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Objective: To evaluate and compare the effectiveness of different physical
training environments and modalities on swimming performance and sport-
specific skills in competitive swimmers using a two-tier network meta-analysis.

Methods: A systematic search of six databases identified 36 randomized
controlled trials involving 844 competitive swimmers. A first-tier network meta-
analysis compared aquatic, dry-land, and combined training environments
across performance outcomes (25 m, 50 m, 100 m, 200 m times) and sport-
specific metrics (start time, turn time, swim velocity, stroke rate, stroke length).
A second-tier analysis further examined specific training modalities within
combined and dry-land categories. Mean differences (MD) and standardized
mean differences (SMD) with 95% confidence intervals (CI) were reported;
interventions were ranked using surface under the cumulative ranking
curve (SUCRA).

Results: Combined training showed the highest efficacy across multiple
outcomes. Compared to control, it significantly improved 100 m time (MD =
−2.01 s; 95% CI: −2.87 to −1.16), swimming velocity (MD = 1.27 m/s; 95% CI:
0.61–1.94), stroke rate (SMD = 1.63; 95% CI: 0.92–2.34), and stroke length (SMD
= 0.86; 95% CI: 0.23–1.49). In the second-tier analysis, water plus dry-land
resistance training (W + DRT) ranked highest across 50 m, 100 m, swim velocity,
and stroke metrics. Core training and power training showed specific benefits
for 25 m sprint (MD = −0.90s; 95% CI: −1.79 to −0.01) and take-off velocity (MD
= 0.18 m/s; 95% CI: 0.03–0.32).

Conclusion: Combined aquatic and dry-land training—especially W +
DRT—most effectively improves swimming performance and sport-specific
skills. Core and power training function as targeted adjuncts. These findings
provide a concise, precision-based prescription for physical preparation in
competitive swimming.
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1 Introduction

Competitive swimming is a highly technical and physically
demanding sport that requires the integration of strength, power,
speed, and endurance across a wide range of competitive distances
(Price et al., 2024). While in-water technique and training
remain central to performance development, growing evidence
suggests that supplementary physical training beyond standard
swimming routines is essential for optimizing athletic output.
These components are critical to competitive success in both
youth and adult swimmers (Price et al., 2024; Aspenes et al.,
2009). Additional physical conditioning—targeting muscular
strength, power, and neuromuscular control—has been shown
to enhance key performance parameters such as swim velocity,
stroke rate, stroke length, and explosive actions during starts and
turns (Fone and van den Tillaar, 2022). These components are
critical to competitive success, particularly in sprint events where
minimal differences in power output and movement efficiency
can determine outcomes (Zemková and Zapletalová, 2022). As
such, structured physical training has become an indispensable
component of comprehensive performance enhancement programs
in both youth and competitive swimmers.

Resistance training (muscular contractions against external
load) is widely used in swimming to build strength (Jin et al., 2024).
Surveys of elite strength and conditioning coaches indicate that 90%
of high-performance swimprograms integrate both land- andwater-
based resistance modalities (Crowley et al., 2018). Such training
may be performed in the water (e.g., using paddles, drag suits,
tethers or swim flumes) or on land (e.g., weightlifting, plyometric
jumps or swim-specific ergometry). Dry-land exercises—endorsed
by national coaching guidelines—allow heavy loading to target
maximal strength and power, whereas aquatic drills provide high
specificity and reducedmusculoskeletal impact (Morou et al., 2012).
High-intensity interval training (HIIT) may be applied either in
the pool (short sprint repeats) or on land (cycling or running
intervals) to improve cardiovascular and metabolic conditioning.
Core stability and neuromuscular exercises (using mats, Swiss balls
or other devices) are also common to enhance trunk control and
streamline position. Coaches often combine modalities; indeed,
a recent review found that combined swimming-plus-strength
training regimens produced larger performance gains than swim-
only training (Fone and van den Tillaar, 2022), suggesting an
additive benefit of integrating aquatic and dry-land approaches.

Several systematic reviews and meta-analyses have examined
targeted training interventions in swimmers. For example, a
recent meta-analysis reported that resistance training significantly
enhanced swimmers’ upper-body strength and front-crawl
performance (likely via increased stroke rate) (Jin et al., 2024).
Another meta-analysis found that plyometric jump training in

Abbreviations: RCT, Randomized Controlled Trial; NMA, Network Meta-
Analysis; SUCRA, Surface Under the Cumulative Ranking Curve; MD, Mean
Difference; SMD, Standardized Mean Difference; HIIT, High-Intensity Interval
Training; PT, Power Training; RT, Resistance Training; CT, Core Training; PJT,
Plyometric Jump Training;W+DRT,Water plus Dry-land Resistance Training;
A-HIIT + L-RT, Aquatic High-Intensity Interval Training plus Land Resistance
Training; RoB 2, Revised Cochrane Risk of Bias Tool; CI, Confidence Interval;
CON, Control group.

water sports significantly improved swimmers’ physical fitness
and sport-specific outputs (such as starts and turns) compared to
conventional training (Ramirez-Campillo et al., 2022). A systematic
review of strength-training methods in swimming concluded that
all intervention types yielded modest gains (2%–2.5%) in race
performance (Lum and Barbosa, 2019) with combined swim-
plus-strength approaches tending to show slightly greater effects.
However, these analyses mainly compared each modality to control
or usual training and did not directly contrast multiple modalities
with each other. As a result, there is no clear consensus on the
relative efficacy of aquatic versus dry-land versus combined training
approaches. This gap highlights the need for an integrative analysis
of all modalities.

Network meta-analysis (NMA) provides a rigorous and
comprehensive statistical approach to simultaneously compare
multiple interventions by synthesizing both direct and indirect
evidence, thereby yielding coherent estimates across an entire
treatment network and allowing probabilistic ranking of
comparative efficacy (e.g., SUCRA) (Salanti, 2012; Rücker and
Schwarzer, 2014). Unlike traditional pairwise meta-analysis,
NMA enables the estimation of relative effectiveness across
a full set of competing interventions within a connected
evidence structure. When intervention strategies differ along
more than one dimension (e.g., training environments and
specific training modalities), a hierarchical or “two-tier” NMA
framework is particularly relevant to preserve clinical coherence
and interpretability (Welton et al., 2009; Nikolakopoulou et al.,
2014). Therefore, the present study employed a two-level NMA
to systematically evaluate the effectiveness of physical training
strategies for swimmers. In the first stage, we examined the
effects of different training environments, including aquatic, dry-
land, and combined approaches, on swimming performance and
sport-specific outcomes. Based on the most effective training
environment identified in the first-tier analysis, a second-tier
NMA was conducted to further compare the effectiveness of
specific training modalities, such as strength training, plyometric
training, and core training. This hierarchical approach provides
more detailed and clinically applicable evidence for optimizing
training prescriptions in competitive swimming.

