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Effects of different exercise 
interventions on bone mineral 
density in elderly 
postmenopausal women: a 
network meta-analysis

Mingyu Ma, Wentao Su* and Dansong Liu

School of Physical Education, Hubei University of Technology, Wuhan, Hubei, China

Background: Various exercise interventions have been widely applied to 
enhance site-specific bone mineral density in menopausal females. This network 
meta-analysis aims to assess and compare the impact of these interventions on 
improving BMD in this demographic.
Methods: A systematic search of PubMed, EMBASE, Cochrane Library, and Web 
of Science was made up to 4 December 2024 to detect randomized controlled 
trials (RCTs) comparing continuous endurance training whole-body vibration 
resistance training multicomponent training mind-body training intermittent 
training and combined training against control interventions. Primary outcomes 
included lumbar spine bone mineral density and femoral neck bone mineral 
density while secondary outcomes covered whole body bone mineral density 
and total hip bone mineral density A Bayesian random-effects NMA was 
performed.
Results: Fifty-five RCTs involving 3,453 participants were included. Compared 
with the control group, MCT demonstrated greater efficacy in improving FNBMD 
(mean difference [MD] 0.02; 95% credible interval [CrI] [0.01, 0.04]). Based on 
the surface under the cumulative ranking (SUCRA), MBT ranked highest for 
LSBMD (75.9%), CT for WBBMD (77.6%), and MBT for THBMD (60.7%), suggesting 
potential benefits of these interventions.
Conclusion: This study suggests that MBT, MCT, and CT may contribute to 
improving BMD in elderly postmenopausal women. However, further rigorously 
designed RCTs are warranted to validate these findings.
Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, 
identifier CRD42025636067.
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mind-body training, multicomponent training, combined training, postmenopausal, 
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 1 Background

With the growing aging population, the bone health of postmenopausal women 
has become a critical public health concern, particularly among the old population 
(Tartibian et al., 2011). The drop in estrogen levels during menopause catalyzes an 
accelerated process of bone resorption. This process ultimately leads to a marked depletion 
of bone mineral density (BMD) (Guadalupe-Grau et al., 2009). The resultant decline in
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BMD amplifies the susceptibility of osteoporotic fractures and 
associated complications, predisposing postmenopausal women 
to osteoporosis (OP) (Fu et al., 2011; De Aguiar et al., 2023). 
Notably, OP has been reported to impair functional ability 
and quality of life in this demographic (Ma et al., 2016; 
Benzinger et al., 2019; Autier et al., 2000), which is also strongly 
associated with elevated mortality rates, healthcare expenditures, 
and socioeconomic burdens on individuals, families, and society.

Currently, antiresorptive agents, especially bisphosphonates 
(BPPs), remain the mainstay pharmacological treatment for OP. 
However, due to their mechanism of binding to bone matrix and 
inhibiting bone resorption, they may also interfere with normal bone 
remodeling and reduce bone flexibility (Li et al., 2021; Russell et al., 
2007). In contrast, exercise interventions have demonstrated 
promising benefits in improving BMD, preventing fractures, 
and mitigating OP progression in postmenopausal women, with 
minimal adverse effects (Tarantino et al., 2017; Kemmler et al., 
2020). Accumulating evidence supports that exercise interventions, 
such as continuous endurance training (CET), resistance training 
(RT), mind-body training (MBT), whole-body vibration (WBV), 
combined training (CT), and multicomponent training (MCT), 
may effectively improve BMD in elderly postmenopausal women 
and further enhance their quality of life (de Oliveira et al., 2019; 
Aboarrage Junior et al., 2018; Marques et al., 2011a; Wen et al., 
2017; Ammann and Rizzoli, 2003; Zou et al., 2017; Hejazi et al., 
2022; Mohammad et al., 2020). Nevertheless, sustaining sufficient 
intensity and duration of exercise interventions may pose challenges 
for this demographic, making the identification of optimal exercise 
intervention essential (Burton et al., 2017; Sherrington et al., 2020).

Existing research on exercise interventions for BMD 
improvement in elderly postmenopausal females has produced a 
mosaic of inconsistent findings. For example, a meta-analysis by 
Hejazi et al. after incorporating 53 randomized controlled trials 
(RCTs) reported that RT, CT, and MBT significantly improved 
femoral neck bone mineral density (FNBMD), while CET and 
CT were effective in enhancing lumbar spine bone mineral density 
(LSBMD). Conversely, Mohammad Rahimi et al. (Mohammad et al., 
2020) observed no significant effects of CET on LSBMD or 
FNBMD. Notably, WBV appeared to outperform CET, RT, and 
CT in improving LSBMD (Mohammad et al., 2020). Additionally, 
the analysis of Zehnacker et al. on 20 RCTs (Zehnacker and 
Bemis-Dougherty, 2007) further highlighted that site-specific high-
intensity weight-bearing training improved BMD in the spine and 
hip among menopausal females (Zehnacker and Bemis-Dougherty, 
2007). These discrepancies may be ascribed to variations in exercise 
interventions, intervention durations, intensities, demographic 
characteristics, and study designs. Furthermore, the scarcity of high-
quality trials directly comparing different exercise interventions 
limits definitive conclusions regarding the most efficacious 
intervention (Hejazi et al., 2022). To date, systematic reviews 
and meta-analyses consistently report that exercise interventions 
help mitigate the loss of BMD in elderly postmenopausal women. 
However, the relative efficacy of various exercise interventions across 
demographics with osteoporosis, osteopenia, or normal bone mass 
remains unclear.

