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Tissue metabolomics reveals
metabolic dysregulation
associated with intimal
hyperplasia in arteriovenous
fistula stenosis
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1Department of Nephrology, 3201 Hospital, Hanzhong, Shaanxi, China, 2School of Biological Science
and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China, 3School of Medicine,
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Objective: This study performed untargeted LC-MS metabolomics on venous
tissues from maintenance hemodialysis patients undergoing arteriovenous
fistula (AVF) reconstruction surgery.

Methods: A total of six stenotic and six non-stenotic AVF tissues were
analyzed. Paired samples were collected from stenotic AVF segments and non-
stenotic regions (control group). Histological analysis revealed significant intimal
hyperplasia in stenotic tissues (687.90 ± 149.00 μm vs. 286.70 ± 95.18 μm, P <
0.0001 by HE staining) and excessive collagen deposition (Masson staining).

Results:Metabolomic profiling identified 802metabolites, with 356 differentially
expressed (VIP > 1, P < 0.05), predominantly lipids/lipid-like molecules. KEGG
enrichment highlighted five dysregulated pathways (P < 0.01): Arginine/proline
metabolism; Glycerophospholipid metabolism; ABC transporters; Choline
metabolism in cancer; Retrograde endocannabinoid signaling. Six metabolites
showed perfect diagnostic potential (AUC = 1.0): niacin, free carnitine,
3-hydroxynonyl-5,7-dienoylcarnitine, 3-methylheptanediylcarnitine, dec-
7-enoylcarnitine, and γ-aminobutyric acid. Significant metabolite-clinical
correlations included: Choline positively correlating with serum phosphorus
(r = 0.62, P = 0.008); Carnitine associating with hemoglobin levels (r = 0.58,
P = 0.012).

Conclusion: This tissue-based metabolomics study defines specific metabolic
disturbances driving AVF stenosis, proposingmechanistic insights and candidate
biomarkers.

KEYWORDS

metabolomics, end-stage renal disease, arteriovenous fistula stenosis, biomarkers,
intimal hyperplasia

1 Introduction

Arteriovenous fistula (AVF) is the preferred vascular access for maintenance
hemodialysis due to its superior long-term patency and lower complication. However,
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its clinical efficacy is severely compromised by a high
incidence of stenosis, primarily driven by pathological intimal
hyperplasia (Sidawy et al., 2002). Despite advancements in imaging
and surgical techniques, the prevention and early detection of AVF
dysfunction remain major challenges in end-stage renal disease
(ESRD) management.

Intimal hyperplasia, characterized by vascular smooth muscle
cell proliferation and extracellular matrix deposition, is a key
contributor to AVF stenosis and failure. This process shares
multiple featureswith other vascular proliferative diseases, including
atherosclerosis and restenosis after angioplasty, suggesting common
underlying mechanisms involving vascular remodeling and
metabolic dysregulation (Bozzetto et al., 2023; Yan et al., 2024).
However, the molecular basis of these processes in the context of
AVF remains incompletely understood.

Metabolomics, as an emerging systems biology approach,
enables comprehensive profiling of small-molecule metabolites
and provides new opportunities to investigate the biochemical
alterations underlying complex vascular pathologies. Previous
metabolomics studies have primarily relied on blood samples, which
are susceptible to systemic confounders and may not accurately
reflect local tissue-level metabolic changes (Schlosser et al.,
2024; Meyers, 2022). In contrast, direct metabolomic profiling
of stenotic AVF tissue offers the potential to uncover more
specific metabolic signatures associated with intimal hyperplasia
(Anwar et al., 2015; Klusman et al., 2023).

In this study, we performed untargeted metabolomics analysis
using high-resolution liquid chromatography–mass spectrometry
(LC-MS) on AVF venous tissue from patients with and without
stenosis. We aimed to identify differentially expressed metabolites
and disrupted metabolic pathways that may contribute to AVF
failure, and to explore their potential as early biomarkers for
clinical application. Our findings provide novel insights into
the metabolic underpinnings of AVF stenosis and offer a new
perspective for personalized intervention in ESRD vascular
access management.