2 Methods

This systematic review and NMA was reported according to
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) 2020 statement and its extension for network
meta-analyses (PRISMA-NMA) (Hutton et al., 2015; Page et al.,
2021). Ethical approval and consent statements were not required as
this study synthesizes previously published data. The protocol was
prospectively registered (CRD420251059608).

2.1 Data sources and search strategy

A systematic literature search was conducted across PubMed,
Medline, Embase, PsycINFO, Cochrane Central Register of
Controlled Trials (CENTRAL), and Web of Science from database
inception to 18 May 2025. The search strategy included key terms
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such as “swimming,” “athletes,” “training,” “strength exercise,” and
“sports performance.” The full search strategy, detailing exact
terms and combinations, is provided in Supplementary Material S1.
Reference lists from included studies and bibliographies of relevant
systematic reviews published within the past 5 years were manually
reviewed to identify additional eligible studies. Two independent
reviewers screened titles, abstracts, and full texts, with discrepancies
resolved through discussion or arbitration by a third reviewer.

2.2 Study selection

Studies were included if they met the following criteria
(Price et al., 2024): participants were competitive swimmers (e.g.,
professional, amateur, or youth swimmers) (Aspenes et al., 2009);
interventions included any type of physical training aimed at
improving swimming performance (Fone and van den Tillaar,
2022); control conditions included no intervention, regular
swimming training, or alternative physical training modalities
for head-to-head comparisons in the network meta-analysis
(Zemková and Zapletalová, 2022); reported at least one
performance-related outcome such as race performance or sport-
specific skills; and (Jin et al., 2024) randomized controlled trial
(RCT) design.

Studies were excluded if they (Price et al., 2024): recruited non-
swimming athletes or special populations (e.g., hearing-impaired,
disabled swimmers) (Aspenes et al., 2009); evaluated acute effects
of training (Fone and van den Tillaar, 2022); combined physical
training with non-training interventions (e.g., electrical stimulation,
nutritional supplementation) (Zemková and Zapletalová, 2022);
lacked clear description of training types; or (Jin et al., 2024) did
not report means and standard deviations (SD), and data were
unobtainable after repeated attempts at contacting authors. Two
reviewers independently assessed eligibility based on predefined
criteria through examination of titles, abstracts, and full texts.

2.3 Data extraction

Eligible studies were managed using EndNote X9 software.
Two reviewers independently extracted relevant publication details
(authors, title, year, journal), participant characteristics (sample
size, age, gender), intervention specifics (training content, intensity,
duration, frequency, and intervention period), and outcome
measures (Supplementary Material S3). Change scores (endpoint
minus baseline values), SDs, and sample sizes were extracted for
effect size calculations. Missing mean changes and SDs were derived
following guidelines from the Cochrane Handbook (Higgins and
Green, 2008). Where necessary, authors were contacted at least four
times over 6 weeks to obtain missing data.

2.4 Outcomes

Primary outcomes included swimming performance and sport-
specific skills. Swimming performance was assessed via competitive
times over standard distances (25 m, 50 m, 100 m, 200 m). Sport-
specific skills included start speed, turn time, start reaction time,

swimming velocity, stroke rate, and stroke length,measured through
standardized timing systems, digital analysis, or biomechanical
evaluations.

2.5 Risk of bias assessment

Risk of bias was evaluated at the study level using the revised
Cochrane risk-of-bias tool (RoB 2) (Sterne et al., 2019), which
addresses domains including randomization process, deviations
from intended interventions, missing outcome data, measurement
of outcomes, and selection of reported results. Discrepancies were
resolved through consultation with a third reviewer to ensure
rigorous, unbiased evaluation of included studies.

2.6 Data coding

A two-tiered network meta-analysis approach was employed.
Initially, studies were categorized into aquatic training, dry-land
training, combined aquatic and dry-land training, and control
groups (CON). Aquatic training (ART, AST) was defined as
supplemental in-water interventions—such as tethered swimming,
drag suit drills, paddle exercises, or swim-flume sessions—explicitly
administered in addition to athletes’ regular pool workouts,
thereby excluding routine swim-only training. Dry-land training
(DRT) encompassed land-based modalities—including resistance
exercises, plyometric drills, high-intensity interval training, core
stability work, and power development activities—delivered
alongside usual swim practice to augment performance. Combined
training referred to the concurrent application of both aquatic and
dry-land modalities, while control groups continued regular swim
training or received no additional intervention. Subsequently, for
a more detailed second-tier analysis, aquatic training was divided
into aquatic resistance training (ART) and aquatic speed training
(AST); dry-land training was further subdivided into core training
(CT), high-intensity interval training (HIIT), plyometric jump
training (PJT), power training (PT), and resistance training (RT);
and combined training was separated into combined aquatic HIIT
and land resistance training (A-HIIT + L-RT) and combined water
and dry-land resistance training (W + DRT).

2.7 Data analysis

Data were analyzed using Stata version 17.0 (StataCorp LLC,
Texas, United States). Network meta-analyses compared the effects
of different training modalities on swimming performance and
specific skills. Initially, a first-tier NMA assessed the comparative
effectiveness among aquatic, dry-land, and combined training
modalities. Based on these results, a second-tier NMA was
conducted to examine the efficacy of distinct training approaches
within the most effective category identified in the first-tier
analysis. Network plots were generated to illustrate the comparative
connections among interventions.

