indicating

Studies were categorized into four subgroups based on the type  thata-tDCS can effectively enhance sustained performance capacity.
of athletic performance: endurance, strength, precision skill tasks, A significant positive effect was also demonstrated for interactive
and competitive-collaborative skill tasks (Figure 8). A statistically ~ cooperative skill-based tasks (n = 8) such as basketball shooting
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FIGURE 3

Risk of bias summary.

Certainty
Absolute
(95% CI)

Relative
(95% CI)

GRADE evidence profile.

22 randomised not serious not serious not serious not serious none 31 302 SMD 0.32 SD CRITICAL
s wger | DODD
(0.15 higher High
10048
higher)
PFC
5 randomised not serious not serious not serious not serious none 61 61 SMD 0.39 CARTICAL
il g | PODD
(0.03 higher High
100.76
higher)
TC
4 randomised not serious not serious not serious not serious strong association 39 39 SMD 0.72 INPORTANT
trials all plausible residual higher @@@ @
confounding would reduce (0.03 lower to High
the demonstrated effect 1.48 higher)
CB
2 randomised not serious not serious ot serious not serious all plausible residual 25 25 SMD 0.37 @ @ @ @ INPORTAN
trials confounding would reduce higher
the demonstrated effect (0.43 lower to High
1.18 higher)
Cl: confidence interval; SMD: standardised mean difference
FIGURE 4

and volleyball spiking, (n = 8, SMD = 0.45, 95% CI = 0.10 ~
0.80, p = 0.01). However, the effect sizes for strength tasks (n = 6
SMD = 0.11, 95% CI = -0.20 ~ 0.43, p = 0.49) and precision skill
tasks (n = 6, SMD = 0.20, 95% CI = -0.12 ~ 0.52, p = 0.22) were
not statistically significant. These non-significant findings may be
attributed to potential ceiling effects in highly trained athletes or
to the task-specific neural requirements that limit responsiveness
to stimulation. Subgroup difference analysis did not reveal any
= 3.92, df
= 3, p = 0.27), suggesting comparable effect magnitudes across

statistically significant between-group differences ()

performance types.

3.4.4 Subgroup analysis by stimulation
parameters

Subgroup analyses were conducted based on tDCS protocol
parameters (current intensity and stimulation duration) to explore
their impact on sports performance (Figures9, 10). Regarding
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current intensity, studies were divided into three groups: low
intensity (<1.5mA, n = 6), medium intensity (1.6-2.0 mA, n =
24), and high intensity (>2.0 mA, n = 1). The medium intensity
group showed a significant effect (SMD = 0.38, 95% CIL:0.42 ~
0.78, p < 0.001) compared to the high intensity group (SMD =
0.23, 95% CI: 0.75 ~ 1.22, p < 0.64) and the low intensity group
(SMD = 0.25, 95% CI: 0.09 ~ 0.59, p =
duration, studies were categorized into short duration (<15 min,

0.15). For stimulation

n = 6), medium duration (16-20 min, n = 23), and long duration
(>20 min, n = 2). The medium duration group exhibited a significant
effect (SMD = 0.45, 95% CL:0.27 ~ 0.63, p < 0.001) compared
to the short duration group (SMD = 0.11, 95% CI: 0.20 ~ 0.42,
p = 0.50) and the long duration group (SMD = 0.23, 95% CI:
0.28 ~ 0.75, p = 0.38). Within each subgroup, heterogeneity was
low, and there were no significant differences between subgroups
(current intensity: X2 = 0.46, df = 2, p = 0.79; duration: Xz =3.71,
df=2,p=0.16).
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4 Discussion

This meta-analysis aims to systematically evaluate the acute
effects of a-tDCS on athletes’ motor performance. The results show