Network meta-analysis (NMA) facilitates the concurrent 
comparison of multiple exercise interventions, even when direct 
head-to-head trials are unavailable. Moreover, NMA allows for 

the ranking of interventions by efficacy outcome, thereby offering 
comprehensive evidence to inform clinical decision-making. 
Therefore, the objective of systematic review and NMA in this 
study is to elucidate the impacts of diverse exercise interventions 
on BMD among elderly postmenopausal women by synthesizing 
comparative evidence either directly or indirectly. The findings will 
provide scientifically grounded recommendations for designing 
exercise strategies specifically tailored to improve BMD in this 
demographic. 

2 Methods

2.1 Design and registration

The NMA adhered to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) Guidelines. The 
study protocol was prospectively registered in the International 
Prospective Register of Systematic Reviews (PROSPERO; 
Registration No. CRD42025636067). 

2.2 Inclusion and exclusion criteria

The inclusion criteria were defined using the PICOS framework 
(Participants, Interventions, Comparators, Outcomes, Study 
Design) as follows: (1) Participants: Postmenopausal women aged 
≥60 years with non-adherence to exercise guidelines (defined 
as engaging in less than 120 min of weekly physical activity). 
(2) Interventions: At least one form of exercise intervention 
(regardless of form or duration), including CET, RT, CT, WBV, 
INT, MBT, or MCT. These exercise interventions are among 
the most extensively investigated modalities for improving 
BMD in older postmenopausal women (de Oliveira et al., 2019; 
Aboarrage Junior et al., 2018; Marques et al., 2011a; Wang et al., 
2015; Li et al., 2023; Riaz et al., 2024). (3) Comparator: Non-
exercise control groups. (4) Outcomes: At least one of the following 
outcomes: Primary outcomes included LSBMD and FNBMD, while 
secondary outcomes covered whole body bone mineral density 
(WBBMD) and total hip bone mineral density (THBMD). (5) Study 
Design: Randomized controlled trials (RCTs) only. (6) Language: 
Studies published solely in English.

The exclusion criteria comprised: (1) Non-postmenopausal 
cohorts; (2) Studies with undefined intervention protocols; (3) Non-
RCT designs, such as cohort studies, review articles, case reports, 
descriptive studies, opinion pieces, or conference abstracts; (4) 
Studies with incomplete, inaccurate, or irretrievable data. 

2.3 Search strategy

Two investigators (M.M.Y. and L.D.S.) independently performed 
a comprehensive literature search in PubMed, Embase, the 
Cochrane Central Register of Controlled Trials (CENTRAL), 
and Web of Science up to 4 December 2024. No restrictions 
were imposed regarding publication type, date, or status. The 
search combined Medical Subject Headings (MeSH) and free-
text keywords, covering all known variants (postmenopausal) 
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AND (exercise OR physical activity OR continuous endurance 
training OR mind–body training OR intermittent training OR 
resistance training OR multicomponent training OR combined 
training) AND (RCT). To minimize the risk of missing eligible 
studies, reference lists of relevant articles were also manually 
screened by both investigators. (The full search strategy is 
detailed in Supplementary Appendix A). 

2.4 Study selection

Using the predefined inclusion and exclusion criteria, two 
investigators (M.M.Y and L.D.S) independently screened studies. 
All potentially relevant records were input into EndNote X9, 
with duplicates removed. Title/abstract screening was made 
to exclude irrelevant studies, followed by full-text evaluations. 
Discrepancies were settled via discussion or consultation with a 
third investigator (S.W.T). 

2.5 Data extraction and quality assessment

The information was gathered via a standardized data extraction 
form as follows: (1) Study characteristics, including the first author’s 
name, publication year, and country; (2) Participant characteristics, 
including age, sample size of intervention and control groups, and 
demographic type (healthy vs osteoporotic); (3) Intervention details, 
including exercise intervention measures and duration; (4) Reported 
outcomes. Data were extracted by one investigator (M.M.Y) and 
cross-validated by another investigator (L.D.S).