Considering anticipated clinical heterogeneity, random-effects
models were utilized to accommodate within- and between-
study variability. Due to methodological and measurement
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differences in stroke rate and stroke length, standardized mean
differences (SMD) with 95% confidence intervals (CIs) were
used; all other outcomes were expressed as mean differences
(MD) with 95% CIs. Heterogeneity was evaluated using
the I2 statistic, categorized as low (25%), moderate (50%),
or high (75%). Bayesian frameworks implemented through
Stata packages ‘network’ and ‘mvmeta’ facilitated the network
meta-analysis.

Interventions were ranked according to the Surface Under the
Cumulative Ranking curve (SUCRA) values, with higher SUCRA
indicating greater relative effectiveness. Adjusted funnel plots and
Egger’s test assessed publication bias, with a p-value <0.05 indicating
potential bias (Chaimani et al., 2013). Prediction interval plots
were also generated to further explore heterogeneity and variability
in effect sizes. All statistical tests were two-sided, and statistical
significance was set at p < 0.05.

3 Results

3.1 Characteristics of included studies

A total of 2,844 records were initially identified through
electronic database searches. After removing 1917 duplicates, 927
records underwent title and abstract screening, resulting in the
exclusion of 764 articles. Subsequently, 158 articles were assessed
for full-text eligibility, ultimately leading to the inclusion of 36
randomized controlled trials (RCTs), involving 844 swimmers
in the systematic review and network meta-analysis (Figure 1)
(Aspenes et al., 2009; Amara et al., 2022; Amara et al., 2021;
Amara et al., 2023; Amaro et al., 2017; Aouani et al., 2024;
Bishop et al., 2009; Born et al., 2020; Breed and Young, 2003;
Caas et al., 2020; Chortane et al., 2022; Cossor et al., 1999;
Czuba et al., 2017; Dragunas et al., 2012; Garrido et al., 2010;
YGJAJoE and Training, 2018; Girold et al., 2006; Girold et al.,
2012; Girold et al., 2007; Gourgoulis et al., 2019; Jones et al.,
2017; Karpiński et al., 2020; Khiyami et al., 2022; Kilen et al.,
2014; Lopes et al., 2021; Naczk et al., 2017; Norberto et al.,
2023; Nugent et al., 2019; Patil et al., 2014; Potdevin et al., 2011;
Sadowski et al., 2020; Sammoud et al., 2021; Sammoud et al.,
2019; Sperlich et al., 2010; Toussaint and Vervoorn, 1990;
Weston et al., 2015). Detailed characteristics of these studies are
presented in Supplementary Material 2.

The included studies were published between 1990 and 2024,
with amedian publication year of 2017. Sample sizes ranged from 12
to 60 participants per study, with a median of 22 swimmers. Among
the studies, three exclusively involved female participants, while
14 exclusively involved males. Because most trials did not report
separate outcomedata by sex,wewere unable to perform sex-specific
analyses; thus, pooled effect estimates represent mixed-sex cohorts
without adjustment for potential sex differences. Participants’ ages
ranged from 10.0 to 21.4 years, with a median age of 16.2 years.
Thirty-four studies provided detailed anthropometric data, with
participants’ average heights ranging from 140 cm to 183 cm
(median 171 cm), and average body weights ranging from 36.2 kg
to 78.9 kg (median 65.4 kg).

3.2 Results of network meta-analysis

3.2.1 First-tier network meta-analysis
3.2.1.1 Swimming performance

The first-tier network meta-analysis for 25 m performance
included six studies with 140 swimmers Figure 2. As shown in
Figure 3, combined training ranked highest according to the SUCRA
rankings (85.2%), followed by dry-land training (62.5%). Compared
to the control (CON) group, combined training (MD = −0.90, 95%
CI: 1.77 to −0.03) and dry-land training (MD = −0.57, 95% CI: 1.11
to −0.02) significantly improved 25m performance (Table 1).

For 50m performance, 27 studies involving 570 swimmers were
analyzed Figure 3. Combined training demonstrated the highest
efficacy (SUCRA = 97.2%), followed by dry-land training (SUCRA
= 58.4%). Both combined (MD = −1.01, 95% CI: 1.66 to −0.37) and
dry-land training (MD = −0.41, 95% CI: 0.68 to −0.14) significantly
reduced 50m swim times compared to CON (Table 1).

In the 100 m performance analysis (15 studies, 317 swimmers),
combined training was ranked highest (SUCRA = 99.5%),
significantly outperforming dry-land (MD = −1.22, 95% CI: 2.28
to −0.16), aquatic (MD = −1.72, 95% CI: 2.92 to −0.53), and CON
training (MD = −2.01, 95% CI: 2.87 to −1.16). Dry-land training
also significantly improved performance compared to CON (MD =
−0.79, 95% CI: 1.41 to −0.17; Table 1).

The 200 m performance analysis (8 studies, 155 swimmers)
revealed combined training as optimal (SUCRA = 91.5%), followed
by aquatic training (SUCRA = 34.0%). However, no significant
differences were detected among interventions (Table 1).

3.2.1.2 Sport-specific skills
For start time, four studies with 98 swimmers indicated

combined training as the optimal method (SUCRA = 90.7%),
followed by dry-land (SUCRA = 53.9%; Figures 4, 5). No
statistically significant differences were found among the
interventions (Table 1).

Three studies involving 76 swimmers evaluated turn time.
Combined training was optimal (SUCRA = 99.2%), significantly
outperforming dry-land (MD = −0.25, 95% CI: 0.49 to −0.02) and
CON (MD = −0.27, 95% CI: 0.42 to −0.12; Table 1).

Swimming velocitywas assessed in nine studies (210 swimmers),
identifying combined training as most effective (SUCRA = 99.8%).
Combined training significantly improved velocity compared to
dry-land (MD = 1.01, 95% CI: 0.25–1.77), aquatic (MD = 1.23, 95%
CI: 0.36–2.10), and CON (MD = 1.27, 95% CI: 0.61 to 1.94; Table 1).

Stroke rate was analyzed in 13 studies (291 swimmers), with
combined training (SUCRA = 100%) significantly outperforming
aquatic (SMD = 1.38, 95% CI: 0.58–2.18), dry-land (SMD = 1.57,
95% CI: 0.79–2.36), and CON groups (SMD = 1.63, 95% CI:
0.92 to 2.34; Table 1).

