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Introduction: Fetal heart monitoring (FHR) is a critical tool for assessing fetal
health, but traditional methods rely on subjective physician interpretation,
exhibiting significant variability that can lead to misdiagnosis and overtreatment.
Artificial intelligence (Al) technology offers a novel approach to address this
issue, yet existing research predominantly utilizes unimodal (FHR-only) data,
failing to align with clinical guidelines emphasizing “bimodality analysis of fetal
heart rate and uterine contractions (UC).” This study aims to develop a deep
learning-based bimodal intelligent monitoring system to enhance the accuracy
and clinical utility of fetal health assessment.

Methods: The research team constructed the first fetal heart-contraction
bimodal clinical dataset for Chinese pregnant women (n = 326). Based on
the DenseNetl121 architecture, a selective attention mechanism (SK module)
was introduced, proposing the DenseNetl21-SK model. Standardized FHR
and UC signals were extracted using image processing techniques. Dense
connections and the SK module dynamically fused multi-scale features (e.g.,
transient fluctuations and contraction cycle associations). The model employed
lightweight design during training to enhance physician usability.

Results: (1) Dual-modality input significantly outperformed single-modality
input, achieving a classification AUC of 0.944 (vs. 0.812 for single-modality),
validating the clinical value of multi-parameter collaborative interpretation; (2)
The SK module simulated obstetricians’ multi-scale cognition, achieving 95.88%
accuracy with 100% recall for abnormal cases; (3) The system effectively reduced
subjective interpretation variability, providing technical support for minimizing
overtreatment.

Discussion: This study achieves a balance between clinical interpretability
and high performance through lightweight Al design (only 8.3 million
parameters) and dual-modality data fusion, making it particularly suitable
for resource-constrained primary care settings. Future work should further
optimize generalization capabilities through multicenter validation and explore
integration with large language models to generate standardized reports.
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These findings provide important references for optimizing perinatal healthcare
resources and Al-assisted decision-making.

fetal heart rate monitoring, artificial intelligence, bimodal analysis, DenseNet121-SK,
Al-assisted decision-making

1 Introduction

FHR monitoring is a widely used method to assess the
condition of the fetus during pregnancy, labor and delivery. In high-
income countries, continuous fetal heart rate monitoring with a
fetal heart monitor (CTGs) is commonly performed for deliveries
classified as high-risk. In contrast, in low-income and lower-middle-
income countries (LMICs), intermittent measurements are the usual
method for all deliveries. Intermittent measurements are usually
performed using a Pinard stethoscope or a hand-held Doppler
device. Guidelines recommend (Lewis et al., 2015) that auscultation
of the fetal heart rate should be performed every 15-30 min during
the first stage of labor, and every 5-15 min during the second stage
of labor, and each auscultation should also last at least 1 min.
However, due to the complexity of fetal physiologic dynamics
(Costa Santos et al., 2005; Hruban et al., 2015), common standards
for visual interpretation of fetal heart rate signals can lead to
significant subjective variability. To minimize diagnostic errors,
obstetricians perform multiple subjective assessments. As a result,
the incidence of untimely cesarean sections (CS) is increasing,
largely due to subjective errors (Steer, 2008). This is the main
significance of designing an automatic analysis of fetal heart rate
signals in this study.

In recent years, with the rapid development of machine
learning and deep learning, artificial intelligence (AI)-based fetal
heart rate monitoring and analyzing systems have provided new
ideas to address untimely cesarean deliveries caused by subjective
interpretation bias in traditional monitoring. Traditional fetal heart
monitoring relies on physicians’ experience in interpreting fetal
heart rate curves (e.g., baseline variability, deceleration type, etc.),
but the consistency of interpretation among different physicians is
not high due to individual differences and visual fatigue, and it
is prone to triggering over-intervention (Madiraju et al., 2025). In
machine learning approaches, a process of signal processing, feature
extraction, salient feature selection, training, and final classification
of the model is usually used. Complex manually introduced features
are used in these methods. For example, Czabanski et al. (2012)
used weighted fuzzy scoring (WFS) combined with support vector
(SVM) to predict neonatal acidosis and obtained 92% accuracy
and 88% quality index. O’sullivan et al. (2021) proposed a method
for detecting fetal distress based on autoregressive sliding average
(ARMA) modeling and machine learning, achieving a 0.86 AUC.
Fanelli et al. (2013) introduced a phase-corrected signal averaging
nonlinearity parameter for the quantitative assessment of fetal
anomalies and achieved an AUC of 75%. Comert et al. (2018) applied
a neural network and obtained an accuracy of 92.40%, a sensitivity
0f 95.89% and a specificity of 74.75%, as well as the method recently
proposed by Karmakar et al. (2025) recently proposed an automated
classification model for fetal health status by integrating machine
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learning algorithms such as gradient boosting classifiers and random
forests obtained 93.41% accuracy.

In contrast to traditional machine learning methods, more
research is currently being conducted based on Convolutional
Neural Networks (CNNs) and Long Short-Term Memory Networks
(LSTMs) in deep learning. Since fetal heartbeat maps are time-
series data, but often presented as two-dimensional images (time
on the horizontal axis, fetal heart rate and contractions on
the vertical axis), using CNNs to automatically extract spatio-
temporal features (e.g., local fluctuations, cyclic patterns) through
multilayered convolutional kernels and relying on the sliding-
window mechanism to capture local temporal dependencies can
dramatically improve the recognition accuracy of fetal heartbeat
maps. Due to these advantages, CNNs have been used to design
various screening and assistive tools, e.g., Li et al. (2018) proposed
1D-CNN and obtained 93.24% accuracy to classify FHR signals.
Liu M. et al. (2021) designed a hybrid CNN-BiLSTM network based
on the attention mechanism. Lin et al. (2024) developed the first
automated long term prenatal FHR analysis system LARA, which
is based on deep learning analysis system LARA, which generates
risk distribution maps (RDM) and overall risk index (RI) through
1D-CNN model combined with sliding-window information fusion
technique, which has an AUC of 0.872 on the test set.

Although the above methods through machine learning or deep
learning have achieved more or less good results, researchers are
not uniform in the standard of the data, for example, some people
artificially introduce features to let the model learn, or use a one-
dimensional array of fetal heart rate as the input of the model to
learn, but usually doctors use the intuitive graph of the change
curves of the fetal heart rate and the contraction rate to interpret.
Therefore, in this study, in order to minimize the criteria for
distinguishing normal and abnormal fetal heart rate, we innovatively
use images as the dataset, which contain two curves of fetal heart
rate and contraction rate, in order to be closer to the needs of
clinical practice.