Two investigators (M.M.Y. and L.D.S.) independently examined 
the potential risk of bias for every included study via the Cochrane 
Risk of Bias 2.0 (ROB 2.0) tool (Sterne et al., 2019; McGuinness 
and Higgins, 2021). Any discrepancies were settled via discussion. 
The tool evaluates six domains: (1) Randomization process; (2) 
Deviations from intended interventions; (3) Missing outcome data; 
(4) Measurement of the outcome; (5) Selection of the reported result; 
(6) Overall bias. Each domain was assigned one of three ratings: “low 
risk,” “some concerns,” or “high risk.” The overall bias classification 
followed a hierarchical structure: “low risk” (all domains rated as 
low), “some concerns” (at least one domain with some concerns but 
none with high risk), or “high risk” (at least one domain rated as high 
risk). Discrepancies were resolved via discussion or, if necessary, 
consultation with a third investigator. 

2.6 Data synthesis and statistical analysis

Statistical models employing Bayesian frameworks were built via 
JAGS software (gemtc 0.8-2 and rjags 4–10 packages) in R (version 
4.4.3). Continuous outcomes were analyzed using mean differences 
(MDs) with 95% credible interval (CrI) to quantify effect sizes. 
Random-effects models addressed clinical heterogeneity across 
studies (e.g., country, exercise interventions, participant health 
status, intervention duration, calcium supplementation) throughout 
NMA. Four Markov Chain Monte Carlo (MCMC) chains were 
run for each outcome, with 50,000 iterations per chain, discarding 
the first 20,000 iterations as burn-in. Convergence was evaluated 

via trace plots and the Gelman–Rubin–Brooks diagnostic statistic 
(Brooks and Gelman, 1998). Relative intervention rankings by 
outcome were estimated through surface under the cumulative 
ranking (SUCRA) (Veron et al., 2016). Higher SUCRA values 
mean better intervention rankings. Model fit and consistency 
were assessed by comparing the Deviance Information Criterion 
(DIC). A DIC difference of less than 5 was considered indicative 
of good consistency, in which case the consistency model 
was retained (Dempster, 1997). Local inconsistencies in closed 
loops were analyzed via node-splitting. The presence of publication 
bias was systematically explored using adjusted funnel plots. 
Network plots and adjusted funnel plots were generated using Stata 
version 15.0. 

3 Results

3.1 Search results

The PRISMA flow diagram (Figure 1) details the study selection 
process. The initial search identified 13,300 records from the four 
databases. Following the removal of 4,869 duplicates, 8,192 studies 
were excluded via title/abstract screening. Full-text reviews excluded 
193 studies (non-RCT designs, irrelevant populations, or incomplete 
data) (details provided in Figure 1). An additional 9 records were 
identified through reference screening, resulting in 55 eligible 
studies eventually incorporated into the NMA.

3.2 Characteristics of included studies

Table 1 sets out the characteristics and detailed information 
of the studies incorporated into the NMA. Between 1998 and 
2024, fifty-five RCTs fulfilled the inclusion criteria. Geographically, 
seventeen studies were conducted in the Americas (de Oliveira et al., 
2019; Aboarrage Junior et al., 2018; Chubak et al., 2006; 
Moreira et al., 2014; Bocalini et al., 2010; Bocalini et al., 2009; Martin 
and Notelovitz, 1993; Bloomfield et al., 1993; Smidt et al., 1992; 
Grove and Londeree, 1992; Slatkovska et al., 2011; Jessup et al., 
2003; Brentano et al., 2008; Dalsky et al., 1988; Chuin et al., 
2009; Pruitt et al., 1995; Rhodes et al., 2000), seventeen in Asia 
(Tartibian et al., 2011; Wen et al., 2017; Wang et al., 2015; Li et al., 
2023; Riaz et al., 2024; Abdul-Al et al., 2024; Brooke-Wavell et al., 
1997; Lai et al., 2013; Song and Yang, 2021; Kwon et al., 2008; 
Iwamoto et al., 2001; Iwamoto et al., 1998; Ruan et al., 2008; 
Yamazaki et al., 2004; Yu et al., 2019; Nambi et al., 2020; Park et al., 
2008), fifteen in Europe (Marques et al., 2011a; Jamka et al., 
2021; Hartley et al., 2020; Marín-Cascales et al., 2019; Marin-
Cascales et al., 2015; Brooke-Wavell et al., 2001; von Stengel et al., 
2011; Verschueren et al., 2004; Englund et al., 2005; Marques et al., 
2011b; Kemmler et al., 2010; Korpelainen et al., 2006; Mosti et al., 
2013; Tolomio et al., 2010; Santin-Medeiros et al., 2015), five in 
Oceania (Nicholson et al., 2015; Young et al., 2007; Watson et al., 
2018; Beck and Norling, 2010; Lord et al., 1996), and one in 
Africa (ElDeeb and Abdel-Aziem, 2020). Collectively, these RCTs 
encompassed 3,453 menopause women aged between 54.1 and 82.3 
years, with sample sizes between 14 and 227 participants. Among the 
participants, 2,292 were healthy, 258 were classified as overweight 
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FIGURE 1
PRISMA flow diagram demonstrating the study selection process for the network.