Frontiers in Physiology

Experimental Control Std. Mean Difference Std. Mean Difference Risk of Bias
Study or Subgroup Mean SD Total Mean SD Total Weight 1V, Rand 95% CI 1V, Rand 95% CI
Anoushiravani et al.,2023 252.82 4.24 17 24552 1052 17  3.9% 0.89[0.18, 1.60]
Chen et al.,2021 0.483 0.042 13 0.463 0.047 12 3.2%  0.43[-0.36, 1.23]
Dai , 2024 421 77.61 16 42598 9037 16  4.1%  -0.06 [-0.75, 0.64]
Etemadiet al. , 2023 812 2.7 14 6.2 1.8 14  3.4% 0.81[0.04, 1.59]
Fortes et al , 2022 55 83 19 526 7.1 19 47%  0.30[-0.34,0.94]
Gallo etal. , 2022 -143.3 73 11 -1448 82 11  3.0%  0.19[-0.65, 1.02]
Kamali, Saadi et al., 2019 3,204 961 12 2,662 763 12 3.1%  0.60[-0.22, 1.42]
Kamali et al.,2023 98.4 65.6 14 89.4 79.4 14 3.6%  0.12[-0.62,0.86]
Kamali Nami et al.,2019 9025 2.7 8 88.25 13 8 2.0%  0.89[-0.15,1.94]
Lattari et al , 2020 3866 53 10 37.76 491 10 2.7%  0.17[-0.71, 1.05]
Liang et al. , 2022 -1,22865 3431 8  -1237 33.03 8 22%  023[-0.75, 122
Liu et al.,2024 20.8 3.89 15 1653 401 15  3.4% 1.05 [0.28, 1.82]
Luo et al.,2023 527.75 71.53 20 51865 69.12 20  4.9%  0.13[-0.49,0.75]
Machado et al. , 2021 827.8 278.7 12 7943 2712 12 3.2%  0.12[-0.68, 0.92]
Mesquita et al. , 2019 93.1 52 19 946 6.5 19  4.7%  -0.25[-0.89,0.39]
Mesquita et al. , 2020 479 79 12 468 81 12 32%  0.13(-0.67,0.93]
Moreira et al.,2023 23.4 9.1 8 225 76 8 22%  0.10[-0.88,1.08]
Nikooharf Salehi et al. , 2022 -25.93 132 15 -27.41 173 15 3.5% 0.94 [0.18, 1.70]
Okano et al.,2015 313.2 299 10 301 19.8 10 2.6%  0.46 [-0.43, 1.35]
Park etal., 2022 -248 121 13 -433 141 13 2.8% 1.36 [0.50, 2.23]
Penna et al.,2021 693.5 43.5 10 689 42 10 2.7%  0.10[-0.78,0.98]
Pollastri et al. , 2021 -1212 52 8 -1,228 56 8 2.2%  0.28[-0.71,1.27]
Ramos , 2024 -1,045.71 83.83 7 -1,354.69 144.43 7 L0% 2.45 [0.95, 3.95)
Rocha , 2024 27.93 4.73 9 2917 5.25 9 25% -0.24[-1.16,0.69)
Wang Zhuangzhuang , 2024 295.13 11.27 16 296.23 6.56 8 2.9% -0.11 [-0.96, 0.74]
Xiao Yang , 2024 -240.8 393 16  -250.5 345 16  4.1%  0.26 [-0.44, 0.95]
Yang et al. , 2024 -57.83 234 12 -59.98 296 12 3.0%  0.78[-0.06, 1.61]
Zhang etal., 2024 3528 3.78 29 32.83 522 29  6.3% 0.53 [0.01, 1.05]
Zhang Guangzong , 2022 210.61 6.58 10 207.57 10.03 10 2.7% 0.34 [-0.54, 1.23]
Zheng et al.,2024 73.52 455 14 7119 723 14 3.6%  0.37[-0.37,1.12]
Zhuetal , 2023 -137 028 10 -142 04 10 2.7%  0.14[-0.74,1.02]
Total (95% CI) 407 398 100.0% 0.39 [0.23, 0.54]
Heterogeneity: Tau® = 0.03; Chi* = 34.70, df = 30 (P = 0.25); I* = 14% R ) 3 A
Test for overall effect: Z = 4.92 (P < 0.00001) Favours Sham Favours tDCS
Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias
FIGURE 5
Forest plot of standardized mean differences (SMDs) for the overall effect of anodal tDCS on sport-specific motor performance relative to sham
stimulation.
that a-tDCS significantly improves motor performance, based on
0 SESMD) R 31 randomized controlled trials, with particularly notable effects
SN in endurance and competitive-collaborative skill tasks. Subgroup
0.2 S analysis confirms M1 as the most effective target area, followed
A & [9 AN by PFC, with a current intensity of 1.6-2.0 mA and a stimulation
S= 0 1 * . . .
0.4t AN M o 9O N duration of 16-20 min as the optimal parameters. Next, we attempt
v, 10 N . . .
S0 Ao o to elucidate the underlying mechanisms of these effects.
0.61 ; The study found that a-tDCS significantly enhances
: B performance in endurance and competitive-collaborative skill tasks,
0.8¢ ; likely due to the synergistic effects of M1 and PFC stimulation. As a
f N key hub for motor output, M1 optimizes motor unit recruitment by
, , , : , . SMR . . . . . .
E— ] 3 H p reducing action potential thresholds and enhancing corticospinal
Subgroup excitability, thereby extending time to exhaustion in endurance tasks
8 Endurance Sports
Strength Sports i . 3
D e SRS il sklls Sports (e.g., cycle ergometer tests) (Etemadi et al., 2023; Bhattacharjee et al.,
A\ skills of confrontation and collaboration sport 2021). Additionally, M1 stimulation promotes motor memory
formation through long-term potentiation (LTP)-like mechanisms,
FIGURE 6 e . Lo . . .
Funnel plot for publication bias. facilitating learning and retention in repetitive skill tasks (Nitsche
and Paulus, 2000; Suppa et al., 2016). Research indicates that

pain tolerance induced by exercise affects endurance performance
(Astokorki and Mauger, 2017), and M1 stimulation may improve
performance by alleviating exercise-induced pain (Gandevia,
2001; Taylor et al., 2016). Furthermore, PFC (particularly dIPFC)
stimulation likely enhances cognitive control (Friedman and
Robbins, 2022) and suppresses fatigue perception (Rupp and Perrey,
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Experimental Control Std. Mean Difference Std. Mean Difference Risk of Bias

Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI ABCDEFG
1.1.1 M1
Anoushiravani et al.,2023 50.64 2.66 17 49.94 3.26 17 4.0% 0.23 [-0.45, 0.90]
Chen et al.,2021 0.483 0.042 13 0.463 0.047 12 3.0% 0.43 [-0.36, 1.23]
Dai , 2024 421 77.61 16 42598 90.37 16 3.8% -0.06 [-0.75, 0.64]
Etemadiet al. , 2023 8.12 2.7 14 6.2 1.8 14 3.1% 0.81 [0.04, 1.59]
Kamali, Saadi et al., 2019 3,204 961 12 2,662 763 12 2.8% 0.60[-0.22, 1.42]
Kamali etal.,2023 98.4 65.6 14 89.4 79.4 14 3.4% 0.12 [-0.62, 0.86]
Lattari et al , 2020 38.66 5.3 10 37.76 491 10 2.5% 0.17 [-0.71, 1.05]
Liang et al. , 2022 -1,228.65 34.31 8 -1,237 33.03 8 2.0% 0.23 [-0.75, 1.22]
Liu et al.,2024 20.8 3.89 15 16.53  4.01 15 3.2% 1.05 [0.28, 1.82]
Luo et al.,2023 527.75 71.53 20 518.65 69.12 20 4.7% 0.13 [-0.49, 0.75]
Machado et al. , 2021 827.8 278.7 12 7943 2712 12 2.9% 0.12 [-0.68, 0.92]
Mesquita et al. , 2019 93.1 5.2 19 94.6 6.5 19 4.5% -0.25 [-0.89, 0.39]
Mesquita et al. , 2020 47.9 7.9 12 46.8 8.1 12 2.9% 0.13 [-0.67, 0.93]
Park etal., 2022 -2.48 1.21 13 -4.33 1.41 13 2.5% 1.36 [0.50, 2.23]
Rocha , 2024 27.93 4.73 9 29.17  5.25 9 2.2%  -0.24[-1.16, 0.69]
Wang Zhuangzhuang , 2024 295.13 11.27 16 296.23 6.56 8 2.6% -0.11 [-0.96, 0.74]
Xiao Yang , 2024 -240.8 393 16 -250.5 34.5 16 3.8% 0.26 [-0.44, 0.95]
Yang et al. , 2024 -57.83 234 12 -59.98 2.96 12 2.7% 0.78 [-0.06, 1.61]
Zhang etal., 2024 35.28 3.78 29 32.83  5.22 29 6.4% 0.53 [0.01, 1.05]
Zhang Guangzong , 2022 210.61 6.58 10 207.57 10.03 10 2.4% 0.34 [-0.54, 1.23]
Zheng et al.,2024 73.52 4.55 14 71.19 7.23 14 3.3% 0.37 [-0.37, 1.12]
Zhuetal , 2023 -1.37 0.28 10 -1.42 0.4 10 2.5% 0.14 [-0.74, 1.02]
Subtotal (95% CI) 311 302 713% 0.32 [0.15, 0.48]
Heterogeneity: Tau? = 0.00; Chi* = 20.96, df = 21 (P = 0.46); I’ = 0%
Test for overall effect: Z = 3.84 (P = 0.0001)
1.1.2 PFC
Fortes etal , 2022 55 8.3 19 52.6 7.1 19 4.5% 0.30 [-0.34, 0.94]
Gallo et al. , 2022 -143.3 7.3 11 -144.8 8.2 11 2.7% 0.19 [-0.65, 1.02]
Moreira et al.,2023 23.4 9.1 8 22.5 7.6 8 2.0% 0.10 [-0.88, 1.08]
Nikooharf Salehi et al. , 2022 -25.93 1.32 15 -27.41 1.73 15 3.2% 0.94 [0.18, 1.70]
Pollastri et al. , 2021 -1,212 52 8 -1,228 56 8 2.0% 0.28 [-0.71, 1.27]
Subtotal (95% CI) 61 61 14.4% 0.39 [0.03, 0.76]
Heterogeneity: Tau? = 0.00; Chi® = 2.66, df = 4 (P = 0.62); I’ = 0%
Test for overall effect: Z = 2.14 (P = 0.03)
1.1.3TC
Kamali, Saadi et al., 2019 3,204 961 12 2,662 763 12 2.8% 0.60 [-0.22, 1.42]
Okano et al.,2015 313.2 299 10 301 19.8 10 2.4% 0.46 [-0.43, 1.35]
Penna et al.,2021 693.5 43.5 10 689 42 10 2.5% 0.10 [-0.78, 0.98]
Ramos , 2024 -1,045.71 83.83 7 -1,354.69 144.43 7 0.9% 2.45 [0.95, 3.95)
Subtotal (95% CI) 39 39 8.5% 0.72 [-0.03, 1.48]
Heterogeneity: Tau? = 0.34; Chi? = 7.20, df = 3 (P = 0.07); I = 58%
Test for overall effect: Z = 1.87 (P = 0.06)
1.1.4 CB
Anoushiravani et al.,2023 50.11 3.49 17 49.94 3.26 17 4.1% 0.05 [-0.62, 0.72]
Kamali Nami et al.,2019 90.25 2.7 8 88.25 1.3 8 1.8% 0.89 [-0.15, 1.94]
Subtotal (95% CI) 25 25 5.8% 0.37 [-0.43, 1.18]
Heterogeneity: Tau’ = 0.16; Chi’ = 1.77, df = 1 (P = 0.18); I’ = 44%
Test for overall effect: Z = 0.91 (P = 0.36)
Total (95% CI) 436 427 100.0% 0.35 [0.21, 0.49] L 3
Heterogeneity: Tau® = 0.01; Chi’ = 33.94, df = 32 (P = 0.37); I’ = 6% _52 _¢1 5 i 2
Test for overall effect: Z = 4.88 (P < 0.00001) Favours Sham Favours tDCS
Test for subgroup differences: Chi? = 1.16, df = 3 (P = 0.76), I = 0%
Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