2 CTG interpretation standard

This chapter systematically describes the core interpretation
criteria of CTG, which is divided into three parts: firstly, it clarifies
the terms and definitions of CTG (section 2.1), which lays the
foundation for the subsequent analysis; secondly, it explains in detail
the categorization and interpretation of the CTG graphs during labor
(section 2.2), including the characteristics of the typical waveforms
and their clinical significance; and finally, it discusses the key role of
UC in the fetal heart rate (section 2.3), and analyzes the potential
mechanism of its impact on the changes of the fetal heart rate
rate changes.
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FIGURE 1
Baseline variation and sinusoidal pattern. (a). Normal variability; (b). Minimal variability; (c). Absent variability; (d). Sinusoidal pattern.

2.1 CTG terms and definitions

Baseline: the average fetal heart rate that fluctuates within
5 beats/min in 10 min, excluding acceleration, deceleration and
significant variability; the normal FHR baseline range is 110-160
beats/min; the baseline must be a graph that lasts for more than
2 min in any 10 min, and the graph can be discontinuous; if the
baseline is uncertain during the observation stage, the baseline
can be determined by referring to the graph of the previous
10 min; of which (1) fetal tachycardia (tachycardia): refers to
the fetal heart baseline >160 beats/min lasting >10 min. If the
baseline is uncertain during the observation phase, the baseline
can be determined by referring to the graph of the previous
10 min; where: (1) fetal tachycardia (tachycardia): refers to a fetal
heart baseline >160 beats/min for >10 min; (2) fetal bradycardia
(bradycardia): refers to a fetal heart baseline <110 beats/min for
=10 min.

Baseline variability: refers to the change in amplitude of the
fetal heart rate per minute from the peak to the trough, which
can be visualized and quantified, of which: (1) absent variability:
refers to the disappearance of amplitude fluctuations, as shown in
Figure 1¢; (2) minimal variability: refers to amplitude fluctuations
of <5 times/min, as shown in Figure 1b; (3) normal/moderat
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evariability: refers to amplitude fluctuations of 6-25 times/min,
as shown in Figure 1a.

Acceleration: refers to a sudden and significant increase in
baseline fetal heart rate with a start-to-peak time of <30s. The
time from the start of the acceleration of the fetal heart rate to its
return to the baseline fetal heart rate level is the time of acceleration.
(1) Before 32 weeks of gestation, acceleration is > 10 beats/min at
the baseline level and lasts =10 s, but <2 min; (2) At 32 weeks of
gestation and later, acceleration is > 15 beats/min at the baseline level
and lasts 215 s, but <2 min; (3) prolonged acceleration: it refers to an
increase in the fetal heart rate that lasts > 2 min, but <10 min; (4) if
acceleration lasts 210 min, the baseline change in fetal heart rate is
taken into consideration.
(6]
accompanied by contractions, usually symmetrical, slow decline
to the nadir and then return to the baseline, the time from the
beginning to the nadir 230s, the nadir of deceleration is often

Deceleration: early deceleration (ED): deceleration

coincident with the peak of contractions; in general, the beginning
of deceleration, the nadir, the recovery Generally, the onset, nadir,
and recovery of deceleration are synchronized with the onset, peak,
and end of contractions; (2) late deceleration (LD): deceleration
accompanied by contractions, usually symmetrically and slowly
decreasing to the nadir and then recovering to baseline, with the
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FIGURE 2

Several complex variable deceleration. (a). No posterior “shoulder peak”; (b). No front “shoulder peak”; (c). ‘"W’ shape variable deceleration; (d). Wide

variable deceleration.

onset to nadir time >30 s, and the nadir of deceleration is usually
delayed from the peak of contractions. In general, the onset, nadir,
and recovery of deceleration lag behind the onset, peak, and end
of contractions, respectively; (3) Variable deceleration (VD): refers
to a sudden, significant, and rapid decline in fetal heart rate, with
an onset-to-nadir time of <30 s, a decline of =15 beats/min, and
a duration of >15s, but < 2 min. When varied deceleration is
accompanied by contractions, the onset of deceleration is usually
delayed by the peak of contractions. Deceleration is accompanied by
contractions, and there is no fixed pattern between the onset, depth
and duration of deceleration and contractions, as shown in Figure 2.

Uterine contraction: (1) normal uterine contraction (normal
uterine activity): <5 times/10 min uterine contraction, observe for
30 min, and take the average; (2) uterine contraction is too frequent
(tachysystole) (2) tachysystole: >5 contractions/10 min, 30 min of
observation and take the average value.

Sinusoidal pattern: clearly visible, smooth, sinusoidal-like
pattern, long variant of 3-5 cycles/min, lasting >20 min, and no
acceleration exists, as shown in Figure 1d.

2.2 Interpretation and classification of CTG
graphics during delivery

Class I graphs: The following conditions must be met: (1) the
baseline fetal heart rate is 110-160 beats/min; (2) the baseline
variation is normal variation; (3) there is no late deceleration
and variant deceleration; (4) there is the presence or lack of
early deceleration; and (5) there is the presence or lack of
acceleration, which suggests that fetal acid-base balance is normal,
as shown in Figures 3a,b.

Class II graphs: All cases other than Class I and Class III
electronic fetal heart rate monitoring graphs are classified as Class II.
It is not possible to interpret the presence of fetal acid-base balance
disorders, but a combination of the clinical situation, continuous
fetal heart rate monitoring, and other methods of assessment should
be used to determine the presence or absence of fetal hypoxia, and
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intrauterine resuscitation may be required to improve the condition
of the fetus, as shown in Figure 4a.

Class IIT graphs: (1) Fetal heart rate baseline absent variability
and any of the following conditions are present: O recurrent
late decelerations; @ recurrent variable decelerations; & fetal
bradycardia (fetal heart rate baseline <110 beats/min). (2) Sinusoidal
pattern: It suggests that there is an acid-base balance imbalance
in the fetus, i.e., fetal hypoxia, and appropriate measures should
be taken immediately to correct the fetal hypoxia, including
changing the position of the pregnant woman, administering
oxygen, discontinuing the use of oxytocin, suppressing contractions,
and correcting the hypotension of the pregnant woman, etc. If none
of these measures work, the pregnancy should be terminated in an
emergency, as shown in Figure 4.