or obese, and 903 were diagnosed with osteoporosis or osteopenia. 
The interventions varied across studies: seventeen studies involved 
CET (Aboarrage Junior et al., 2018; Wen et al., 2017; Moreira et al., 
2014; Martin and Notelovitz, 1993; Bloomfield et al., 1993; Grove 
and Londeree, 1992; Brooke-Wavell et al., 1997; Iwamoto et al., 
2001; Iwamoto et al., 1998; Yamazaki et al., 2004; Yu et al., 2019; 
Nambi et al., 2020; Jamka et al., 2021; Brooke-Wavell et al., 2001; 
Marques et al., 2011b; Kemmler et al., 2010; Tartibian et al., 2011), 
fourteen studies focused on RT (Chubak et al., 2006; Bocalini et al., 
2010; Bocalini et al., 2009; Smidt et al., 1992; Brentano et al., 
2008; Chuin et al., 2009; Pruitt et al., 1995; Rhodes et al., 2000; 
Abdul-Al et al., 2024; Verschueren et al., 2004; Marques et al., 

2011b; Mosti et al., 2013; Nicholson et al., 2015; Watson et al., 
2018), sixteen studies implemented MCT (Marques et al., 2011a; 
Chubak et al., 2006; Jessup et al., 2003; Dalsky et al., 1988; Lai et al., 
2013; Kwon et al., 2008; Park et al., 2008; Marín-Cascales et al., 2019; 
Marin-Cascales et al., 2015; von Stengel et al., 2011; Englund et al., 
2005; Kemmler et al., 2010; Korpelainen et al., 2006; Tolomio et al., 
2010; Nicholson et al., 2015; Lord et al., 1996), twelve studies 
utilized WBV (de Oliveira et al., 2019; Slatkovska et al., 2011; 
Lai et al., 2013; Song and Yang, 2021; Ruan et al., 2008; Marín-
Cascales et al., 2019; Marin-Cascales et al., 2015; von Stengel et al., 
2011; Verschueren et al., 2004; Santin-Medeiros et al., 2015; 
Beck and Norling, 2010; ElDeeb and Abdel-Aziem, 2020), five 
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studies employed CT (Wang et al., 2015; Li et al., 2023; Grove 
and Londeree, 1992; Jamka et al., 2021; Young et al., 2007), six 
studies incorporated MBT (de Oliveira et al., 2019; Wang et al., 
2015; Riaz et al., 2024; Nambi et al., 2020; Korpelainen et al., 
2006; Young et al., 2007), two studies utilized high-intensity INT 
(Smidt et al., 1992; Hartley et al., 2020). Intervention protocols are 
detailed in Supplementary Table S1.

3.3 Quality assessment

The risk of bias across the included RCTs was examined 
via standardized criteria. Out of the fifty-five studies, twenty-
five (45.5%) were assessed as having some concerns regarding 
bias, twenty-three (41.8%) were deemed low risk, and seven 
(12.7%) were considered high risk. Most RCTs adequately 
described their randomization procedures. However, the 
primary sources of bias stemmed from insufficient reporting on 
allocation concealment and blinding of outcome assessors. A 
comprehensive risk of bias assessment for every study is available 
in Supplementary Figure S1. Figure 2 sums up the risk of bias 
assessments.

3.4 NMA

3.4.1 Primary outcomes
3.4.1.1 LSBMD

A total of forty-one RCTs evaluated the effects of seven exercise 
interventions on LSBMD in postmenopausal women. NMA results 
(Figure 3A) revealed that, compared to the control group, WBV 
(MD: 0.03; 95% CrI [0.01, 0.04]), MCT (MD: 0.02; 95% CrI [0.00, 
0.05]), and RT (MD: 0.01; 95% CrI [0.00, 0.02]) significantly 
increased LSBMD. Conversely, CET (MD: 0.03; 95% CrI [0.01, 0.05]) 
was associated with a significant increase in LSBMD (Figure 3B). 
SUCRA analysis indicated that MBT ranked highest for enhancing 
LSBMD (75.9%), suggesting it may be a particularly promising 
intervention (Figure 3C).

3.4.1.2 FNBMD
Overall, thirty-eight RCTs assessed the impacts of seven 

exercise interventions on FNBMD in postmenopausal women 
(Figure 4A). NMA results (Figure 4B) showed that compared with 
the control group, MCT (MD 0.02; 95% CrI [0.00, 0.04]) and RT 
(MD 0.01; 95% CrI [0.01, 0.02]) significantly increased FNBMD 
(Figure 4B). In contrast, compared to CET, the control group 
(MD 0.02; 95% CrI [0.00, 0.04]) indicated that CET significantly 
reduced FNBMD in postmenopausal women (Figure 4B). Based 
on SUCRA, MCT achieved the highest ranking for improving 
FNBMD (77.3%), supporting its potential as the most effective 
intervention (Figure 4C).

3.4.2 Secondary outcomes
3.4.2.1 WBBMD

In total, fifteen RCTs explored the efficacy of five exercise 
interventions on WBBMD in postmenopausal women (Figure 5A). 
NMA results (Figure 5B) revealed no statistically significant 
disparities among the different exercise interventions (Figure 5B). 