Stroke length was evaluated across 13 studies (284 swimmers),
showing combined training as optimal (SUCRA = 98.2%).
Combined training significantly improved stroke length compared
to aquatic (SMD = 0.83, 95% CI: 0.09–1.56) and CON (SMD = 0.86,
95% CI: 0.23 to 1.49; Table 1).

3.2.2 Second-tier network meta-analysis
Based on the results of the first-tier network meta-analysis,

combined training consistently ranked as the most effective
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FIGURE 1
PRISMA Flow diagram of the search process for studies.

intervention for improving both swimming performance and
sport-specific skills, with dry-land training frequently ranking
second. Furthermore, dry-land training demonstrated statistically
significant improvements over control in several performance
indicators (e.g., 25 m, 50m, and 100 m swim times). Therefore,
a second-tier network meta-analysis was conducted to further
evaluate the comparative effectiveness of specific trainingmodalities
within the combined and dry-land domains.

3.2.2.1 Swimming performance
As shown in Figure 6 the second-tier network meta-analysis for

25 m performance included 7 studies with a total of 161 swimmers,
evaluating different formats of combined and dry-land training. As
illustrated in Figure 7 (7.1), core training (CT) demonstrated the
highest probability of being the most effective intervention (SUCRA
= 77.1%), followed by combined water and dry-land resistance
training (W + DRT, SUCRA = 70.6%). As shown in Table 2, W +
DRT significantly reduced 25 m swim time compared to the control
group (MD = −0.90, 95% CI: 1.79 to −0.01).

For 50m performance, 21 studies with 481 swimmers were
analyzed Figure 7 (7.2). Power training (PT) ranked highest
(SUCRA= 96.0%), followed byW+DRT (SUCRA= 80.7%). Table 2
shows that PT significantly improved performance compared to
HIIT (MD = −2.11, 95% CI: 4.10 to −0.12), RT (MD = −2.28, 95%
CI: 4.20 to −0.35), andCON (MD=−2.44, 95%CI: 4.41 to −0.47).W
+ DRT also significantly outperformed HIIT (MD = −0.85, 95% CI:
1.61 to −0.08), RT (MD = −1.02, 95% CI: 2.01 to −0.02), and CON
(MD = −1.18, 95% CI: 1.89 to −0.47). In addition, HIIT showed a

moderate but significant benefit over CON (MD = −0.33, 95% CI:
0.62 to −0.04).

The 100 m analysis included 11 studies with 250 swimmers
Figure 7 (7.3).W+DRT ranked highest (SUCRA= 85.3%), followed
by combined aquatic HIIT and land strength training (A-HIIT + L-
RT, SUCRA = 69.2%). As shown in Table 2, W + DRT significantly
outperformed HIIT (MD = −1.80, 95% CI: 3.18 to −0.42) and
CON (MD = −2.35, 95% CI: 3.63 to −1.07). A-HIIT + L-RT also
significantly improved performance compared to CON (MD =
−1.74, 95% CI: 2.89 to −0.58), and HIIT significantly outperformed
CON (MD = −0.55, 95% CI: 1.07 to −0.03).

In the 200m event, five studies comprising 114 swimmers were
included (Figure 6). Figure 7 (7.4) PJT showed the highest SUCRA
ranking (79.8%), followed by PT (63.2%).However, Table 2 indicates
that no statistically significant differences were observed between
interventions.

3.2.2.2 Sport-specific skills
As shown in Figure 8 the second-tier meta-analysis for take-

off velocity included five studies with 120 swimmers. As shown
in Figure 9 (9.1), CT ranked highest (SUCRA = 78.1%), followed
by PJT (SUCRA = 57.6%). Table 2 shows that PJT significantly
improved take-off velocity compared to CON (MD = 0.18, 95% CI:
0.03–0.32).

In the start time analysis (4 studies, 98 swimmers), W + DRT
ranked highest (SUCRA=71.7%), followed byCT (SUCRA=54.9%;
Figure 9 (9.2)). Table 2 shows no significant differences between
interventions.
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FIGURE 2
Network plots of first-tier network meta-analysis for swimming performance. 1: 25 m performance; 2: 50 m performance; 3: 100 m performance; 4:
200 m performance.

For turn time (3 studies, 76 swimmers), W + DRT was
optimal (SUCRA = 59.0%), followed by CT (SUCRA = 49.2%;
Figure 9 (9.3)). No statistically significant differences were identified
(Table 2).

Swimming velocity was evaluated in 7 studies with 176
swimmers Figure 9 (9.4). W + DRT ranked highest (SUCRA =
87.8%), followed closely by A-HIIT + L-RT (SUCRA = 86.7%).
W + DRT significantly outperformed CT (MD = 1.08, 95% CI:
0.05–2.10), CON (MD = 1.29, 95% CI: 0.35–2.23), and HIIT (MD
= 1.82, 95% CI: 0.42–3.22). A-HIIT + L-RT also demonstrated
superiority over CT (MD = 1.05, 95% CI: 0.04–2.07), CON (MD
= 1.26, 95% CI: 0.33–2.19), and HIIT (MD = 1.80, 95% CI:
0.40 to 3.19; Table 2).

Stroke rate was examined in 9 studies with 216 swimmers
Figure 9 (9.5).W+DRT ranked highest (SUCRA= 96.3%), followed
byA-HIIT+L-RT (SUCRA=80.9%).As shown inTable 2,W+DRT
significantly improved stroke rate compared toRT (SMD=1.55, 95%
CI: 0.31–2.78), PT (SMD = 1.64, 95% CI: 0.37–2.90), CON (SMD =
2.01, 95% CI: 0.94–3.08), and CT (SMD = 2.08, 95% CI: 0.93–3.22).
A-HIIT + L-RT also showed significant improvements over CON
(SMD = 1.34, 95% CI: 0.40–2.28) and CT (SMD = 1.41, 95% CI:
0.38–2.43).

In the stroke length analysis (10 studies, 231 swimmers), W
+ DRT ranked highest (SUCRA = 81.8%), followed by A-HIIT +
L-RT (SUCRA = 56.8%; Figure 9 (9.6)). However, Table 2 indicates
no statistically significant differences between the interventions.