2.3 The role of UC in fetal heart rate
monitoring interpretation criteria

When interpreting class I graphs, it is necessary to combine
with UC to determine whether there is ED or LD (Mendis et al.,
2025), as well as the absent variability plus recurrent late deceleration
in class III graphs, and failure to combine with contractions
may lead to the misclassification of many graphs that should be
classified as class I or class III as class II graphs. For example,
we know that Figure 3b is a Class I graph and Figure4a is a
Class II graph, but it is difficult to differentiate between the two
if we only look at the fetal heart rate without looking at that
curve of contractions, and there is a possibility of misclassifying a
Class I graph as a Class II graph and thus triggering unnecessary
intervention, or on the contrary, misclassifying a Class II graph
as a Class I graph and failing to intervene in a timely manner.
Therefore, the temporal relationship between deceleration pattern
and contraction is essential in the interpretation criteria of fetal
cardiac monitoring charts. The FHR signal alone will increase
the rate of misjudgment, resulting in a unimodal model that
is prone to misjudging physiological fluctuations as pathological
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decelerations; for the two types of b and ¢ in Figure 4, which only
require a single signal from the FHR, can be identified, but for
the pathological conditions of a, b in Figure 3, and a in Figure 4
and the absence of variability plus late decelerations in the
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class III graph, the pathological conditions cannot be accurately

identified.

In terms of pathophysiological mechanisms, the synergistic
changes of FHR and UC directly reflect the compensatory state of
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the fetal-placental unit, for example, the sudden decline of variant
deceleration (VD) is associated with vagal reflexes due to cord
compression, but its clinical significance needs to be combined with
the timing of the occurrence of the out-of-contraction cycle to
differentiate between episodic compression or persistent hypoxia,
and the bimodal data can capture this dynamic interaction feature
through time-domain alignment, whereas the single FHR signal
provides only isolated information on heart rate fluctuations.

3 Methods

This chapter describes the datasets, network models, and
First, the
public dataset (Section3.1) is summarized, the experimental

attention mechanisms used in the experiment.

data screening method (Section3.2) is described, and then
the network structure (Section 3.3) and its core attention
mechanism (Section 3.4) are described in detail.

3.1 Publicly available dataset descriptions

The publicly available dataset CTU-CHB (published by the
Czech Technical University and Brno University Hospital) is
widely used as a baseline data source in the current field of
fetal heart monitoring research. This dataset was created by
screening 9,164 original fetal monitoring records collected during
2010-2012, and 552 CTG samples with complete clinical annotation
were retained (Romagnoli et al., 2020). Although its data size
and openness facilitate algorithm development, the following key
shortcomings constrain its clinical value:

3.1.1 Insufficient racial generalization

The CTU-CHB dataset contains data from only a single
population of white European pregnant women, whose FHR and
UC signaling characteristics show a high degree of homogeneity.
However, the physiologic dynamics of the target clinical scenario
(a group of Chinese pregnant women) may have geographic
or population-specific patterns (e.g., baseline heart rate offset,
differences in contraction pressure response, etc.). This data
distribution bias leads to difficulties in generalizing models trained
on a single population to heterogeneous populations, which in turn
triggers cross-domain decision bias.

3.1.2 Lack of multimodal data integrity

The vast majority of samples in the dataset had incomplete or
missing UC signals, forcing studies using this dataset to analyze only
a single FHR channel (Francis et al., 2024). This unimodal modeling
approach is a serious deviation from the clinical guideline of “two-
parameter synergistic assessment” (i.e., simultaneous monitoring of
the time domain/frequency domain coupling of FHR and UC). For
example, early signs of fetal hypoxia are often characterized by a rise
in contraction pressure accompanied by an absence of accelerated
fetal heart rate, and a single FHR signal cannot capture such dynamic
correlations.
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3.1.3 Introduction of bias by data preprocessing
methods

For the missing values of FHR signals, existing studies
commonly use interpolation methods such as linear interpolation
or spline interpolation to fill them (Li et al, 2025). Although
such methods can achieve sequence continuity, their mathematical
smoothing process destroys the original features of biological
signals, and there is a certain degree of subjectivity in the filling of
missing values of data, which results in the inability of the model to
learn the real physiological response patterns.

3.2 Datasets used

In order to break through the bottleneck of adaptability
of public datasets in regional clinical applications, this study,
in conjunction with the Obstetrics Center of Chengdu Tertiary
Hospital, constructed a dedicated dataset for Chinese pregnant
women. This dataset consecutively included 326 singleton pregnant
women who underwent routine fetal heart rate monitoring in
the obstetrics outpatient clinic of the First People’s Hospital of
Longquanyi District, Chengdu City, Sichuan Province, China,
from April 2019 to November 2023, with the information of the
pregnant women as shown in Figure 5 those with severe fetal
abnormalities, maternal arrhythmia, and signal loss >5 min were
excluded. Independently labeled by two obstetricians with >5 years
of experience according to FIGO 2015 guidelines; disagreements
were arbitrated by a third person. Category distribution: 224 normal,
102 pathological. The study was approved by the Ethics Committee
of the First People’s Hospital of Longquanyi District, Chengdu City,
Sichuan Province, China (approval number: AF-KY-2024014), and
all subjects signed informed consent.

Compared with the CTU-CHB dataset, its core advantages are
reflected in three aspects: first, optimizing the signal acquisition
parameters and evaluation thresholds for the unique physiological
characteristics of Chinese pregnant women (e.g., the baseline mean
fetal heart rate of 142 + 8 bpm is significantly lower than that
of 148 + 10 bpm in the European population); second, realizing
100% synchronous acquisition of the FHR and UC signals with
time alignment (sampling frequency of 4 Hz, time stamp error of
Secondly, 100% synchronous acquisition and time alignment of FHR
and UC signals (sampling frequency 4 Hz, time stamp error <0.25 s)
was achieved to support Coupling Oscillation Analysis (COA),
which meets the requirements of the clinical guidelines on the
joint interpretation of multi-parameters; thirdly, data interpolation
and filling techniques were strictly prohibited to maximally retain
the original nonlinear characteristics of the biological signals. It
provides infrastructure support for the subsequent multi-center
validation and assessment of model generalization ability.