SUCRA identified CT as the top-ranked intervention for WBBMD 
(77.6%), indicating its strong potential efficacy (see Figure 5C).

3.4.2.2 THBMD
In total, ten RCTs probed into the roles of five exercise 

interventions on THBMD in postmenopausal older women 
(Figure 6A). NMA results (Figure 6B) demonstrated that no 
statistically significant differences were found among the various 
exercise interventions (Figure 6B). SUCRA indicated that MBT 
ranked highest for increasing THBMD (60.7%), suggesting it may 
be a promising intervention (see Figure 6C).

3.5 Subgroup and sensitivity analyses

Only LSBMD and FNBMD met the criteria for subgroup 
analyses. For LSBMD, stratification by health status revealed that 
CET was significantly effective in healthy participants (MD 0.03; 
95% CrI [0, 0.07]), whereas WBV was significantly effective in those 
with osteoporosis (MD 0.05; 95% CrI [0.02, 0.09]). SUCRA rankings 
also identified CET (78.9%) and WBV (81.0%) as top interventions. 
This suggests that exercise interventions exert beneficial effects 
across different health statuses, although the optimal modality may 
vary. For FNBMD, CET (MD 0.02; 95% CrI [0, 0.04]) and MCT 
(MD 0.03; 95% CrI [0.01, 0.05]) were both significantly effective 
in healthy participants. No statistically significant differences 
were observed in osteoporotic participants, but SUCRA rankings 
placed MCT (79.2%) and WBV (76.4%) at the top. Notably, 
the ranking of WBV differed substantially from the overall 
results, highlighting the need for further validation with high-
quality RCTs (see Supplementary Figure S2A–C, S3A–C, S4A–C,
S5A–C).

Due to the limited number of eligible studies, subgroup analyses 
were not performed for WBBMD and THBMD; instead, sensitivity 
analyses were conducted. For WBBMD, exclusion of osteoporotic 
participants revealed no great differences among interventions, 
although SUCRA ranking placed CT (67.6%) as the leading 
intervention, consistent with the overall findings. This implies 
that health status has only a modest influence on whole-body 
bone mass. For THBMD, exclusion of osteoporotic participants 
likewise revealed no significant differences, but SUCRA rankings 
positioned MBT (61.8%) at the top, again aligning with the 
overall results. These findings imply that health status may have 
little impact on hip bone density, though the conclusions remain 
constrained by the limited evidence base. In summary, the results 
for WBBMD and THBMD should be interpreted cautiously, and 
additional high-quality RCTs are needed to substantiate these 
observations. (See Supplementary Figure S6A–C, S7A–C). 

3.6 Consistency and publication bias 
assessment

DIC served as a tool to compare consistency and inconsistency 
models. The variation in DIC values across all closed-loop models 
was lower than 5, indicating good model consistency with DIC. 
Node-splitting analysis was performed to assess and explore local 
inconsistencies in the closed loops, and the results showed no 
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FIGURE 2
Risk of bias assessments for included RCTs.

FIGURE 3
Network Diagram and NMA Results. (A) Network diagram for LSBMD (g/cm2). (B) Relative efficacy of diverse exercise interventions on LSBMD. Note: 
Estimates are expressed as MD with 95% CrI (in parentheses). Read comparisons between interventions from left to right. Effectiveness estimates are at 
the intersection of exercise intervention columns and rows. Significant results are shown in bold. (C) SUCRA for different exercise interventions on 
LSBMD. The exercise interventions in the plot are: MCT–Multicomponent training, MBT–Mind-body training, WBV–Whole-body vibration, 
RT–Resistance training, CET–Continuous endurance training, CT–Combined training, INT–Intermittent training, Con–Control group.

evidence of local inconsistency, as listed in Table 2. Regarding 
publication bias, adjusted funnel plots (Supplementary Figures S8-
S17) showed no traces of publication bias.

4 Discussion

4.1 Key findings

A comprehensive literature search identified 55 RCTs 
involving 3,454 participants, and a Bayesian NMA was 
conducted to evaluate the comparative effects of seven exercise 

interventions—namely CET, RT, MCT, MBT, WBV, INT, and 
CT—on BMD in postmenopausal women. Outcomes were 
analyzed across multiple skeletal sites, including the lumbar 
spine, femoral neck, total hip, and whole body. The results 
suggested MBT as a promising intervention for attenuating the 
loss of LSBMD, while MCT appeared potentially beneficial for 
improving FNBMD. In contrast, CET, CT, and INT showed no 
significant effects on the primary outcomes of BMD. For the 
secondary outcomes, SUCRA analysis ranked CT highest for 
WBBMD and MBT for THBMD, implying relative advantages 
of these modalities, although no definitive statistical superiority
was established. 
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FIGURE 4
Network Diagram and NMA Results. (A) Network diagram for FNBMD (g/cm2). (B) Relative effects of exercise interventions on FNBMD. Note: Estimates 
are presented as MD with 95% CrI (in parentheses). Read comparisons between interventions from left to right. Effectiveness estimates are at the 
intersection of exercise intervention columns and rows. Significant results are shown in bold. Continuous Endurance Training; Multicomponent 
Training; Resistance Training. (C) SUCRA for different exercise interventions on FNBMD. The exercise interventions in the plot are: 
MCT–Multicomponent training, MBT–Mind-body training, WBV–Whole-body vibration, RT–Resistance training, CET–Continuous endurance training, 
CT–Combined training, INT–Intermittent training, Con–Control group.