2 Materials and methods

2.1 Sample collection

AVF venous tissue samples were obtained from patients
undergoing maintenance hemodialysis at the 3201 Hospital
(Hanzhong, China) in 2024. All enrolled patients underwent AVF
reconstruction surgery, during which stenotic and non-stenotic vein
segments were collected. The study protocol was approved by the
Institutional Review Board of the 3201 Hospital (Approval Number:
Yuan Lun Li Shen [2023] No. 033), and written informed consent
was obtained from all participants.

2.2 Study subjects

Control cohort:The vascular tissue collected prior to autogenous
arteriovenous fistula (AVF) hyperplasia (Control group).

Hyperplasia cohort: Vascular tissues obtained from sites of
arteriovenous fistula hyperplasia (AVF group).

Fixation and Preservation: Vascular tissues were excised
aseptically from predetermined anatomical sites, immediately
frozen in liquid nitrogen, and stored at −80°C.

Clinical information: patient demographics and laboratory
indicators, was retrieved from the hospital’s electronic medical
record system during the time of AVF tissue sampling.

2.3 Preparation of quality control (QC)
samples

Equal volumes of metabolites from all samples were pooled to
generate QC samples. One QC sample was inserted after every 5 to
15 experimental samples during analysis.

2.4 Instrumentation and reagents

Untargeted metabolomic profiling was performed using
an UHPLC-Orbitrap Exploris 240 mass spectrometer (Thermo
Fisher Scientific, United States) coupled with an Ultimate 3000
UHPLC system. Metabolites were extracted by protein precipitation
with cold methanol, followed by centrifugation and supernatant
collection. All solvents used were LC-MS grade (methanol,
acetonitrile, formic acid, water, and isopropanol from Fisher
Scientific, United States). Quality control (QC) samples were
prepared by pooling equal volumes of each sample andwere injected
at regular intervals throughout the analytical sequence to assess
system stability and reproducibility. Data acquisition was conducted
in both positive and negative ionization modes.

2.5 Tissue staining

Vascular tissue specimens were fixed in 4% paraformaldehyde,
embedded in paraffin, and sectioned into serial slices of 4 µm
thickness. Hematoxylin-eosin (HE) staining (Wei et al., 2024),
Masson’s trichrome staining (Hu et al., 2024).

2.6 Data processing and metabolite
identification

Raw LC-MS data were processed using Progenesis QI
software for peak alignment, retention time correction, and
normalization. Metabolite identification was based on accurate
mass, MS/MS fragmentation patterns, and comparison with public
databases including HMDB (http://www.hmdb.ca/) and METLIN
(https://metlin.scripps.edu/), as well as the self-constructed
Majorbio database.

2.7 Statistical analysis

The resulting data matrix was uploaded to the Majorbio Cloud
Platform (www.majorbio.com) for multivariate statistical analysis.
Principal component analysis (PCA) and orthogonal partial least
squares-discriminant analysis (OPLS-DA) were employed to
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visualize group separation. Variable importance in projection (VIP)
values >1 and p-values <0.05 were used to select significantly altered
metabolites. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis was performed to identify significantly
affected metabolic pathways.

3 Results

3.1 Observation of tissue sections in AVF
and control groups

In the HE-stained venous sections, disordered cellular
arrangement, evident proliferation and accumulation, significant
intimal thickening, a blurred boundary between the intima and
media, and an irregular intimal surface were observed in the AVF
group compared to the control group, intuitively indicating intimal
hyperplasia (Figure 1A). Quantitative analysis of the HE-stained
venous sections revealed that vascular thickness was significantly
increased in the AVF group compared to the control group [(286.7 ±
95.2) μm vs. (687.9 ± 149.0) μm, P < 0.0001], indicating a statistically
significant difference (Figure 1B).

Collagen deposition was assessed using Masson staining.
Compared with the control group, abundant blue-stained collagen
fibers were observed in the AVF group, particularly around the
vessels, displaying pronounced proliferation and a dense, disordered
distribution (Figure 1C). These findings indicate that excessive
deposition of extracellular matrix collagen fibers during intimal
hyperplasia leads to irregular luminalmorphology and deformation,
subsequently affecting blood flow and vascular function.

The results of HE and Masson staining demonstrated significant
intergroup differences in cellular morphology and arrangement,
intimal thickness, and both the distribution and content of
collagen fibers.