3.3 Risk of bias and publication bias

Among the 36 included trials, 30 were assessed as having a
low overall risk of bias, 5 were judged to have some concerns, and
1 study was rated as having a high risk. For the randomization
process, 34 trials were at low risk, 1 showed some concerns, and
1 had high risk. All studies were rated as low risk for deviations
from intended interventions. Regarding missing outcome data, 35
studies were considered low risk, and 1 was rated high risk. All
studies were judged to have low risk in the domain of outcome
measurement (Supplementary Material S3).

Potential publication bias was assessed using funnel plots
(Supplementary Material S4, S5). Scatter plots showed varying
degrees of symmetry, suggesting possible bias. Specifically, Figure 5
exhibited relatively balanced distributions, whereas other plots
showed asymmetry indicative of potential bias. However, Egger’s test
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FIGURE 3
SUCRA rankings from first-tier network meta-analysis for swimming performance. 3.1: 25 m performance; 3.2: 50 m performance; 3.3: 100 m
performance; 3.4: 200 m performance.

results were all non-significant (p > 0.05), indicating no substantial
evidence of publication bias across the included studies.

4 Discussion

This networkmeta-analysis integrated data from 36 randomized
controlled trials involving 844 competitive swimmers to compare
the effects of different physical training environments and
modalities on swimming performance and sport-specific skills.
Three key findings emerged. First, in the first-tier analysis,
combined aquatic and dry-land training consistently ranked
highest across multiple performance outcomes—including short-
distance swim times, swimming velocity, stroke rate, and stroke
length—highlighting its multidimensional benefits and supporting
its use as the most evidence-based strategy for enhancing
competitive swimming performance. This pattern is congruent
with prior systematic reviews and meta-analyses showing that
swim-plus-resistance or combined programs outperform swim-
only or single-modality approaches (Fone and van den Tillaar, 2022;
Jin et al., 2024; Ramirez-Campillo et al., 2022; Guo et al., 2022;

Muniz-Pardos et al., 2022). Second, in the second-tier analysis, W
+ DRT demonstrated superior efficacy across several key indicators,
including 50m and 100 m times, swimming velocity, stroke rate, and
stroke length, suggesting its particular effectiveness in improving
power output, technical control, and movement efficiency. To our
knowledge, no previous review has ranked combined submodalities
head-to-head; our findings therefore provide the first evidence-
based hierarchy of these approaches (Jin et al., 2024; Guo et al.,
2022; Ruiz-Navarro et al., 2025). Third, within dry-land modalities,
core training and power training showed targeted benefits, notably
in improving 25 m performance and take-off velocity. Recent meta-
analyses and randomized trials corroborate these modality-specific
advantages for explosive actions and trunk control (Ramirez-
Campillo et al., 2022; Khiyami et al., 2022; Rodríguez et al., 2025).
While not as broadly effective as W + DRT, these approaches may
serve as valuable components of individualized training programs
tailored to specific athlete needs and event demands.

A key rationale for conducting the first-tier network meta-
analysis was to clarify the relative efficacy of physical training across
different environments—a question of particular relevance given
previous concerns that dry-land strength and conditioning may
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TABLE 1 League table of the first-level network meta-analysis results.

1.1 25 m performance

Combined

−0.33 (−1.36,0.69) Dry-land

−0.90 (-1.77,-0.03) −0.57 (-1.11,-0.02) CON

1.2 50 m performance

Combined

−0.60 (−1.30,0.10) Dry-land

−0.76 (−1.58,0.06) −0.16 (−0.73,0.41) Aquatic

−1.01 (-1.66,-0.37) −0.41 (-0.68,-0.14) −0.25 (−0.75,0.25) CON

100 m performance

−1.22 (-2.28,-0.16) Dry-land

−1.72 (-2.92,-0.53) −0.50 (−1.54,0.53) Aquatic

−2.01 (-2.87,-1.16) −0.79 (-1.41,-0.17) −0.29 (−1.12,0.54) CON

200 m performance

Dry-land

−39.98 (−109.58,29.62) Aquatic

−43.10 (−92.71,6.51) −3.12 (−51.94,45.71) CON

Start time

Combined

−0.05 (−0.15,0.06) Dry-land

−0.09 (−0.18,-0.00) −0.04 (−0.10,0.02) CON

Turn time

Combined

−0.25 (-0.49,-0.02) Dry-land

−0.27 (-0.42,-0.12) −0.02 (−0.19,0.16) CON

Swimming velocity

Turn time

1.01 (0.25,1.77) Dry-land

1.23 (0.36,2.10) 0.22 (−0.46,0.89) Aquatic

1.27 (0.61,1.94) 0.26 (−0.10,0.63) 0.05 (−0.52,0.61) CON

Stroke rate

Combined

1.38 (0.58,2.18) Aquatic

1.57 (0.79,2.36) 0.20 (−0.28,0.67) Dry-land

(Continued on the following page)
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TABLE 1 (Continued) League table of the first-level network meta-analysis results.

Stroke rate

1.63 (0.92,2.34) 0.25 (−0.11,0.62) 0.06 (−0.27,0.39) CON

Stroke length

Combined

0.64 (−0.07,1.36) Dry-land

0.83 (0.09,1.56) 0.19 (−0.30,0.67) Aquatic

0.86 (0.23,1.49) 0.21 (−0.12,0.55) 0.03 (−0.35,0.40) CON

Bold values indicate statistically significant differences (p < 0.05).

FIGURE 4
Network plots of first-tier network meta-analysis for sport-specific skills. 1: Start time; 2: Turn time; 3: Swimming velocity; 4: Stroke rate; 5:
Stroke length.

not always translate into meaningful improvements in swimming
performance (Crowley et al., 2018). Traditional training programs
often rely heavily on land-based modalities; however, due to the
biomechanical and neuromuscular specificity required in aquatic
environments, the transferability of these gains has remained
uncertain (Hermosilla et al., 2021). By synthesizing both direct and
indirect evidence, the present analysis demonstrated that combined
aquatic and dry-land training consistently produced the greatest
improvements across 25 m, 50 m, and 100 m times, swimming
velocity, stroke rate, and stroke length, thereby reinforcing a hybrid
model that leverages environment-specific adaptations (Fone and
van den Tillaar, 2022; Jin et al., 2024; Ramirez-Campillo et al., 2022;
Guo et al., 2022; Muniz-Pardos et al., 2022; Ruiz-Navarro et al.,
2025; Rodríguez et al., 2025). These findings provide robust

empirical support for a hybrid training approach that integrates both
environments to maximize training efficacy. This conclusion aligns
partially with prior systematic reviews, which suggested that swim-
plus-strength protocols may yield marginally greater performance
benefits than swim-only or strength-only programs (Fone and
van den Tillaar, 2022; Muniz-Pardos et al., 2019). However, most
earlier studies were limited to pairwise comparisons and lacked
the statistical power to establish a hierarchy of interventions.
Our findings extend this body of evidence by demonstrating that
the combination of aquatic and land-based training consistently
outperforms isolated modalities across multiple domains of
performance.