3.3 Dataset preprocessing

Aiming at the grid shadow interference problem in CTGs
collected from hospitals, this study proposes a noise suppression
method based on image processing and template matching, and the
complete flow is shown in Figure 6. The algorithm takes the original

fetal monitor image set I = {I,,I,, ....[y}e R™™? (resolution
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Information of pregnant women used in this study.
m = 1,653, n = 2,339) as the input, and achieves the accurate was simulated by a preset linear template to match the
extraction and standardization of the signal trajectory through the binarized image column by column, and the weighted average
following steps: of the valid signal points in each column was calculated, and
Step 1: Image preprocessing and region segmentation: The color the final output of the standardized fetal heart rate signal
image I is first grayscaled by reading the guardianship recording sequence, FHR template Tp(S) the FHR signal template
image in grayscale format with a resolution of 1,653 x 2,339 pixels is shown in Equation 3.
and binarized by setting a fixed threshold 7 = 50 to convert the
original image into a black and white binary image (Jia et al.,
2023), where the fetal heart rate and contraction curve regions are Ymax ™ Vmin
. . Terr(S) = kenr - | T (S = Sutart) + Yynin
labeled with foreground value of 1 and the background region of Send = Sstart (3)
0. The grayscale value G;, (x,y)is computed followedby an empirical +Crr
thresholding for binarized segmentation Equations 1, 2 illustrate the
computational process of its segmentation: where kpyr = —1 denotes signal reflection (image longitudinal

1
@WW=5 > L(xny0) (1)
ce{R.G,B}
1 Gy >t
Bi(x,y) = (2)
0 otherwise

where, I, € R™™3 denotes the original fetal monitor color image
(the k-th), G, (x,y)€[0,255] denotes the pixel values after grayscaling,
with coordinates of the x-th row and y-th column in the image,
and By(x,y)€{0,1} denotes the binarized mask, which is used for
segmenting the signal track region, andr = 50 is the empirical
threshold, which is an operation that can efficiently preserve the
FHR and UC signal trajectory region, while filtering out the
background grid interference.

Step 2: Physiological signal template modeling: two types of
physiologic signal templates are defined based on the mapping
relationship between clinical ranges and image scales:

1. Vertical scanning of the image in the region of rows 281 to 569,
which corresponds to the band of the fetal heart rate curve
in the paper record chart. The clinical range of 60-210 bpm
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coordinates are opposite to the physical range), Cryr = Vmax + Vmin
is a compensation constant used to align the baseline after inverse
mapping to the image coordinate system,the pixel range of the scale
region for FHR is Se[§
range is S€[Syue> Send)-

start> Send)» and the corresponding clinical

2. Similarly, the contraction pressure curve bands in the region
of rows 628 to 770 of the scanned image were combined with
a linear template of 0-100 mmHg to extract the contraction
signals for each column, UC templateT ;-(S) the UC signal
template is shown in Equation 4.

Yiax = Yo
ol ke (222 (-5, e @
end  Vstart

where k- = -1 denotes signal reflection, k- = —1 ensures baseline

zeroing, the pixel range of the scale region of the UC s ky = —1, and

!

the corresponding clinical range is y € [y! . .y ].

Step 3: Longitudinal Signal Extraction and Noise Suppression:
For each time point i, the longitudinal column of pixel data
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FIGURE 6
Flow chart of extracting FHR and UC signals from raw data.
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is extracted vertically, the binary signal is multiplied with the
physiological template, and the mean value is computed only for
the valid data points, i.e., those with B, = 1, to suppress the noise,
which is given by the following the calculation process is shown in
Equations 5, 6.

1

S0 = s & B T )
; 1 ,
Sgk)(l) h [D,] + ssész(s,l) Hue® ©

where, i€[0,n]denotes the timeline pixel position, S;,k)(i) denotes the
p-th class signal in the k-th image (p = 1: FHR, p = 2: UC), @,
denotes the set of valid pixels for the p-th class signal, and & = 107
avoids division by zero error. This operation generates a normalized
time series by suppressing the random noise in the non-track region.
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Step 4: Time series matrix Perform

character area localization the constructed matrix is given by

construction;

Equation 7.

S(ll) Sgl)
(2) (2)
S S
X=|" P ern @)
s s

where X denotes the two-channel time series matrix after signal
extraction, N denotes the total number of images, 2N is the number
of rows (each recorded image has two signal channels, FHR and
UC), and n is the number of columns ie., the length of the
time series.
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FIGURE 7
The internal structure of DenseBlock.

3.4 Network model

Compared with other domains, medical image data usually has a
small data volume, so the models should be prioritized to lightweight
type to fit the data missingness (Chen et al., 2024). Although many
image processing models such as Vision Transformer (Khan et al.,
2022) and Swin Transformer (Liu Z. et al., 2021) have achieved
good results in recent years, they require large data volumes to
support them. Obviously, the use of large models leads to their
overfitting problems on small datasets and high computational
resource requirements, which makes it difficult to be efficiently
deployed in resource-constrained healthcare scenarios.

DenseNetl121 (Huang et al, 2017) (Densely connected
Convolutional Networks) is a deep convolutional neural network
whose core idea is to enhance feature propagation by means of dense
connections in a Dense Block. First, each layer in the Dense Block
is connected to all previous layers, and given an input imageX,,
it is forward propagated through a convolutional neural network
(DenseLayer) containingLlayers. Each layer £ (1< £ <L) performs
a nonlinear mapping H (-), which consists of a combination of the
basic blocks of batch normalization (BN), ReLU activation function,
and convolutional operations. The feature output of the £-th layer
is denoted as X .

This connection makes the features fully reused and fused
between different layers, enhances the feature transfer efficiency,
and the gradient can be transferred more efficiently in the
backpropagation process. Figure 7 shows a DenseBlock containing

2 DenseLayers, the £-th layer receives X, X, X,_; from all

previous layers as input as shown in Equation 8:

X£ =H£(X0)X1, (8)

This structural design allows the network to converge faster
during the training process and reduces the occurrence of
the gradient vanishing problem. At the same time, it is also
characterized by high parameter efficiency; compared with other
convolutional neural networks of the same type, DenseNet121 has
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FIGURE 8
Parameter comparison of the model.

fewer parameters at the same performance level (He et al., 2016;
Szegedy et al., 2016), which is only 7.98M, as shown in Figure 8.
In addition, there is a transition layer in the middle of every two
Dense Block blocks, which contains 1 x 1 convolution with average
pooling, actively reduces the feature map dimension through
channel compression, and compression suppresses overfitting and
enhances noise robustness. The DenseNet121 network structure
is shown in Figure 9.