3.2 Metabolic characteristics analysis

Untargeted metabolomics was employed to analyze the
metabolic profiles of the AVF and control groups, resulting in
the detection of 802 metabolites across both groups. To assess
potential differences between the two groups, PCA and OPLS-DA
were performed on the GC-MS results. As illustrated in Figure 2A,
the first principal component (PC1) and the second principal
component (PC2) contributed 53.90% and 11.20% of the variance,
respectively, with a combined contribution of 65.10%. A clear
separation between the two groups was observed in the OPLS-
DA score plot (Figure 2B), indicating substantial alterations in their
metabolic profiles. To explore metabolite alterations associated with
intimal hyperplasia in autologous arteriovenous fistula, the OPLS-
DA model was utilized to validate global metabolic differences
between the groups. As shown in Figure 2C, the OPLS-DA model
exhibited a strong fit and high predictive ability, with R2Y exceeding
Q2 and the Q2 regression line intercepting the Y-axis at 0 and
-0.1529. These results further support significant alterations in
tissue metabolic characteristics during intimal hyperplasia. A Venn
diagram analysis was conducted to examine overlapping differential

metabolites, revealing 728 commonly expressed metabolites that
may serve as potential biomarkers (Figure 2D).

3.3 Identification of differential metabolites

To characterize the tissue metabolic profile of AVF patients and
identify high-confidencemetabolites associated with venous intimal
hyperplasia, differential metabolites with VIP >1, P < 0.05, and
fold change ≥1 (based on OPLS-DA) were selected from the 728
shared metabolites and visualized using volcano plots. Compared
to the control group, 325 metabolites were upregulated and 31 were
downregulated in the AVF group (Figure 3A). Based on the HMDB
database, 356 metabolites were further classified and visualized.
The results presented in Figure 3B demonstrate that the majority of
differentially expressed metabolites were categorized as lipids and
lipid-like molecules.

3.4 Metabolite correlation and pathway
enrichment

To explore the associations between metabolites and regulatory
pathways, 356 metabolites were mapped to KEGG functional
pathways to investigate their links with relevant phenotypes.
The results revealed that lipid and amino acid metabolism
were prominently enriched across 20 KEGG-defined pathways
(Figure 4A), consistent with the classification trends observed in
the HMDB database. To identify the primary KEGG pathways
associated with the dysregulated metabolites, 356 differential
metabolites were further enriched across 20 metabolic pathways.
Based on enrichment factors and P-values, five KEGG pathways
were significantly enriched: arginine and proline metabolism,
glycerophospholipid metabolism, ABC transporters, choline
metabolism in cancer, and retrograde endocannabinoid signaling.
Notably, these findings were highly consistent with the metabolite
functional enrichment results (Figure 4B).

The top 30 metabolites most strongly associated with venous
intimal hyperplasia were selected from the 356 significantly
altered metabolites (P < 0.05, VIP >1) for hierarchical clustering
and heatmap generation (Figure 4C). According to the HMDB
classification, lipid and lipid-related metabolites were found to
be upregulated. The subsequently generated VIP plot (Figure 4D)
demonstrated that, after the exclusion of drug-related metabolites,
five acylcarnitines and niacin remained significantly associated,
consistent with the KEGG pathway enrichment results (P < 0.01).

3.5 Discovery of candidate biomarkers for
venous intimal hyperplasia

To further identify potential biomarkers associated with intimal
proliferation in the AVF group, receiver operating characteristic
(ROC) curve analysis and heatmap visualization were employed.
To minimize confounding effects from medications, drug-related
metabolites were excluded. Subsequently, metabolites with the top
20 OPLS-DA VIP values and an area under the ROC curve (AUC)
≥0.90 were selected for ROC curve analysis (Figure 5). Among the
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FIGURE 1
Comparison of histology and fibrosis degree between the Control group and the AVF group. (A), Representative HE-stained images from three different
specimens in each group, showing consistent histological features. All images were taken at the same magnification (Scale bar = 100 μm); (B),
Quantification of intimal area proportion in AVF and control groups (n = 6 per group). The intimal area was significantly increased in the AVF group
compared with the control group. ∗∗∗P < 0.001, Welch’s t-test.; (C), Representative Masson-stained section of vein (Scale bar = 100 μm).

identified candidates, niacin, free carnitine, three acylcarnitines (3-
hydroxynonyl-5,7-dienoylcarnitine, 3-methylheptanediylcarnitine,
and Dec-7-enoylcarnitine), as well as γ-aminobutyric acid (GABA),
exhibited perfect diagnostic performance with an AUC of 1.0.