4.1.1 Effects of different exercise interventions on 
primary BMD outcomes
4.1.1.1 LSBMD

NMA revealed that MBT, primarily consisting of practices 
such as Baduanjin, Tai Chi, Yijinjing, and yoga, had the highest 
probability of improving LSBMD in postmenopausal women. 
These findings align with previous research by Li et al. (2023). 
Prior research reported that MBTs like Baduanjin may enhance 
musculoskeletal strength and flexibility, systematically engage joints 
and muscles, and improve balance, cardiopulmonary function, and 
mental wellbeing, thereby achieving holistic mind–body benefits 
(Liu et al., 2015). Some researchers hypothesize that these exercises 
could modulate endocrine function—for example, by elevating 
serum vitamin D levels, reducing parathyroid hormone, and 
increasing intestinal calcium absorption—mechanisms that could 
facilitate bone formation (Zhao et al., 2017). However, these 
mechanisms were not directly assessed in the present NMA and 
should therefore be interpreted as potential explanations rather 
than empirical evidence. Tai Chi, characterized by slow and fluid 
movements, has been reported to help prevent bone loss at the 
lumbar spine and proximal femoral neck in menopausal women 
(Zou et al., 2017). This benefit may be related to two mechanisms: 
first, engagement of the lumbar spine creates shear stress; second, 
repeated weight transfer between legs produces ground reaction 
forces (Wu and Hitt, 2005; Chang et al., 2014). Both mechanisms 
may stimulate osteogenesis in weight-bearing bones. Similarly, Yi 

Jin Jing, through stretching muscles and tendons, may enhance 
flexibility and joint mobility, potentially offering therapeutic benefits 
for bone health and overall wellbeing. Zou et al. (2017) noted 
that the unique low-impact nature of MBTs, such as Tai Chi and 
Baduanjin, not only supports bone metabolism and increases BMD 
but also minimizes injury risk, making them particularly suitable 
for elderly postmenopausal women (Shen et al., 2010). Considering 
physical, psychological, and social factors, MBTs such as Baduanjin 
and Tai Chi appear to be potentially valuable strategies for improving 
LSBMD in this demographic. 

4.1.1.2 FNBMD
This study indicated that MCT appears to be a potentially 

effective option for enhancing FNBMD in elderly postmenopausal 
women. MCT typically incorporates a combination of RT, CET, 
balance training, and flexibility exercises. Each component 
contributes independently, yet they act synergistically to improve 
both BMD and overall health. RT delivers mechanical loading that 
stimulates bone formation. CET enhances cardiovascular function 
and metabolic health. Balance training reduces the risk of falls, and 
flexibility exercises improve joint mobility and muscle coordination. 
Together, these components interact to facilitate gains in bone 
mineral density and overall physical wellbeing. Beyond these direct 
effects, potential biological mechanisms underlying the benefits 
of MCT warrant further attention. Previous studies suggest that 
comprehensive exercise programs can enhance blood circulation 
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FIGURE 5
Network Diagram and NMA Results (A) Network diagram for WBBMD (g/cm2). (B) Relative effects of different exercise interventions on WBBMD. Note: 
Estimates are presented as MD with 95% CrI (in parentheses). Read comparisons between interventions from left to right. Effectiveness estimates are at 
the intersection of exercise intervention columns and rows. Significant results are shown in bold. (C) SUCRA for different exercise interventions on 
WBBMD. The exercise interventions in the plot are: MCT–Multicomponent training, WBV–Whole-body vibration, RT–Resistance training, 
CET–Continuous endurance training, CT–Combined training, Con–Control group.

to bone tissue, thereby improving nutrient and oxygen delivery 
and supporting osteoblast activity (Renno et al., 2007). In addition, 
vascular endothelial cells can release local regulators such as nitric 
oxide, interleukin-6, and endothelin, which stimulate osteoblast 
differentiation and inhibit osteoclast activity. Importantly, recent 
experimental evidence highlights that mixed aerobic and anaerobic 
training protocols may also elicit endocrine responses that favor 
bone remodeling. For instance, Vasto et al. reported that high-
intensity trampoline-based training increased circulating GLP-1 and 
GIP levels in adult women. These peptides are known to influence 
glucose metabolism and bone turnover (Vasto et al., 2022). Although 
such mechanisms were not directly assessed in our NMA, they 
provide valuable insights suggesting that the effects of MCT on bone 
health may extend beyond mechanical loading to include hormonal 
and metabolic pathways.