From a mechanistic standpoint, the superiority of combined
training may stem from its ability to simultaneously target central
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FIGURE 5
SUCRA rankings from first-tier network meta-analysis for sport-specific skills. 1: Start time; 2: Turn time; 3: Swimming velocity; 4: Stroke rate; 5:
Stroke length.

physiological systems and movement-specific adaptations. Land-
based resistance and power training provide high external loads
and neuromuscular overload essential for developing maximal
force output and rate of force development—qualities essential
for sprint swimming (Marques et al., 2020). Conversely, aquatic
resistance or technique-focused drills enhance proprioception,
technical precision, and stroke mechanics under fluid-dynamic
conditions, facilitating context-specificmotor learning (Amara et al.,
2022; Coloretti et al., 2025; Takagi et al., 2023). The integration of
these two environments likely promotes enhanced intermuscular
coordination, greater movement economy, and context-specific
neuromuscular adaptations, thereby bridging the gap between
general physical capacity and sport-specific performance
(Tomazin et al., 2022). Conversely, aquatic-only training—though
specific inmovement patterns—may lack sufficient loading stimulus
to elicit substantial neuromuscular or strength gains, particularly
in already-trained swimmers. This may explain the relatively
lower efficacy observed for aquatic training alone in our analysis
(Ruiz-Navarro et al., 2025; Cortesi et al., 2024).

Building on the first-tier analysis, which identified both combined
and dry-land training as effective strategies for enhancing swimming
performance, we conducted a second-tier network meta-analysis to
differentiate the relative impact of specific training modalities within
these categories. This deeper analysis allowed us to explore which
combinations of land- and water-based interventions provide the
greatest performance benefits, particularly for competitive swimmers
seeking targeted performance gains.The second-tier analysis revealed
that W + DRT produced the most favorable outcomes across
multiple performance indicators, including 50m and 100 m race

times, swimming velocity, stroke rate, and stroke length. Notably,
A-HIIT + L-RT consistently ranked second, showing particularly
strong effects in sport-specific skills such as stroke rate and swimming
velocity. The greater emphasis on high-intensity interval work in
water and on land in A-HIIT + DRT likely enhances aerobic
capacity and lactate tolerance, making it especially advantageous
for middle-distance events (e.g., 200 m), whereas W + DRT’s focus
on maximal force production remains optimal for sprint distances
(25–100 m). Evidence from aquatic HIIT in clinical and athletic
populations (Bunæs-Næss et al., 2023; Tang et al., 2022) and strength-
focused RCTs in swimmers (Amara et al., 2021; Amara et al., 2023)
supports these differentiated modality effects. These results suggest
that while both protocols offer additive benefits over isolated training
approaches,W+DRTmayprovideamorecomprehensive stimulus for
performance enhancement.Compared toprior literature, ourfindings
extend previous observations by offering the first evidence-based
ranking of combined training subtypes. Earlier studies have generally
supported the benefits of resistance training in swimmers, with some
reporting improvements in muscle power, technical skill, or stroke
efficiency (Fone and van den Tillaar, 2022). However, these studies
typically evaluated dry-land or aquatic resistance in isolation or relied
onsimplepre-postcomparisons.Incontrast,ouranalysisdemonstrates
that the concurrent application of resistance in both aquatic and
terrestrial environments yields synergistic advantages—a finding that
has not been systematically established in previous reviews.

The superiority of W + DRT likely reflects its ability to
simultaneously challenge neuromuscular, metabolic, and technical
systems in a highly specific and complementary manner. Land-
based resistance exercises impose high mechanical loads, promoting
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FIGURE 6
Network plots of second-tier network meta-analysis for swimming performance. 1: 25 m performance; 2: 50 m performance; 3: 100 m performance;
4: 200 m performance.

muscular strength, power, and intermuscular coordination. In
contrast, aquatic resistance provides functional overload within the
biomechanical context of swimming, enhancing technical motor
patterns under fluid-dynamic conditions. This dual stimulus may
be particularly advantageous for sprint events, which demand
rapid force production, high intracycle efficiency, and precise
movement execution (Guo et al., 2022; Crowley et al., 2017). In
comparison, A-HIIT + L-RT—though beneficial—may emphasize
cardiovascular conditioning over muscular overload in the aquatic
phase, resulting in slightly lower gains in power-related metrics such
as stroke length and velocity (Bunæs-Næss et al., 2023). Together,
these findings underscore the unique capacity of W + DRT to
integrate force development with swimming-specific motor control,
making it a superior modality for optimizing multidimensional
performance outcomes in swimmers.

Although combined training outperformed single-modality
interventions, our first-tier analysis also demonstrated that dry-
land training alone produced significant improvements in several
performance outcomes, underscoring its continued relevance in
swimming-specific conditioning. Given the diversity of dry-land
approaches—including strength, power, core, plyometric, and
interval training—our second-tier analysis further explored their
relative effectiveness to inform evidence-based programming. The

results indicated that CT and PT were the most effective dry-land
modalities, particularly for enhancing 25 m sprint performance and
take-off velocity. These findings support our third major conclusion
and suggest that, even within dry-land paradigms, selecting
specific training types can yield meaningful performance gains.
Previous studies have provided partial support for these findings,
with several trials showing positive effects of core or explosive
resistance training on swim start dynamics and short-distance race
times. Notably, traditional strength (resistance) training—while less
dominant in medium-term protocols (4–20 weeks)—may require
longer intervention durations to manifest comparable performance
improvements, especially in older or more experienced swimmers,
where neuromuscular and hypertrophic adaptations accrue over
extended periods (Aslam et al., 2025). However, prior meta-analyses
often lacked direct comparisons across modalities and did not
quantify relative rankings. By employing a network meta-analytic
framework, our study offers the first comprehensive comparison,
positioning CT and PT above alternatives such as HIIT, PJT,
and RT in targeted outcomes (Cui et al., 2025). Mechanistically,
core training enhances trunk stability and postural control—key
for reducing hydrodynamic drag and maintaining streamlined
alignment during starts and high-speed phases (Rodríguez et al.,
2025)—whereas power training emphasizes rapid force production
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FIGURE 7
SUCRA rankings from second-tier network meta-analysis for swimming performance. 1: 25 m performance; 2: 50 m performance; 3: 100 m
performance; 4: 200 m performance.