3.6 Correlation analysis of differential
metabolites with clinical indicators

To investigate the potential associations between significantly
alteredmetabolitesandclinical indicators,Spearman’s rankcorrelation
analysis was performed, and the results were visualized using
a heatmap. As shown in Figure 6, several clinical indicators
exhibited significant correlations with specific metabolites in the
hyperplasia group (P < 0.05). Phosphorus (P) showed positive
correlations with choline, taurine, L-valine, L-proline, adenosine,

andlysophosphatidylcholine(18:3(6Z,9Z,12Z)/0:0).Serumcreatinine
(Scr) was positively correlated with creatinine, D-pyroglutamic acid,
carnitine, and phosphatidylcholine (16:0/20:4 (8Z,11Z,14Z,17Z)).
Hemoglobin (HB) exhibited positive associations with adenosine,
D-pyroglutamic acid, 4-guanidinobutanoic acid, and nicotinic acid.
Parathyroid hormone (PTH) showed a positive correlation with
trehalose,while triglycerides (TG)werenegatively correlatedwith 1,4-
diaminobutane.

4 Discussion

AVF dysfunction, a critical complication in haemodialysis for
patients with ESRD, is frequently initiated by intimal hyperplasia
and abnormal vascular remodeling, ultimately resulting in
access failure. The metabolic profile of AVF has been shown

Frontiers in Physiology 04 frontiersin.org

https://doi.org/10.3389/fphys.2025.1638179
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhao et al. 10.3389/fphys.2025.1638179

FIGURE 2
Multivariate Statistical Analysis of Control Group and AVF Group. (A), Principal Component Analysis (PCA) plot of the Control group, AVF (Arteriovenous
Fistula) group, and QC samples; (B), Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA) plot of the Control group and AVF group (VIP
value >1 indicates a metabolite’s significant contribution to group separation in the OPLS-DA model.); (C), Permutation test plot of the OPLS-DA model
(R2Y represents the goodness of fit of the model, while Q2 reflects its predictive performance.); (D), Venn diagram of differential metabolites between
the Control group and AVF group.

to differ significantly from that of other vasculoproliferative
conditions, suggesting that its distinct mechanical adaptation
interacts dynamically with the local microenvironment. Metabolic
alterations, identified through high-resolution mass spectrometry
(HRMS) combined with multivariate statistical analysis, have been
implicated in driving pathological vascular remodeling through
several mechanisms.

4.1 Lipid metabolic remodeling and
vascular pathology

Lipid and lipid-like molecules represented the most abundant
class of differential metabolites identified between the AVF and
control groups. These metabolites play multifaceted roles in
vascular remodeling, influencing vascular smooth muscle cell
(VSMC) proliferation, intimal dysfunction, and inflammatory
responses (Chait and Den Hartigh, 2020). Accumulated fatty
acids and dysregulated vascular tone are known to enhance
the expression of vascular intimal growth factor (VEGF),
thereby promoting pathological hyperplasia. Additionally, lipid
mediators exhibit both pro- and anti-inflammatory functions
(Robinson et al., 2022). For instance, prostaglandins derived
from arachidonic acid contribute to leukocyte recruitment and

local inflammation (Gomez et al., 2013), while epoxy fatty acids
exert anti-inflammatory effects through suppression of NF-κB
and activation of peroxisome proliferator-activated receptors
(Hashimoto, 2019). Notably, the lipid metabolic profile in AVF
appears to differ from that of other vasculoproliferative conditions.
In AVF, lipid alterations are more aligned with atherosclerotic-like
mechanisms, including LDL accumulation and macrophage-driven
inflammation (Khovidhunkit et al., 2004), whereas in adipose
tissue–related vascular expansion, lipidmetabolism tends to support
vasodilation and triglyceride storage.