In the fetal heart map classification task, DenseNet121 fuses
the shallow features of the signal with the deeper features through
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FIGURE 9
The DenseNet network structure.

dense connections, enabling the network to extract rich feature
information from different levels. This dense connectivity structure
enables the network to better capture subtle features in fetal heart
maps, such as short-term details: instantaneous fluctuations in
fetal heart rate (e.g., variable deceleration) or impulse noise in
contraction signals (maternal motion interference) (Chen et al.,
2025), and long-time trends: contraction cycles (10-15 min) with
baseline variability in fetal heart rate,

DenseNet121 progressively fuses features at different scales
through 3 x 3 convolution cascaded in multiple layers within a dense
block without relying on complex data enhancement or pre-training
strategies, a feature that is crucial for capturing the synchronization
of contraction peaks with fetal heart rate deceleration (Deceleration-
Contraction Coupling).

This
representativeness of the features, but also allows the network to

feature fusion approach not only improves the
better adapt to the complexity of fetal heart maps and improve the
classification accuracy.

In the fetal heart map classification task, this means that
DenseNet121 is able to achieve higher classification accuracy
without increasing the computational burden. This is especially
important for practical clinical applications, as its lightweight design
not only reduces the computational resource requirements, but also
improves the generalization ability of the model, making it ideal for
scenarios with limited fetal heart image data.

3.5 Attention

Although the dense connectivity of DenseNet can aggregate
multi-scale features (e.g., transient fluctuation and baseline drift)
across layers, the fixed receptive field of its convolutional kernel
makes it difficult to dynamically adapt to pathological patterns with
different spatiotemporal characteristics. Fetal heart deceleration
during the UC Peak Phase requires a large receptive field to
capture cyclic correlations, while Beat-to-beat Variability relies
on local detail extraction, but the fixed size of conventional
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convolution kernels limits the model’s ability to capture multi-
scale physiological dynamics (Li et al., 2023; Zhang et al., 2023),
and the noise of the fetal cardiogram is not consistent with the
physiological events (deceleration) interference differs significantly
from key physiological events (delayed deceleration) in the channel
dimension, but traditional dense connectivity assigns equal weight
to all feature channels, resulting in insufficient sensitivity of the
model to low signal-to-noise ratio regions.

To address the problem of limited data volume and complex
pathology features in fetal heart maps, this study further introduces
the Selective Kernel (SK) (Li et al., 2019a) attention module,
which is inserted after each DenseLayer of the DenseBlock. The
dense connectivity of DenseNet121 provides an ideal architectural
foundation for this purpose. The multi-scale feature maps
(abstraction layers of different Dense Blocks) output by the dense
connectivity provide rich inputs for the dynamic sense field selection
of the SK module, which enhances the feature response to key phases
of contractions (e.g., peak periods) through Channel Recalibration,
while the dense connectivity ensures that local details (e.g., small
fluctuations in fetal heart rate) are not forgotten by the deep network
forgotten by the deep network. SK convolution is implemented by
three operations, Split, Fuse and Select, the process of which is
depicted in Figure 10.

Split: two convolution kernels of sizes 3 and 5 are used
to perform convolution operations on the input features (each
convolution operation is a set of GBRs), ie, F:X—Y, €
RPWXC and Fp:X — Y, € RIWXC 1o obtain two-scale feature
representations and, for efficiency, a 3 x 3 convolution kernel with a
null size of 2 is used instead of the 5 x 5 conventional convolution
kernel. The same input is fed into two “stethoscopes” simultaneously:
3 x 3 convolution > captures the instantaneous variation (beat-
to-beat) over 0.2-0.4s; 5 x 5 (null = 2) convolution > covers
the contraction cycle over 0.8-1.2 s correlation. The two branch
outputs Y, and Y,were identical in shape, facilitating subsequent
pixel-by-pixel fusion.

Fuse: in order to enable neurons to adaptively adjust the size
of their receptive fields according to the content of the stimulus,
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FIGURE 10
Selective kernel convolution.

the results of the two branches are first fused by elemental
summation, i.e., the corresponding elements in a tensor of the same
shape are summed:

Y=Y,+Y, )
then the global information is then embedded through global
average pooling to generate the channel statistics for s € R"C,
specifically, the cth element of s computed through the spatial
dimensions H x W shrinking Y.

H W

w2

i=1j=1

se=Fgap(Y,) = (10)
this step is equivalent to an obstetrician quickly going through the
entire curve and noting which bands are abnormal in energy.

Then, a fully connected operation is performed on the channel
statistic S containing global information to obtain the low-
dimensional eigenvector z after dimensionality reduction and
abstraction, which retains the key information of the input and
significantly reduces the dimension, so as to reduce the parameters
of the subsequent attention layer and improve the inference speed:

z = Fpc(s) = 6(B(Ws)) (11)

where W € R™C, B denotes batch normalization, dis the ReLU
function, and z has dimension d. The formula is as follows
as shown in Equation 12:

d:max(g,L) (12)

r

where r is the ratio of dimensionality reduction, when r is larger
sacrifice part of the expression ability to improve efficiency, suitable
for small models/lightweighting, so in this study, r is set to 16 and

L =32 is the lower limit value, in order to prevent over-compression
of the information, to ensure that the ability of expression.
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Select: the input is the feature compact descriptor z, through
the cross-channel soft attention mechanism, that is, through the
attention weight, the information that dynamically determines
which branch each channel should focus on, through exponential
operation and normalization, the score is converted into a
probability value a.and b, satisfying a. + b, = 1, and its mathematical

expression is:
eA Z B .z

c >
eAfz + eB[z

_ €
T

where A, B € R™“ represent the learnable parameter matrix, and the

b

a

(13)

learnable matrix A,B maps z into two probabilities a and b. a=1, b =
0: the model believes that the current channel should be dominated
by instantaneous details, such as at the starting point of mutation
deceleration; a=0, b = 1: the model pays more attention to long-
term trends, such as determining whether the baseline continues to
decline at peak contractions; a and b between 0 and 1: the model
blends the two scales to adapt to the transition interval. Each row of
each matrix corresponds to a channel of weight calculation, with a, b
representing the Y| and Y, soft attention vectors. Note: A , B, € R"*?
represents the ¢ row of the matrix A,B corresponding to the weight
parameter of the c channel, and a_, b, represents the c element of a,b.
Finally, feature fusion:

V.=a.-Y.+b.- Y, (14)

where V = [V,V,, ...... V., V.e R™W the final output V. is
equivalent to adjusting the volume of the two stethoscopes in real
time according to “clinical importance”

The Selective Kernel (SK) attention mechanism used in this
study achieves intelligent focusing on key pathological features in
fetal heart-contraction bimodal signals through dynamic gating
weights, and its core innovation is to mimic the process of diagnostic
cognition of irregular physiological events by obstetricians. During
contraction stress, the SK module generates feature mappings
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of differentiated receptive fields through parallel processing of
multibranch convolutional kernels (Equation 9) - 3 x 3 kernels
capture transient variability (e.g., subtle fluctuations in beat-to-beat
variability), whereas null convolution of equivalent 5 x 5 kernels
captures cyclic associations (e.g., lag phase difference between
deceleration and contraction). Global average pooling (Equation 10)
compresses the spatiotemporal features into a channel statistic s,
which essentially quantifies the energy distribution of different
frequency components. The fully connected layer (Equation 11)
constructs in effect a low-dimensional streaming representation of
the dynamic properties of the signal by means of an abstract feature
vector z extracted from the bottleneck structure (r = 16), where each
dimension corresponds to a typical pathological pattern.

The calculation of gating weights (Equation 13) realizes
the embedding of clinical a priori knowledge through the
learnable parameter matrix A,B- when the input signal has a
contraction-triggered steep drop (e.g., a W-type valley of variability
deceleration), the weights of the larger receptive field branches (5 x
5 equivalent kernels) a, are automatically augmented by the Softmax
function (>0.7), allowing the model to prioritize the temporal
relationship between the overall pattern of deceleration and the
contraction cycle; conversely, when subtle fluctuations are detected
(e.g., baseline variability decay), the weights b. of the smaller
receptive field branches (3 x 3 kernels) are elevated, focusing on local
slope changes. This adaptive selection mechanism (Equation 14)
achieves a triple optimization at the physiological level: 1) in the
time domain, the dynamic weight assignment strengthens the
characteristic response of the critical phase of contraction (15 s after
the peak), and weakens the redundant information of the inter-
contraction interval; 2) in the frequency domain, the interference of
the maternal motion artifacts (high-frequency noise) is suppressed
by the channel re-calibration, and the hypoxia-associated fluctuation
in the frequency band of 0.04-0.15 Hz is enhanced; 3) Spatially,
multi-scale feature fusion ensures that transient but clinically
significant signal transitions (e.g., W-shaped double valleys of
variable deceleration) are not smoothed by the fixed receptive
fields of conventional convolution, and automatically enhances
the detection sensitivity of subtle but prognostically critical signal
turning points (e.g., deceleration recovery slopes <1 bpm/s) during
the contraction stress phase to maximally mimic the obstetrician’s
interpretation process.

4 Experimental results and discussion
4.1 Experimental setup

This study is based on PyTorch 2.6.0 and CUDA 12.0 as a deep
learning framework to build neural network models, the ratio of the
training set to the test set is 7:3, and the experiments are all run on
the NVIDIA RTX4060 equipped with AMD 7735, and 16 GB DDR5,
and the hyperparameters are shown in Table 1.
4.2 Evaluation indicators

Because of the uneven proportion of data, in order to more fully

validate the performance of the model in this study, several metrics
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TABLE 1 Hyperparameters for proposed method.

Hyperparameter Value

K 32
Epochs 100
Learning rate 0.001
Batch Size 32

Loss Function FocalLoss
Optimisation Adam

such as precision, recall, F1 score, confusion matrix and subjects’
work characteristic curves (ROCs) and area under the ROC curve
(AUCs) were introduced for assessment.

In this assessment framework, CTG plot normal is defined
as positive category and abnormal as negative category. Based
on this setting, the model prediction results were defined as
follows: cases in which the model correctly predicted fetal
normality were called True Positive (TP); cases in which the model
incorrectly predicted fetal abnormality as a positive category were
called False Positive (FP); cases in which the model correctly
predicted fetal abnormality as a negative category were called True
Negative (TN); and the situation where the model incorrectly
predicts fetal normal as a negative category is referred to as
False Negative (FN).

The precision rate indicates the proportion of samples predicted
to be in the normal/abnormal category that are actually in the
normal/abnormal category and measures the ability of the model to
avoid misdiagnosis the calculation method for precision is shown in
Equations 15, 16.

. TP
Precisionyy,a = TP+ FP (15)

o TN
Precision 4, rmal = TN+ EN (16)

Recall represents the proportion of true normal/abnormal
samples correctly identified by the model to the total number of
actual normal/abnormal samples, which reflects the model’s ability
to capture normal/abnormal categories. In the fetal heart rate
monitoring scenario, this metric is of key clinical significance: false
positives will lead to missed high-risk cases and delayed necessary
interventions (emergency cesarean section), thus jeopardizing the
safety of mother and baby, while false negatives, although they may
lead to over-medical interventions, have a significantly lower risk of
adverse clinical outcomes than false-positive scenarios. Therefore,
minimizing the proportion of FP by optimizing the recall rate is a
central goal to guarantee the safety of decision-making in high-risk
pregnancies and is highly consistent with the guideline of clinical
priority to reduce the rate of missed diagnoses the recall rate is
calculated as shown in Equations 17, 18.

Recally P

orml = TPy FN a
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TABLE 2 Comparison between using DenseNet alone and integrating other attention.

Attention Accuracy Normal ’ Abnormal
Precision Recall F1-score ‘ Precision Recall F1-score
DenseNet121 (Huang et al., 2017) 0.8969 0.92 0.92 0.92 0.84 0.84 0.84
ECA (Wang et al., 2020) 0.8660 091 0.89 0.90 0.79 0.81 0.80
SimAM (Yang et al., 2021) 0.8969 0.90 0.95 0.93 0.89 0.78 0.83
SGE (Li et al., 2019b) 09175 0.91 0.97 0.94 0.93 0.81 0.87
CoorAtt (Hou et al., 2021) 0.9278 0.94 0.95 0.95 0.90 0.88 0.89
CBAM (Woo et al,, 2018) 0.9381 0.92 1.00 0.96 1.00 0.81 0.90
DAN (Fu et al,, 2019) 0.9485 0.98 0.94 0.96 0.89 097 0.93
SE (Hu et al., 2018) 0.9588 0.98 0.95 0.97 091 0.97 0.94
SK (Li et al., 2019a) 0.9588 1.00 0.94 0.97 0.89 1.00 0.94
traversing all classification thresholds: the closer the curve is to
Recallpomal = % (18)  the upper left corner (FPR tends to 0, TPR tends to 1), the better

The F1 score represents the reconciled mean of precision and
recall and is used to balance the two the calculation method for F1
scores is shown in Equation 19.