crucial for dive starts, breakouts, and turns (van Dijk et al.,
2020). Compared to traditional strength or aerobic training,
CT and PT may more effectively transfer to swimming-specific
neuromuscular demands due to their focus on dynamic stabilization
and high-velocity contractions. These adaptations likely explain
their superior performance in short-duration, high-intensity events,
where hundredths of a second can determine competitive outcomes.

The results of this network meta-analysis provide valuable
evidence-based guidance for the design of performance enhancement
programs in competitive swimming. Most notably, the consistent
superiority of W + DRT underscores the importance of combining
high-loaddry-landresistancewithaquatic-specificresistanceexercises
to simultaneously target force production, stroke mechanics, and
neuromuscular efficiency. This integrated approach should be
prioritized in training cycles, particularly for sprinters and youth
athletes developing foundational strength and technical capacity.
Moreover, the demonstrated benefits of core training and power
training offer practical alternatives or adjuncts when water-based
resistance tools are unavailable or when individualized programming
isneeded.Thesemodalitiesmaybeespeciallyuseful indry-landblocks,
pre-seasonpreparationphases,orincontextsrequiringlow-equipment

solutions. Importantly, the findings support a precision-based and
goal-specific approach to physical conditioning in swimming. By
identifying the relative effectiveness of various training modalities,
coaches and practitioners can move beyond generalized training
prescriptions and adopt targeted, evidence-informed strategies
tailored to the athlete’s competitive level, stroke specialization,
and developmental needs. This aligns with current trends in elite
sport toward individualized programming and interdisciplinary
collaboration for performanceoptimization.To enhance transparency
and reproducibility, we further translated these results into a practical
Standard Operating Procedure (SOP) that specifies decision points,
dosage parameters, monitoring indices, and reporting requirements
for physical training in swimmers (Table 3).

This study possesses several notable strengths. First, it is the
first to employ a two-tier network meta-analytic framework to
comprehensively compare both general training environments
(aquatic, dry-land, combined) and specific physical training
modalities, enabling a nuanced, evidence-based hierarchy of
interventions for swimming performance. Second, the inclusion
of 36 randomized controlled trials involving 844 competitive
swimmers enhances the statistical power and external validity of
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TABLE 2 League table of the second-level network meta-analysis results.

25 m performance

CT

−0.36 (−2.45,1.73) W + DRT

−0.75 (−2.73,1.23) −0.39 (−1.47,0.69) PJT

−0.77 (−2.85,1.31) −0.41 (−1.66,0.83) −0.02 (−0.87,0.83) RT

−1.26 (−3.15,0.63) −0.90 (-1.79,-0.01) −0.51 (−1.11,0.09) −0.49 (−1.36,0.38) CON

50 m performance

PT

−1.26 (−3.35,0.83) W + DRT

−1.73 (−3.94,0.49) −0.46 (−1.70,0.77) PJT

−2.01 (−4.17,0.15) −0.75 (−1.88,0.38) −0.29 (−1.63,1.06) CT

−2.11 (-4.10,-0.12) −0.85 (-1.61,-0.08) −0.38 (−1.44,0.67) −0.10 (−1.03,0.83) HIIT

−2.30 (−4.84,0.24) −1.04 (−2.79,0.71) −0.58 (−2.47,1.32) −0.29 (−2.12,1.54) −0.19 (−1.82,1.44) A-HIIT + L-RT

−2.28 (-4.20,-0.35) −1.02 (-2.01,-0.02) −0.55 (−1.79,0.68) −0.27 (−1.40,0.87) −0.17 (−0.93,0.60) 0.02 (−1.73,1.77) RT

−2.44 (-4.41,-0.47) −1.18 (-1.89,-0.47) −0.72 (−1.73,0.29) −0.43 (−1.31,0.45) −0.33 (-0.62,-0.04) −0.14 (−1.74,1.46) −0.16 (−0.87,0.54) CON

100 m performance

W + DRT

−0.61 (−2.34,1.11) A-HIIT + L-RT

−0.83 (−3.64,1.99) −0.21 (−2.98,2.55) RT

−1.80 (−5.99,2.40) −1.18 (−5.34,2.98) −0.97 (−5.65,3.71) PT

−1.80 (-3.18,-0.42) −1.19 (−2.46,0.08) −0.98 (−3.54,1.59) −0.01 (−4.04,4.02) HIIT

−2.35 (-3.63,-1.07) −1.74 (-2.89,-0.58) −1.52 (−4.04,0.99) −0.55 (−4.55,3.44) −0.55 (-1.07,-0.03) CON

200 m performance

PJT

−8.10 (−38.76,22.56) PT

−12.70 (−49.06,23.66) −4.60 (−29.29,20.09) RT

−14.49 (−40.50,11.52) −6.39 (−23.13,10.34) −1.79 (−27.53,23.94) HIIT

−15.10 (−40.95,10.75) −7.00 (−23.48,9.48) −2.40 (−27.97,23.17) −0.61 (−3.50,2.28) CON

CT

Take-off velocity

0.85 (−1.41,3.11) PJT

0.85 (−1.42,3.13) 0.00 (−0.28,0.28) RT

(Continued on the following page)
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TABLE 2 (Continued) League table of the second-level network meta-analysis results.