4.2 Amino acid metabolism in hypoxic
vascular remodeling

In addition to lipid dysregulation, KEGG enrichment analysis
highlighted significant involvement of amino acid metabolism,
particularly pathways involving tryptophan, tyrosine, arginine, and
branched-chain amino acids (BCAAs). Tryptophan and tyrosine
derivatives are known to influence intimal cell proliferation and
vascular homeostasis through mechanisms involving nitric oxide
(NO) synthesis, mTORC1 signaling, and oxidative stress (Li et al.,
2022; Oberkersch and Santoro, 2019). In the hypoxic and high-
flow environment of AVFs, intimal NO synthase activity is
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FIGURE 3
Differential metabolite expression between groups (A), Volcano plot of metabolite differences between groups (Differential metabolites were selected
based on P < 0.05, VIP >1, and fold change ≥1.); (B), HMDB compound classification pie chart.

suppressed, contributing to impaired NO production and vascular
dysfunction (Somarathna et al., 2020). Concurrently, arginase (Arg-
I) expression is upregulated, which further limits NO bioavailability
and contributes to inflammation modulation (Rath et al., 2014).
Moreover, dysregulated BCAA metabolism activates the mTORC1
pathway, promoting inflammation and oxidative stress (Knol et al.,
2024). In contrast to AVF, non-AVF vascular lesions such as those
associated with obesity often exhibit S-adenosylmethionine–driven
epigenetic modifications, including histone H3K36 methylation
and macrophage-mediated inflammation (Yu et al., 2019). These
observations suggest that amino acid metabolism in AVF is
primarily shaped by hypoxia-induced local stress, differing from the
systemic metabolic drivers observed in other pathologies.

Given the strong association between amino acid metabolism
and vascular remodeling, targeted modulation of arginase activity
or restoration of NO signalingmay represent promising strategies to
alleviate AVF-related intimal dysfunction. Moreover, interventions
aimed at rebalancing BCAA metabolism could potentially attenuate
mTORC1-driven inflammation and oxidative stress. These avenues
warrant further investigation to clarify their therapeutic potential in
AVF stenosis.

4.3 Integration of key metabolic pathways:
KEGG-based mechanistic insights

Five major KEGG pathways—arginine and proline metabolism,
glycerophospholipid metabolism, ABC transporters, choline
metabolism in cancer, and retrograde endocannabinoid
signaling—were significantly enriched among the differential
metabolites. Arginine and proline metabolism plays a central role
in AVF remodeling. Under hypoxia, Arg-I is activated via the
hypoxia-inducible factor (HIF) pathway, redirecting L-arginine
from NO synthesis to polyamine production (Yan et al., 2024;
Song et al., 2011). This promotes VSMC proliferation, collagen
deposition, and intimal dysfunction via increased expression of

VCAM-1 and ICAM-1 (Carlström et al., 2024). Proline, a key
component of collagen, generates reactive oxygen species (ROS)
through its catabolism, activating lymphoid tissue inducer (LTi) cells
(Wu et al., 2023). These cells release IL-17 and IL-22 (Cupedo et al.,
2008), with IL-17 further promoting neovascularization through
STAT3/GIV signaling and VEGF expression (Pan et al., 2015).
Together, arginine/proline metabolic reprogramming contributes
to collagen remodeling and vascular hyperplasia, and shares partial
mechanistic overlap with atherosclerotic lesions.

Glycerophospholipid metabolism, particularly involving
phosphatidylcholine (PC) and lysophosphatidylcholine (LPC), also
plays a crucial role. Elevated PC inhibits de novo lipid synthesis
and enhances intimal function via its polyunsaturated fatty acid
chains. LPC promotes intimal regeneration by activating fatty acid
synthesis but simultaneously exacerbates inflammation through
cytokine induction via G protein-coupled receptors (Law et al.,
2019). The LPC/PC balance thus modulates vascular homeostasis
versus injury.

ABC transporters, especially ABCA1 and ABCG1, mediate
cholesterol efflux from vascular cells and reduce inflammation,
supporting intimal integrity (Khovidhunkit et al., 2004; Rader and
Hovingh, 2014). Their regulatory role in ROS homeostasis and
lipid handling suggests a protective effect in vascular remodeling.
Similarly, choline metabolism contributes to both PC synthesis
and methylation pathways. Choline enhances angiogenesis via
α7 nicotinic acetylcholine receptor–mediated HIF-1α and VEGF
expression (Jin et al., 2015) and inhibits VSMC proliferation via
the M3 receptor (He et al., 2018). However, in inflammatory states,
choline uptake throughCTL1/ChoKα exacerbates IL-1β–dependent
responses, highlighting its dual role in vascular repair and
inflammation.