FIGURE 7

Funnel plot of included studies based on brain stimulation target area to assess publication bias.

2008), improving athletes’ persistence under high-intensity or
mental fatigue conditions (Angius et al., 2019). For competitive-
collaborative skill tasks, a-tDCS may enhance neural plasticity in
the M1-PFC network, improving perceptual-motor integration and
movement execution accuracy. These mechanisms suggest that a-
tDCS not only boosts physiological performance but also optimizes
cognitive and psychological factors, particularly in competitive
settings requiring sustained effort or complex coordination. The
TG, a critical region for integrating auditory, language, and motor
planning, plays a key role in advanced regulation of cardiac
autonomic function (Dono et al, 2020; Reisert et al, 2021;
Jackson et al., 2018). However, its deeper cortical location and the

Frontiers in Physiology

distance from scalp to cortex, coupled with tissue impedance, may
limit tDCS current penetration, resulting in insufficient stimulation
intensity to induce significant neural excitability changes. Similarly,
the CB is central to coordination, motor prediction, sensory
feedback integration, and balance maintenance, closely linked to
various motor skills, postural control, and movement precision
(Buckner, 2013; Sokolov et al., 2017). Notably, tDCS efficacy is
constrained by the cerebellum’s anatomical structure and current
conduction pathways, making it challenging for stimulation currents
to penetrate the cerebellar cortex (Koziol et al., 2014; Verduzco-
Flores and O'Reilly, 2015). Additionally, athletes’ baseline cortical
excitability or training levels may influence CB responses to tDCS,
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tDCS sham Std. Mean Difference Std. Mean Difference Risk of Bias
Study or Subgroup Mean SD Total Mean SD Total Weight 1V, d 95% CI v, d 95% CI ABCDEFG
2.1.1 Endurance Sports
Etemadiet al. , 2023 8.12 2.7 14 6.2 1.8 14 3.2% 0.81[0.04, 1.59]
Fortes et al , 2022 55 8.3 19 52.6 7.1 19 4.5% 0.30 [-0.34, 0.94] —
Gallo et al. , 2022 -143.3 7.3 11 -144.8 8.2 11 2.8% 0.19 [-0.65, 1.02] —
Kamali et al.,2023 98.4 65.6 14 89.4 79.4 14 3.5% 0.12 [-0.62, 0.86) —
Liang et al. , 2022 -1,228.65 34.31 8 -1,237 33.03 8 2.1% 0.23 [-0.75, 1.22] —
Machado et al. , 2021 827.8 278.7 12 7943 2712 12 3.0% 0.12 [-0.68, 0.92] —
Nikooharf Salehi et al. , 2022 -25.93 132 15 -27.41 1.73 15 3.3% 0.94 [0.18, 1.70]
Okano et al.,2015 313.2 29.9 10 301 19.8 10 2.5% 0.46 [-0.43, 1.35] ]
Penna et al.,2021 693.5 43.5 10 689 42 10 2.6% 0.10 [-0.78, 0.98] —
Pollastri et al. , 2021 -1,212 52 8 -1,228 56 8 2.1% 0.28 [-0.71, 1.27] —
Ramos , 2024 -1,045.71 83.83 7 -1,354.69 144.43 7 0.9% 2.45 [0.95, 3.95]
Yang et al. , 2024 -57.83 2.34 12 -59.98 2.96 12 2.8% 0.78 [-0.06, 1.61]
Subtotal (95% CI) 140 140 33.3% 0.46 [0.20, 0.72]
Heterogeneity: Tau? = 0.03; Chi® = 12.76, df = 11 (P = 0.31); I = 14%
Test for overall effect: Z = 3.46 (P = 0.0005)
2.1.2 Strength Sports
Anoushiravani et al.,2023 50.11 3.49 17 49.94 3.26 17 4.1% 0.05 [-0.62, 0.72]
Kamali, Saadi et al., 2019 3,204 961 12 2,662 763 12 2.9% 0.60 [-0.22, 1.42]