Nevertheless, these mechanisms remain speculative in 
the context of this analysis. Future RCTs incorporating 
both BMD outcomes and biomarker assessments are 
essential to elucidate whether these endocrine pathways 
mediate the observed benefits of MCT on skeletal health in
postmenopausal women. 

4.1.2 Effects of different exercise interventions 
on secondary outcomes

SUCRA ranking identified CT and MBT as the most 
promising interventions for slowing the decline in WBBMD 
and THBMD, or the reduction of bone mass in postmenopausal 

women. A combination of CET and RT stimulates osteoblast 
activity through mechanical loading, promoting bone formation. 
Additionally, CET improves blood circulation and metabolism, 
and provides enhanced nourishment to the bones, collectively 
slowing the loss of WBBMD in postmenopausal women. MBTs, 
such as Baduanjin, Yijinjing, yoga, and Tai Chi, offer gentle 
mechanical loading to the bones, activating osteoblast activity 
and promoting bone formation. Furthermore, these exercises 
focus on balance, coordination, and muscle control, so that 
they are conducive to enhancing body stability and muscle 
strength, alleviating the risk of falls, and indirectly protecting bone 
health. Moreover, MBTs help alleviate stress, improve endocrine 
balance, and further attenuate the loss of THBMD in elderly
postmenopausal women. 

4.2 Differences in interventions and 
participants and their impact

Although exercise modalities were categorized as CET, RT, MCT, 
MBT, WBV, INT, and CT, the specific intervention protocols across 
studies varied in intensity, frequency, duration, loading pattern, 
and supervision (Supplementary Table S1). This heterogeneity may, 
in part, explain the differences in effect sizes. For example, 
WBV varied significantly in frequency and acceleration, potentially 
leading to inconsistent skeletal responses. Mind-body training, 
while generally producing lower impact loads, may improve lumbar 
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FIGURE 6
Network Diagram and NMA Results. (A) Network diagram for THBMD (g/cm2). (B) Relative effects of different exercise interventions on total hip bone 
mineral density (THBMD). Note: Estimates are presented as MD with 95% CrI (in parentheses). Read comparisons between interventions from left to 
right. Effectiveness estimates are at the intersection of exercise intervention columns and rows. Significant results are shown in bold. (C) SUCRA for 
different exercise interventions on THBMD. The exercise interventions in the plot are: MCT–Multicomponent training, MBT–Mind-body training, 
WBV–Whole-body vibration, RT–Resistance training, CET–Continuous endurance training, Con–Control group.

spine stability and reduce fall risk, explaining its relative advantage 
in improving LSBMD rather than the hip. Intervention duration 
and adherence also influenced the results. Hence, these differences 
should be considered when interpreting the pooled results. 
More standardized reporting and protocol design is needed in
future trials.

Collectively, the subgroup and sensitivity analyses indicate 
that participant characteristics have limited influence on the 
overall conclusions. Specifically, CET and WBV appear particularly 
beneficial in improving LSBMD among osteoporotic women, while 
MCT demonstrates relative advantages in enhancing FNBMD, 
especially in healthy participants. These findings are consistent with 
the exercise characteristics of osteoporotic populations: given their 
reduced bone mass and fragile skeletal architecture, osteoporotic 
women are typically unsuitable for high-impact or high-load 
exercise. Instead, moderate-intensity, continuous aerobic exercise 
(e.g., CET) offers a safe option that stimulates bone metabolism 
and slows bone loss (Papaioannou et al., 2010; Yagami et al., 
2014). Moreover, this population often experiences decreased 
muscle strength and balance, leading to elevated fall risk. WBV 
provides skeletal loading under low mechanical stress and also 
improves lower-limb strength and balance, thereby enhancing bone 
density and reducing fall risk simultaneously (Rayman et al., 2011; 
Triunfo et al., 2013; Author anonymous, 2023). In summary, these 
results underscore the differential effects of exercise interventions 
across populations and highlight the need for future studies to design 

exercise prescriptions for osteoporotic women that are both safer 
and more effective. 

5 Strengths and limitations

To the best of our knowledge, this NMA marks a pioneering 
endeavor to comprehensively evaluate and compare the 
diverse impacts of exercise interventions on BMD in elderly 
postmenopausal women, while simultaneously establishing a 
comprehensive ranking of these interventions based on their 
efficacy. This study unveils profound insights into the optimal 
interventions for fortifying BMD in this demographic. However, 
several limitations must be acknowledged. First, the relatively 
constrained sample sizes and the paucity of included studies 
could potentially compromise the precision and generalizability 
of the findings. Second, the considerable variability in exercise 
protocols, participant profiles, as well as the intensity, frequency, 
and duration of physical activity across studies introduces 
an element of heterogeneity. Further stratification by baseline 
BMD status or detailed age categories was not feasible due to 
insufficient data. Nevertheless, differences in baseline BMD levels 
and age distributions across studies may have influenced the 
observed outcomes. However, the limited reporting prevented more 
comprehensive exploration. In addition, the exclusive reliance on 
English-language literature may introduce potential selection bias. 
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TABLE 2  Local inconsistency evaluation and exploration for closed-loop results using node splitting method.