Precision x Recall

F1 —score =2 X (19)

Precision + Recall

Accuracy indicates the number of correctly predicted samples as
a proportion of the total number of samples the calculation method
for accuracy is shown in Equation 20.

TP+ TN

A - IP+TN
U = b TN+ FP+ FN

(20)

Confusion Matrix is a matrix structure for evaluating the
performance of classification models (Valero-Carreras et al., 2023),
which quantitatively presents the accuracy and error distribution of
classification results by cross-referencing the true categories of the
samples with the predicted categories of the model the confusion
matrix is shown in Equation 21.

TP FN
FP TN

Con fusion Matrix = (21)

ROC is a visualization tool for evaluating the performance of a
binary classification model, with the False Positive Rate (FPR) on
the horizontal axis and the True Positive Rate (TPR) on the vertical
axis. The ROC depicts the model’s ability to discriminate between
positive and negative categories by traversing all the classification
thresholds: the closer the curve is to the upper left corner (FPR
approaches 0, TPR approaches 1), the better the classification
performance, and the AUC is the area enclosed by the ROC
curve and the coordinate axis to quantify the overall classification
effectiveness of the model. The ROC curve depicts the model’s
ability to discriminate between positive and negative categories by
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the model’s classification performance is, and the AUC is the area
bounded by the ROC curve and the axes, which is used to quantify
the model’s overall classification effectiveness. “When AUC = 0.5, the
model is equivalent to a random guess; when AUC = 1, the model
has the ability to classify perfectly, and its formula is the calculation
method for AUC is shown in Equation 22.

AUC = JIROC(t)dt (22)
0

4.3 Results

Table 2 compares the side-by-side comparisons using the
DenseNet121 backbone network and fusion of eight mainstream
attention mechanisms, in which SK achieves the optimal
performance with an accuracy rate of 0.9588, which is tied for
first place with classical SE attention, but demonstrates significant
advantages in key clinical metrics: the normal samples achieve a
100% precision rate (Precision = 1.00), which effectively avoids the
risk of misdiagnosing the normal The normal samples achieved

100% precision (Precision = 1.00), effectively avoiding the risk
of misdiagnosing normal fetal heart as abnormal; the abnormal
samples achieved 100% recall (Recall = 1.00), ensuring that
all abnormal cases were effectively detected. In terms of the
comprehensive assessment indexes, both the normal category
Fl-score (0.97) and the abnormal category Fl-score (1.00)
were significantly better than the comparison scheme, with an
improvement of 5.0% and 16.0%, respectively, compared with the
baseline method, and the confusion matrices are shown in Figure 11.
The experimental results show that the SK module enhances the
model’s hierarchical characterization of fetal heart fluctuation
features through the strategy of dynamically selecting multi-
scale convolutional kernels, and its channel attention mechanism

frontiersin.org


https://doi.org/10.3389/fphys.2025.1638788
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Qiu et al.

10.3389/fphys.2025.1638788

DenseNet121 ECA SimAM
60 60
5 50 7 50 3 50
Normal 0, Normal 0, Normal 0
(7.7%) (10.8%) (4.6%)
40 40 40
E 30 E 0 2 30
£
Abnormal 5 20 Abnormal 6 20 Abnormal 7 2
(15.6%) (18.8%) ’ (21.9%)
10 10 10
Normal Abnormal Normal Abnormal Normal Abnormal
Predicted label Predicted label Predicted label
(a) (b) (©
SGE CoorAtt CBAM
60 60 0
Normal 2 30 Normal 3 % Normal 0 0
o (3.1%) " (4.6%) o (0.0%)
_ LU 0 40
E 30 E 30 ;3 30
Abtomal 6 R 4 20 6 2
normal ( 1 8.8%) Abnormal ( 1 2.5%) Abnormal ( 1 8.8%)
10 10 10
Normal Abnormal Normal Abnormal Normal Abnormal ’
Predicted label Predicted label Predicted label
(d) (e) ()
DAN SE SK
60 60
60
Normal 61 4 * [%) 3 0 61 4 5
e (93.8%) (6.2%) Nomal (95.4%) (4.6%) (93.8%) (6.2%) “
40 40
< :% :j 30
f 30 E 0 &
Abnormal 1 31 ® 1 31 o Abnormal 0 32 ”
o (3.1%) (96.9%) Aonoml (3.1%) (96.9%) (0.0%) (100.0%) 0
10 10
0
Normal Abnormal Normal Abnormal Normal Abnormal
Predicted label Predicted label Predicted label
(8) (h) (1)
FIGURE 11

Confusion matrix for different attentions: (a) Only DenseNet121 (b) ECA (c) SimAM (d) SGE (e) CoorAtt (f) CBAM (g) DAN (h) SE (i) SK.

precisely focuses on the pathology-related features, which results in
a clearer decision boundary for the normal/abnormal category. This
performance advantage is valuable in clinical scenarios to eliminate
the waste of medical resources caused by false-positive diagnosis and
avoid the medical risks caused by false-negative missed diagnosis.
Table 3 summarize the results of the evaluation of existing
methods for fetal heartbeat monitoring classification, covering
the performance of different models in machine learning, deep
learning on their respective datasets. It can be seen that this
study achieved AUC: 94.4/Acc: 95.88/F1: 97 on the self-constructed
bimodal dataset, whereas the performance of unimodal (FHR only)
dropped to AUC 81.2/Acc 87.69/F1 0.79 under the same model
structure, a result that validates the value of contraction signals
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as an auxiliary feature. The comparison results in Table 3 do not
constitute a strict performance ranking, and there are limitations
in directly comparing the performance of these methods due to
the following reasons: first, the cited studies each used a different
private or public dataset, with sample sizes ranging from 83 to
4,473 cases, and the difference in sample sizes may affect the
assessment of the model’s generalization ability. Second, some of
the methods were designed based on 1D fetal heart rate signals,
whereas our DenseNet121-SK model deals with 2D images after
bimodal signal conversion. Even if the reproduction on the same
dataset is forced, the signal needs to be resampled, windowed, or
spectrally transformed, which introduces additional preprocessing
bias and leads to less rigorous performance comparisons. Therefore,
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TABLE 3 Aggregate of existing methods and proposed methods use only the effect of monomodality.