Lattari et al , 2020 38.66 5.3 10 37.76 4.91 10 2.6% 0.17 [-0.71, 1.05]
Luo et al.,2023 527.75 71.53 20 518.65 69.12 20 4.8% 0.13 [-0.49, 0.75]
Rocha , 2024 27.93 4.73 9 29.17  5.25 9 2.3%  -0.24 [-1.16, 0.69]
Wang Zhuangzhuang , 2024 295.13 11.27 16 296.23 6.56 8 2.7% -0.11 [-0.96, 0.74]
Subtotal (95% CI) 84 76 19.4% 0.11 [-0.20, 0.43]
Heterogeneity: Tau® = 0.00; Chi? = 2.22, df = 5 (P = 0.82); I> = 0%
Test for overall effect: Z = 0.69 (P = 0.49)
2.1.3 Precision and technical skills Sports
Anoushiravani et al.,2023 50.11 3.49 17 49.94 3.26 17 4.1% 0.05 [-0.62, 0.72]
Dai, 2024 421 77.61 16 425.98 90.37 16 3.9%  -0.06 [-0.75, 0.64]
Kamali Nami et al.,2019 90.25 2.7 8 88.25 1.3 8 1.9% 0.89 [-0.15, 1.94]
Xiao Yang , 2024 -240.8 393 16 -250.5 34.5 16 3.9% 0.26 (-0.44, 0.95]
Zhang Guangzong , 2022 210.61 6.58 10 207.57 10.03 10 2.5% 0.34 [-0.54, 1.23]
Zhuetal , 2023 -1.37 0.28 10 -1.42 0.4 10 2.6% 0.14 [-0.74, 1.02]
Subtotal (95% CI) 77 77 18.9% 0.20 [-0.12, 0.52]
Heterogeneity: Tau? = 0.00; Chi’ = 2.56, df = 5 (P = 0.77); I’ = 0%
Test for overall effect: Z = 1.22 (P = 0.22)
2.1.4 Skills of confrontation and collaboration sport
Chen et al.,2021 0.483 0.042 13 0.463 0.047 12 3.1% 0.43 [-0.36, 1.23] —
Liu et al.,2024 20.8 3.89 15 16.53 4.01 15 3.3% 1.05 [0.28, 1.82] —_—
Mesquita et al. , 2019 93.1 5.2 19 94.6 6.5 19 4.5% -0.25 [-0.89, 0.39] —
Mesquita et al. , 2020 479 79 12 46.8 8.1 12 3.0% 0.13 [-0.67, 0.93] A—
Moreira et al.,2023 23.4 9.1 8 22.5 7.6 8 2.1% 0.10 [-0.88, 1.08] —
Park etal., 2022 -2.48 1.21 13 -4.33 1.41 13 2.6% 1.36 [0.50, 2.23]
Zhang et al., 2024 35.28 3.78 29 32.83 5.22 29 6.3% 0.53[0.01, 1.05] —
Zheng et al.,2024 73.52 4.55 14 71.19 7.23 14 3.4% 0.37 [-0.37, 1.12] —
Subtotal (95% CI) 123 122 28.3% 0.45 [0.10, 0.80] L
Heterogeneity: Tau? = 0.11; Chi? = 12.42, df = 7 (P = 0.09); I = 44%
Test for overall effect: Z = 2.51 (P = 0.01)
Total (95% CI) 424 415 100.0% 0.34 [0.19, 0.48] L 2
Heterogeneity: Tau® = 0.02; Chi* = 34.18, df = 31 (P = 0.32); I’ = 9% _72 —:1 ) 1 2
Test for overall effect: Z = 4.53 (P < 0.00001) Favours Sham Favours tDCS
Test for subgroup differences: Chi? = 3.92, df = 3 (P = 0.27), I = 23.4%
Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias
FIGURE 8
Forest plot showing subgroup analyses of the effects of anodal tDCS on different aspects of sport performance.

potentially explaining the non-significant effects of TC and CB
stimulation in subgroup analyses.

In terms of task types, the meta-analysis indicates that a-tDCS
significantly enhances performance in endurance and competitive-
collaborative skill tasks, while its effects on strength and precision
skill tasks are not significant. The improvement in endurance tasks
likely stems from M1 and PFC stimulation, which delays fatigue
perception and enhances central drive (Machado et al., 2019b).
These tasks involve prolonged low-intensity exercise, where neural
factors such as pain tolerance and movement economy significantly
influence performance. Competitive-collaborative skill tasks (e.g.,
basketball shooting, volleyball spiking) rely on fine motor control