The endocannabinoid system (ECS) represents another enriched
pathway. Activation of cannabinoid receptors CB1 and CB2
modulates angiogenesis and inflammation. CB1 promotes helper
T cell activity and cytokine secretion, aggravating inflammation,
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FIGURE 4
Integrated Pathway and Functional Analysis of Between-Group Differential Metabolites (A), KEGG statistical chart (Enrichment results were based on
automated KEGG annotations); (B), KEGG pathway enrichment bubble map; (C), Heatmap of Differential Metabolite Clustering; (D), Differential
metabolite vip plot between groups (red indicates higher expression in the AVF group, while blue indicates higher expression in the control group.
P-values reflect statistical significance, and VIP scores indicate each metabolite’s importance in the multivariate model. The top color bar denotes the
compound class).
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FIGURE 5
Roc curve analysis of between-group differential metabolites in the hyperplasia versus control Cohorts (AUC ≥0.90).

FIGURE 6
Heatmap of correlation between significant differential metabolites and clinical indicators.
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while CB2 suppresses ICAM-1 and VCAM-1 expression, reducing
immune cell infiltration (Estrada and Contreras, 2020; Bullock et al.,
2023). In AVF, ECS signaling may influence both angiogenic and
inflammatory responses during neointima formation.

4.4 Biomarker identification and
metabolite-function correlation

Among the top 20 differential metabolites, five acylcarnitines
and niacin were particularly notable. Acylcarnitines—esters of
carnitine and fatty acids—were associated with local oxidative
stress and NF-κB–driven inflammation in the AVF anastomotic
region (Rutkowsky et al., 2014). In non-AVF lesions, they reflect
mitochondrial dysfunction and barrier disruption. Niacin and
its metabolite 4PY promote VCAM-1 expression and leukocyte
adhesion, facilitating intimal injury (Ferrell et al., 2024). These
metabolites showed strong discriminatory power (AUC = 1.0),
suggesting their potential as early biomarkers.

GABA, also identified via ROC analysis, exerts both anti-
inflammatory and pro-proliferative effects. It reduces inflammation
through inhibition of NLRP3 and inflammatorymediator expression,
and promotes intimal migration and proliferation (Deng et al.,
2024; Wang et al., 2024; Li et al., 2017). Carnitine displays context-
dependent roles—enhancing angiogenesis viaHIF-1α/VEGF (65), yet
inhibiting PDGF-induced VSMC proliferation (Hwang et al., 2020).
These findings suggest that metabolic compensation, inflammatory
regulation, and intimal recovery may converge through these key
metabolites in AVF tissues.

4.5 Metabolite–clinical indicator
associations

Correlation analyses revealed that choline, carnitine, L-proline,
D-pyroglutamic acid, and nicotinic acid were associated with
clinical indicators such as phosphorus, creatinine, hemoglobin,
and parathyroid hormone. These relationships suggest that intimal
hyperplasia may be driven by disruptions in lipid metabolism (e.g.,
PC and LPC), energy metabolism (e.g., carnitine and adenosine),
amino acid metabolism (e.g., BCAAs), and inflammatory
signaling (e.g., niacin and taurine). Similar patterns have been
observed in metabolic disorders such as NAFLD and obesity
(Abdullah et al., 2024; Hawesa, 2024), supporting the involvement
of shared pathogenic mechanisms across disease states.

5 Conclusion

The metabolic characteristics of vascular hyperplasia in AVF
were elucidated through vascular tissue metabolomics, and it was
hypothesized that intimal hyperplasia in the AVF group might be
promoted by abnormal alterations in multiple metabolic pathways.
Alterations in lipid metabolism influence the composition and
function of cell membranes. Imbalances in energy metabolism
impair normal physiological activity and reduce the proliferative
capacity of cells. Dysregulation of amino acid metabolism disrupts
protein synthesis and cellular proliferation. Oxidative stress and

inflammation initiate a cascade of cellular responses, potentially
creating favorable conditions for intimal hyperplasia.
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