Outcomes Comparison Direct Indirect Network P.Value CrI

Lumbar spine Con vs CET −0.03 (−0.05,-0.01) −0.04 (−0.18, 0.11) −0.03 (−0.05,-0.01) 0.86

Lumbar spine MBT vs CET 0.02 (−0.05, 0.10) −0.01 (−0.08, 0.05) 0.01 (−0.04, 0.06) 0.51

Lumbar spine MBT vs Con 0.04 (−0.01, 0.10) 0.01 (−0.11, 0.14) 0.04 (−0.01, 0.09) 0.69

Lumbar spine MBT vs CT −0.01 (−0.18, 0.14) 0.03 (−0.05, 0.11) 0.02 (−0.05, 0.09) 0.67

Lumbar spine WBV vs MBT 0.01 (−0.09, 0.12) −0.02 (−0.07,0.04) −0.01 (−0.06, 0.05) 0.64

Lumbar spine WBV vs MCT −0.00 (−0.06,0.06) 0.01 (−0.02, 0.03) 0.01 (-0.02.0.03) 0.85

Lumbar spine WBV vs RT −0.01 (-0.09,0.08) 0.02 (−0.00,0.04) 0.02 (−0.00,0.04) 0.52

Femoral neck Con vs CET −0.02 (−0.04,-0.00) −0.01 (−0.09,0.06) −0.02 (−0.04,0.00) 0.85

Femoral neck CT vs CET −0.00 (−0.05,0.05) −0.00 (−0.07,0.05) −0.00 (−0.04, 0.04) 0.89

Femoral neck RT vs CET −0.01 (−0.08, 0.05) −0.01 (−0.03, 0.01) −0.01 (−0.03,0.01) 0.86

Femoral neck CT vs Con 0.02 (−0.03.0.07) 0.02 (−0.04, 0.08) 0.01 (−0.02,0.05) 0.94

Femoral neck MBT vs CT 0.00 (−0.07, 0.06) −0.01 (−0.08,0.05) −0.01 (-0.05,0.03) 0.76

Femoral neck WBV vs MBT 0.00 (−0.07, 0.08) 0.00 (−0.02, 0.03) 0.00 (−0.02, 0.03) 0.98

Femoral neck WBV vs MCT 0.01 (−0.12,0.10) 0.01 (−0.04,0.01) −0.01 (−0.03,0.01) 0.98

Whole body Con vs CET −0.02 (−0.06,0.02) −0.02 (−0.11, 0.06) −0.02 (−0.05, 0.01) 0.89

Whole body CT vs CET 0.01 (-0.05,0.06) 0.01 (−0.06,0.08) 0.01 (−0.03, 0.05) 0.89

Whole body CT vs Con 0.04 (−0.02, 0.09) 0.02 (−0.05, 0.09) 0.03 (−0.01, 0.07) 0.70

Whole body MCT vs Con 0.01 (−0.03,0.04) 0.02 (−0.04 0.08) 0.01 (−0.02, 0.03) 0.64

Whole body RT vs Con 0.02 (−0.02, 0.06) 0.00 (−0.05, 0.06) 0.01 (−0.02, 0.04) 0.62

Whole body RT vs MCT −0.00 (−0.04,0.04) 0.01 (−0.04, 0.06) 0.00 (−0.02,0.03) 0.68

Whole body WBV vs MCT −0.01 (-0.09,0.08) 0.00 (−0.06,0.06) −0.00 (−0.05.0.04) 0.93

Whole body WBV vs RT 0.00 (−0.06, 0.07) −0.02 (−0.10,0.06) −0.00 (−0.05,0.04) 0.66

Total hip RT vs CET 0.01 (−0.08, 0.11) −0.01 (−0.08,0.06) −0.01 (−0.05, 0.05) 0.67

Total hip WBV vs MCT −0.00 (−0.06,0.06) −0.02 (−0.10,0.06) −0.01 (−0.05, 0.04) 0.70

Therefore, more high-quality RCTs are necessary to validate the 
results of this study. 

6 Conclusion

Currently, no single exercise intervention has been shown to 
unequivocally optimize BMD across all skeletal sites in elderly 
postmenopausal women. MBT emerged as a potentially effective 
intervention for slowing BMD decline and preserving bone mass in 
the lumbar spine and total hip joint. MCT appeared most promising 
for enhancing FNBMD, while CT showed potential benefits in 

sustaining WBBMD in postmenopausal women. Given the inherent 
constraints of current clinical research, future research should 
focus on larger cohorts, extended follow-up durations, and more 
stringent research frameworks to substantiate these promising yet 
preliminary findings.
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