Frontiers in Physiology

and perceptual-motor integration, with M1 stimulation significantly
improving execution precision by enhancing neural plasticity and
the efficiency of motor program retrieval. However, the effects
of tDCS on athletic performance are not always positive. For
instance, strength performance primarily depends on instantaneous
muscle force generation, and while a-tDCS can enhance M1 cortical
excitability, its direct impact on peripheral muscle fibers is limited,
particularly in elite athletes where short-term stimulation struggles
to overcome performance bottlenecks (da Silva Machado et al.,
2021). The non-significant effect on precision skill tasks may be
attributed to the complexity and diverse neural demands of these
tasks. For example, tasks like shooting and golf require greater
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3.1.1 <=1.5mA
Kamali, Saadi et al., 2019 3,204 961 12 2,662 763 12 3.0%  0.60([-0.22, 1.42] - 000
Kamali Nami et al.,2019 90.25 2.7 8 88.25 1.3 8 2.0% 0.89 [-0.15, 1.94] R
Mesquita et al. , 2019 93.1 5.2 19 94.6 6.5 19 4.7% -0.25 [-0.89, 0.39] .
Mesquita et al. , 2020 47.9 7.9 12 46.8 8.1 12 3.2% 0.13 [-0.67, 0.93] e
Okano et al.,2015 313.2 299 10 301 19.8 10 2.6% 0.46 [-0.43, 1.35] -t
Pollastri et al. , 2021 -1,212 52 8 -1,228 56 8 2.2% 0.28 [-0.71, 1.27] ~
Subtotal (95% CI) 69 69 17.7% 0.25 [-0.09, 0.59] »
Heterogeneity: Tau? = 0.00; Chi’ = 4.82, df = 5 (P = 0.44); I’ = 0%
Test for overall effect: Z = 1.45 (P = 0.15)
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Anoushiravani et al.,2023 50.11 3.49 17 49.94 3.26 17 4.3% 0.05 [-0.62, 0.72] I
Chen et al.,2021 0.483 0.042 13 0.463  0.047 12 3.2% 0.43 [-0.36, 1.23] i
Dai , 2024 421 77.61 16 425.98 90.37 16 4.1% -0.06 [-0.75, 0.64] _—r
Etemadiet al. , 2023 8.12 2.7 14 6.2 1.8 14 3.4% 0.81[0.04, 1.59]
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Gallo et al. , 2022 -1433 73 11 -144.8 8.2 11 2.9% 0.19 [-0.65, 1.02] e a—
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Liu et al.,2024 20.8 3.89 15 16.53 4.01 15 3.4% 1.05 [0.28, 1.82] —
Luo et al.,2023 527.75 71.53 20 518.65 69.12 20 5.0% 0.13 [-0.49, 0.75] i
Machado et al. , 2021 827.8 278.7 12 794.3 271.2 10 2.9% 0.12 [-0.72, 0.96] . —
Moreira etal., 2023 234 9.1 8 22,5 7.6 8 2.2% 0.10 [-0.88, 1.08] N
Nikooharf Salehi et al. , 2022 -25.93 132 15 -27.41 1.73 15 3.5% 0.94 [0.18, 1.70] —
Park etal., 2022 -2.48 121 13 -4.33 141 13 2.7% 1.36 [0.50, 2.23] e
Penna et al., 2021 693.5 43.5 10 689 42 10 2.7% 0.10 [-0.78, 0.98] s p—
Ramos , 2024 -1,045.71 83.83 7 -1,354.69 144.43 7 1.0% 2.45[0.95, 3.95] —_—
Rocha , 2024 27.93 4.73 9 29.17 5.25 9 2.4% -0.24 [-1.16, 0.69] _T
Wang Zhuangzhuang , 2024 295.13 11.27 16 296.23 6.56 8 2.9%  -0.11([-0.96, 0.74] S E—
Xiao Yang , 2024 -240.8 393 16 -250.5 345 16 4.1% 0.26 [-0.44, 0.95] b
Yang etal. , 2024 -57.83 2.34 12 -59.98  2.96 12 2.9% 0.78 [-0.06, 1.61] —
Zhang et al., 2024 35.28 3.78 29 32.83 5.22 29 6.5% 0.53[0.01, 1.05] —
Zhang Guangzong , 2022 210.61 6.58 10 207.57 10.03 10 2.7% 0.34 [-0.54, 1.23] I Ea—
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Heterogeneity: Tau? = 0.04; Chi’ = 28.14, df = 23 (P = 0.21); I = 18%
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Test for overall effect: Z = 4.58 (P < 0.00001) Favours Sham Favours t DCS
Test for subgroup differences: Chi? = 0.46, df = 2 (P = 0.79), I = 0%
Risk of bias I
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias

FIGURE 9

Forest plot of a-tDCS effects on motor performance by current intensity (low: <1.5 mA, medium: 1.6-2.0 mA, high: >2.0 mA).

cognitive control and sensory integration than pure motor output,
and single-target stimulation may be insufficient to comprehensively
optimize performance.

The analysis of stimulation parameters indicates that a moderate
current intensity of 1.6-2.0 mA and a moderate stimulation
duration of 16-20 min represent the optimal protocol for enhancing
motor performance. Low-intensity and short-duration stimulation
yield weak effects, likely due to insufficient current to induce
adequate cortical excitability or insufficient time to establish stable
neural plasticity (Jamil et al, 2017). While high-intensity and
long-duration stimulation perform better than low-intensity/short-
duration protocols, they are less effective than moderate parameters,
possibly due to excessive intensity causing cortical competition
or prolonged stimulation leading to reduced neural adaptability.
These findings suggest that moderate current intensity and duration
effectively balance the induction of neural excitability and plasticity.