Reference Method Evaluating indicator Dataset used Sample size Performance (%)
AUC ‘ Acc F1 ‘

Krupa et al. (2011) SVM V Private 90 87

Spilka et al. (2014) NB,SVM,DT y Private 217 715

Czabanski et al. (2012) WES + LS-SVM V Private 186 92.0

Fanelli et al. (2013) ST \/ Private 122 75

Dash et al. (2014) GM,NB «/ Private 83 69.9

Stylios et al. (2016) LS-SVM V CTU-UHB 552 72.81

Georgoulas et al. (2017) LS-SVM «/ CTU-UHB 552 68.54

Cémert et al. (2018) LS-SVM V CTU-UHB 552 64.64

Lietal. (2018) CNN V Private 4,473 93.24

O’sullivan et al. (2021) ARMA + SVM V CTU-UHB 552 86

Lin et al. (2024) LARA V Private 114 87.2

Ours (Only FHR) DenseNet121+SK V v V Private 326 81.2/87.69/79

Ours (FHR + UC) DenseNet121+SK Y y Y Private 326 94.4/95.88/97

the comparison results in Table 3 are more of a reference for method
trends rather than a strict performance ranking.

4.4 Disscussion

The following limitations of this study need to be accounted
for: first, the limitations of the dataset size and geographic origin
(single center in Southwest China) may lead to the model’s
insufficient ability to generalize to specific populations (e.g.,
obese pregnant women); second, although the SK Attention
module significantly improves the model’s performance (3.2%
improvement in accuracy), its computational complexity is
increased by approximately 15% compared to the base DenseNet121
(Liu et al., 2023; Tang et al., 2023), and the Optimization measures
such as quantization compression may be required in extreme
resource-constrained environments; third, due to the lack of publicly
available bimodal fetal heart monitoring benchmark datasets,
existing comparison experiments can only be compared with
unimodal methods and traditional machine learning baselines,
and this benchmark discrepancy may affect the objectivity of the
performance evaluation; lastly, there is a lack of standardized signal
preprocessing and annotation specifications in the current field of
fetal heart monitoring, which makes it difficult to directly compare
the results of different studies with each other. Results are difficult
to compare directly. These limitations suggest the need for further
research in multi-center large sample validation, computational
efficiency optimization, and standardized baseline establishment.
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5 Future plans
5.1 Multi-center retrospective validation

To assess the generalization ability of the model, this study
plans to conduct multi-center validation jointly with several tertiary
hospitals in the future. Each center independently collected 150
fetal cardiac monitoring samples (including 10% extreme pathology
cases) to ensure no overlap with the training set. The following
metrics were used to quantify model performance decay the
calculation equation for GDR is shown in Equation 23.

A UCTrainingset -A UCExtemalset

GDR =
A UCTminingset

x 100%

(23)

where GDR (Generalization Decay Rate) reflects the model
cross-center performance decay rate. When GDR >15%, a
domain adaptation fine-tuning strategy based on Maximum Mean
Discrepancy (MMD) is initiated: the Adam optimizer (learning rate
1 x 1074, batch size 16) is used to minimize the feature distribution
of the source domain and the target domain in the RKHS space
difference.

5.2 Special testing for high-risk groups

In order to verify the applicability of the model in high-risk
pregnancy populations, special validation is planned to be carried
out in the future for three high-risk subpopulations: gestational
diabetes, preeclampsia and fetal growth restriction. The stratified
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FIGURE 12
Flow chart of using the proposed method to assist diagnosis.

sampling strategy is used to ensure that the samples of each
subset are representative, and the ability of the model to identify
pathologically-specific patterns (such as loss of acceleration in
the gestational diabetes group and variation deceleration in the
preeclampsia group) is emphasized. When the F1 value of a specific
subset is verified to be less than 0.80, the Focal Loss function (y =
2) will be used to retrain the subset samples to alleviate the problem
of class imbalance. At the same time, an adversarial discriminator
(gradient penalty coefficient A = 0.3) was introduced to minimize the
distribution differences between the source domain and the target
domain in the feature space, and improve the generalization ability
of the model to the characteristics of high-risk groups.

5.3 Future research directions

In the future, we will also study image segmentation models
in the field of fetal heart rate monitoring, in order to use
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image segmentation technology to identify important parts such
as acceleration, deceleration, and baseline in the fetal heart rate
monitoring chart, as well as the most popular large language model
in the field of AT recently.

6 Conclusion

The model proposed in this study uses a bimodal (FHR +
UC) signal fusion design to simulate the clinical habits of the two
dynamically related clinical habits (such as the timing coupling
of peak contractions and fetal heart rate deceleration), and its
input form (including hyperbolic images) is highly consistent
with the clinical interpretation scenario. It provides obstetricians
with reliable objective opinions during CTG monitoring during
childbirth and reduces misinterpretation caused by subjective
The

differences. introduction of the SK attention module
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dynamically adjusts the receptive field: small-scale convolution
captures details for transient fetal heart rate fluctuations (e.g.,
beat-to-beat variations) and large-scale convolutional trends for
contraction cycle associations (e.g., the lag relationship between
late deceleration and contractions), which is consistent with the
clinical focus on different pathological patterns and compensates
for the shortcomings of DenseNet121s fixed receptive fields. The
DenseNet121-SK architecture is only 8.3M (7.98M for the base
DenseNet121 and 0.32M for the SK module), which guarantees
95.88% accuracy and 100% abnormal sample recall while low
computational cost, allowing it to run on mid-range GPUs or
high-performance CPUs without relying on high-end computing
clusters. For primary medical institutions lacking GPUs, model
quantization (such as INT8 precision) can further compress the
computational requirements while reducing memory footprint,
and the dataset is not filled with interpolation, retaining the
original signal characteristics, reducing the dependence on complex
preprocessing processes, and facilitating reuse in scenarios with
simple data acquisition conditions (such as the original image
output by fetal heart rate monitors in primary hospitals). These
characteristics enable the system to effectively assist in clinical
decision-making and provide a reliable basis for timely intervention
in high-risk pregnancies, and Figure 12 shows the process of the
proposed model assisting in the diagnosis of intrapartum CTG
maps. However, it should be emphasized that the system output
should always be used in conjunction with clinical evaluation to
form a complete diagnosis and treatment decision-making chain.
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