CT

1.03 (−1.23,3.29) 0.18 (0.03,0.32) 0.18 (−0.14,0.49) CON

Start time

W + DRT

−0.04 (−0.28,0.20) CT

−0.05 (−0.27,0.16) −0.01 (−0.23,0.20) PJT

−0.09 (−0.26,0.08) −0.05 (−0.22,0.12) −0.04 (−0.17,0.10) CON

Turn time

W + DRT

−0.24 (−2.68,2.20) CT

−0.27 (−2.05,1.51) −0.03 (−1.69,1.63) CON

−0.38 (−3.48,2.72) −0.14 (−3.17,2.89) −0.11 (−2.64,2.42) PJT

Swimming velocity

W + DRT

0.02 (−1.30,1.35) A-HIIT + L-RT

0.80 (−0.46,2.05) 0.77 (−0.48,2.02) PJT

1.08 (0.05,2.10) 1.05 (0.04,2.07) 0.28 (−0.65,1.21) CT

1.29 (0.35,2.23) 1.26 (0.33,2.19) 0.49 (−0.34,1.32) 0.21 (−0.20,0.62) CON

1.82 (0.42,3.22) 1.80 (0.40,3.19) 1.02 (−0.31,2.36) 0.74 (−0.37,1.86) 0.53 (−0.51,1.58) HIIT

Stroke rate

W + DRT

0.67 (−0.76,2.09) A-HIIT + L-RT

1.55 (0.31,2.78) 0.88 (−0.24,2.00) RT

1.64 (0.37,2.90) 0.97 (−0.19,2.13) 0.09 (−0.55,0.73) PT

2.01 (0.94,3.08) 1.34 (0.40,2.28) 0.46 (−0.15,1.07) 0.37 (−0.30,1.04) CON

2.08 (0.93,3.22) 1.41 (0.38,2.43) 0.53 (−0.21,1.26) 0.44 (−0.35,1.22) 0.07 (−0.34,0.47) CT

Stroke length

W + DRT

0.78 (−1.74,3.30) A-HIIT + L-RT

0.95 (−1.22,3.11) 0.17 (−1.96,2.29) RT

1.02 (−1.55,3.60) 0.24 (−2.30,2.79) 0.08 (−2.12,2.28) HIIT

1.01 (−1.25,3.28) 0.23 (−2.00,2.46) 0.07 (−1.30,1.43) −0.01 (−2.31,2.29) PT

1.21 (−0.85,3.28) 0.44 (−1.59,2.46) 0.27 (−1.30,1.83) 0.19 (−1.91,2.29) 0.20 (−1.50,1.91) CT

1.29 (−0.52,3.09) 0.51 (−1.25,2.26) 0.34 (−0.86,1.54) 0.26 (−1.58,2.11) 0.27 (−1.10,1.65) 0.07 (−0.94,1.08) CON

Bold values indicate statistically significant differences (p < 0.05).
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FIGURE 8
Network plots of second-tier network meta-analysis for sport-specific skills. 1: Take-off velocity; 2: Start time; 3: Turn time; 4: Swimming velocity; 5:
Stroke rate; 6: Stroke length.

FIGURE 9
SUCRA rankings from second-tier network meta-analysis for sport-specific skills. 1: Take-off velocity; 2: Start time; 3: Turn time; 4: Swimming velocity;
5: Stroke rate; 6: Stroke length.

the findings, offering robust guidance applicable across a range of
competitive levels and age groups. However, several limitations
should be acknowledged. First, despite rigorous methodology,
variation in intervention protocols, training duration, and intensity

across studies may introduce clinical heterogeneity, potentially
influencing effect estimates. Second, the relatively small number of
studies for some subgroups—particularly in sport-specific outcomes
such as turn time or take-off velocity—may limit the precision of
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TABLE 3 Standard operating procedure (SOP) for physical training in competitive swimmers.

Component Recommendations Evidence basis (NMA) Notes

Modality Prioritize W + DRT; include CT/PT for
sprints

W + DRT: SUCRA >80% (50 m, 100 m,
velocity, stroke metrics); CT/PT:
SUCRA 77%–96% (25 m, take-off
velocity)

Tailor to event (e.g., sprints)

Frequency 2–4 sessions/week per modality
(8–12 weeks)

RCT median: 2-3x/week, 8–12 weeks
(e.g., Amara et al., 2022)

Adjust for athlete level

Duration 30–60 min/session RCT protocols (e.g., 45 min resistance
sets)

Include warm-up/cool-down

Intensity 70%–85% 1RM (resistance); RPE
7-9/10 (CT/PT)

Significant MD/SMD (e.g., MD -2.01 s
for 100 m, combined training)

Monitor via RPE or velocity

Progression Increase load/volume 5%–10%weekly;
reassess every 4 weeks

RCT progressive overload for sustained
gains

Use periodization

Monitoring Track swim times, velocity, stroke
rate/length, start/turn times via
biomechanical tools

NMA outcomes (e.g., SMD 1.63 for
stroke rate)

Baseline testing; monitor HRV.

Note: NMA, network meta-analysis; SUCRA, surface under the cumulative ranking curve; W + DRT, water plus dand resistance training; CT, core training; PT, power training; RPE, rating of
perceived exertion; 1RM, one-repetition maximum; MD, mean difference; SMD, standardized mean difference; RCT, randomized controlled trial; HRV, heart rate variability.

comparisons and the generalizability of subgroup findings. Third,
publication bias cannot be entirely excluded, as suggested by visual
asymmetry in several funnel plots, although Egger’s tests did not
indicate statistically significant bias. Fourth, sex-specific effects
could not be assessed because most studies did not provide separate
outcome data for male and female swimmers, limiting our ability
to determine whether training responses differ by sex. Future high-
quality trials with standardized protocols and consistent outcome
reporting are warranted to further validate and refine these findings.

5 Conclusion

This two-tier network meta-analysis establishes a clear
hierarchy of physical training strategies for competitive swimmers.
Combined aquatic and dry-land training—particularly W +
DRT—demonstrated the greatest overall benefits across both
performance metrics and sport-specific skills. Core and power
training act as targeted adjuncts to enhance trunk stability and
explosive actions in sprint contexts. In practice, a concise guiding
principle emerges: pair high-load dry-land work that builds general
capacity with in-water, task-specific overload to maximize transfer
to performance. Coaches and practitioners are encouraged to
prioritize combined resistance modalities and individualize dosage
and exercise selection according to athlete profile, event demands,
and resource availability.
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