Frontiers in Physiology

Compared with previous meta-analyses, this study establishes a
more comprehensive evidence base by incorporating both Chinese
and English literature (6 Chinese, 25 English studies), expanding to
31 studies (n = 473), and integrating the latest evidence up to March
2025. Angius Luca (Angius et al.,, 2018b) conducted a narrative
review exploring the effects of tDCS on motor performance
in healthy individuals but did not focus on athletes. Holgado
(Holgado et al., 2019) analyzed the impact of tDCS on objective
and subjective motor performance indicators but was limited by a
smaller sample size and high heterogeneity. Holgado (Holgado et al.,
2024) provided a broader umbrella review but lacked detailed
subgroup analyses. (Maudrich et al., 2022) etal. emphasized the
enhancement of sport-specific performance through single-session
a-tDCS but did not include Chinese literature or thoroughly explore
parameter optimization. The novelty of this study lies in: 1) being
the first to integrate Chinese and English literature, reducing
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Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI 1V, Rand 95% CI ABCDEFG
3.2.1 <=15min
Kamali, Saadi et al., 2019 3,204 961 12 2,662 763 12 3.0% 0.60 [-0.22, 1.42] ®
Kamali et al.,2023 98.4 65.6 14 89.4 79.4 14 3.6% 0.12 [-0.62, 0.86] h— ]
Mesquita et al. , 2019 93.1 5.2 19 94.6 6.5 19 4.8%  -0.25(-0.89,0.39] — +
Mesquita et al. , 2020 47.9 7.9 12 46.8 8.1 12 3.2% 0.13 [-0.67, 0.93] — ®
Rocha , 2024 27.93 4.73 9 29.17 5.25 9 2.4% -0.24 [-1.16, 0.69] ——— ®
Zheng et al.,2024 73.52 4.55 14 71.19 7.23 14 3.6% 0.37 [-0.37, 1.12] @
Subtotal (95% CI) 80 80 20.6% 0.11 [-0.20, 0.42]
Heterogeneity: Tau? = 0.00; Chi® = 3.62, df = 5 (P = 0.61); I = 0%
Test for overall effect: Z = 0.67 (P = 0.50)
3.2.2 16-20min
Anoushiravani et al.,2023 50.11 3.49 17 49.94 3.26 17 4.4% 0.05 [-0.62, 0.72] h—
Chen et al.,2021 0.483 0.042 13 0.463 0.047 12 3.2%  0.43[-0.36, 1.23] —
Dai, 2024 421 77.61 16 425.98 90.37 16 4.1% -0.06 [-0.75, 0.64] —
Etemadiet al. , 2023 8.12 2.7 14 6.2 1.8 14 3.4% 0.81[0.04, 1.59]
Gallo et al. , 2022 -143.3 7.3 11 -144.8 8.2 11 2.9% 0.19 [-0.65, 1.02] —
Kamali Nami et al.,2019 90.25 2.7 8 88.25 1.3 8 1.9% 0.89 [-0.15, 1.94] 7
Lattari et al , 2020 38.66 5.3 10 37.76 491 10 2.7% 0.17 [-0.71, 1.05] -
Liang et al. , 2022 -1,228.65 34.31 8 -1,237 33.03 8 2.1% 0.23 [-0.75, 1.22] —
Liu et al.,2024 20.8  3.89 15 16.53  4.01 15 3.4% 1.05 [0.28, 1.82]
Luo et al.,2023 527.75 71.53 20 518.65 69.12 20 5.0% 0.13 [-0.49, 0.75] —
Machado et al. , 2021 827.8 278.7 12 7943 271.2 12 3.2% 0.12 [-0.68, 0.92] —
Moreira et al.,2023 23.4 9.1 8 225 7.6 8 2.2% 0.10 [-0.88, 1.08] —
Nikooharf Salehi et al. , 2022 -25.93 1.32 15 -27.41 1.73 15 3.5% 0.94 [0.18, 1.70]
Okano et al.,2015 313.2 299 10 301 19.8 10 2.6% 0.46 [-0.43, 1.35] ]
Park etal., 2022 -2.48 1.21 13 -4.33 1.41 13 2.7% 1.36 [0.50, 2.23]
Pollastri et al. , 2021 -1,212 52 8 -1,228 56 8 2.1% 0.28 [-0.71, 1.27] -
Ramos , 2024 -1,045.71 83.83 7 -1,354.69 144.43 7 1.0% 2.45[0.95, 3.95] —_—
Wang Zhuangzhuang , 2024 210.61 6.58 10 207.57 10.03 10 2.6% 0.34 [-0.54, 1.23] T
Xiao Yang , 2024 -240.8 39.3 16 -250.5 345 16 4.1% 0.26 [-0.44, 0.95] T
Yang etal. , 2024 -57.83 2.34 12 -59.98 2.96 12 2.9% 0.78 [-0.06, 1.61] T
Zhang etal., 2024 35.28 3.78 29 32.83 5.22 29 6.7% 0.53 [0.01, 1.05] —
Zhang Guangzong , 2022 210.61 6.58 10 207.57 10.03 10 2.6% 0.34 [-0.54, 1.23] —
Zhuetal , 2023 -1.37 0.28 10 -1.42 0.4 10 2.7% 0.14 [-0.74, 1.02] I a—
Subtotal (95% CI) 292 291 72.0% 0.45 [0.27, 0.63] <&
Heterogeneity: Tau? = 0.02; Chi? = 24.82, df = 22 (P = 0.31); I? = 11%
Test for overall effect: Z = 4.93 (P < 0.00001)
3.2.3 >20min
Fortes et al , 2022 55 83 19 52.6 71 19 4.8% 0.30 [-0.34, 0.94] o (111X T1T]
Penna et al., 2021 693.5 435 10 689 42 10 2.7%  0.10 [-0.78, 0.98] — T @66 6606
Subtotal (95% Cl) 29 29 7.4% 0.23 [-0.28, 0.75] -
Heterogeneity: Tau? = 0.00; Chi* = 0.13,df = 1 (P = 0.71); I* = 0%
Test for overall effect: Z = 0.89 (P = 0.38)
Total (95% CI) 401 400 100.0% 0.36 [0.21, 0.51] L 2
Heterogeneity: Tau? = 0.01; Chi? = 32.32, df = 30 (P = 0.35); I> = 7% "y ) 5 i} 3
Test for overall effect: Z = 4.81 (P < 0.00001) Favours Sham Favours t DCS
Test for subgroup differences: Chi?> = 3.71, df = 2 (P = 0.16), I = 46.2%
Risk of bias legend
(A) Random sequence generation (selection bias)
(B) Allocation concealment (selection bias)
(C) Blinding of participants and personnel (performance bias)
(D) Blinding of outcome assessment (detection bias)
(E) Incomplete outcome data (attrition bias)
(F) Selective reporting (reporting bias)
(G) Other bias
FIGURE 10
Forest plot of a-tDCS effects on motor performance by stimulation duration (short: <15 min, medium: 16-20 min, long: >20 min).

cultural and publication biases; 2) conducting refined subgroup
analyses by brain region and dosage, confirming the optimal
efficacy of M1 stimulation (1.6-2.0 mA, 16-20 min) for endurance
and competitive-collaborative skill tasks; and 3) incorporating
new studies to address gaps in prior research. Furthermore, the
GRADE assessment (Figure 4) confirms high-certainty evidence
for M1 and PFC stimulation, providing robust support for the
practical application of tDCS.

Although this study provides high-certainty evidence for the
impact of a-tDCS on athletic performance, several limitations
remain. First, including only Chinese and English literature
may overlook studies in other languages, limiting global
representativeness. Second, small sample sizes in individual studies
may reduce statistical power, particularly in TC and CB subgroup

Frontiers in Physiology

analyses, affecting result robustness. Third, heterogeneity in tDCS
protocols (e.g., electrode placement, stimulation timing, athlete
training levels) may influence effect consistency. Fourth, the focus on
acute a-tDCS effects restricts inferences about long-term or repeated
stimulation. Finally, athletes” baseline cortical excitability or training
levels (e.g., elite vs. amateur) may affect tDCS responsiveness, but
data limitations prevented deeper exploration. These limitations
suggest cautious interpretation of a-tDCSs broad applicability.
Future research should: 1) include multilingual literature to enhance
global representativeness; 2) conduct large-scale, multi-center trials
to improve statistical power; 3) standardize tDCS protocols (e.g.,
electrode placement, timing) to reduce variability; 4) explore
cumulative effects of long-term tDCS; 5) develop personalized
protocols to address individual athlete differences and validate a-

18 frontiersin.org


https://doi.org/10.3389/fphys.2025.1631905
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Jiang et al.

tDCS’s practical value in real competition settings. These directions
will further advance the optimized application of a-tDCS in
athletic training.

Coaches may use a-tDCS (1.6-2.0 mA, 16-20 min, targeting
M1 or dIPFC) as a pre-competition intervention to enhance
endurance performance (e.g., prolonging time to exhaustion) or
competitive-collaborative skills. However, the moderate certainty
for strength and precision skill tasks suggests cautious application,
recommending multi-target stimulation or higher-intensity
protocols to further validate efficacy. The moderate effect size and
acute nature indicate that coaches should temper expectations,
integrating a-tDCS with conventional training to maximize benefits
rather than relying solely on it.

5 Conclusion

The meta-analysis results show that the acute effects of a-
tDCS significantly improve athletes’ endurance and competitive-
collaborative skill performance by enhancing cortical excitability
and neuroplasticity in M1 and PFC, with optimal stimulation
parameters of 1.6-2.0 mA for 16-20 min. The effects on strength
and precision skill tasks are limited. Future research should optimize
stimulation strategies and incorporate neuroimaging techniques to
enhance the application value of a-tDCS in competitive training.
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