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Introduction: Fetal heart monitoring (FHR) is a critical tool for assessing fetal 
health, but traditional methods rely on subjective physician interpretation, 
exhibiting significant variability that can lead to misdiagnosis and overtreatment. 
Artificial intelligence (AI) technology offers a novel approach to address this 
issue, yet existing research predominantly utilizes unimodal (FHR-only) data, 
failing to align with clinical guidelines emphasizing “bimodality analysis of fetal 
heart rate and uterine contractions (UC).” This study aims to develop a deep 
learning-based bimodal intelligent monitoring system to enhance the accuracy 
and clinical utility of fetal health assessment.
Methods: The research team constructed the first fetal heart-contraction 
bimodal clinical dataset for Chinese pregnant women (n = 326). Based on 
the DenseNet121 architecture, a selective attention mechanism (SK module) 
was introduced, proposing the DenseNet121-SK model. Standardized FHR 
and UC signals were extracted using image processing techniques. Dense 
connections and the SK module dynamically fused multi-scale features (e.g., 
transient fluctuations and contraction cycle associations). The model employed 
lightweight design during training to enhance physician usability.
Results: (1) Dual-modality input significantly outperformed single-modality 
input, achieving a classification AUC of 0.944 (vs. 0.812 for single-modality), 
validating the clinical value of multi-parameter collaborative interpretation; (2) 
The SK module simulated obstetricians' multi-scale cognition, achieving 95.88% 
accuracy with 100% recall for abnormal cases; (3) The system effectively reduced 
subjective interpretation variability, providing technical support for minimizing 
overtreatment.
Discussion: This study achieves a balance between clinical interpretability 
and high performance through lightweight AI design (only 8.3 million 
parameters) and dual-modality data fusion, making it particularly suitable 
for resource-constrained primary care settings. Future work should further 
optimize generalization capabilities through multicenter validation and explore 
integration with large language models to generate standardized reports.  

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1638788
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1638788&domain=pdf&date_stamp=2025-09-26
mailto:986138020@qq.com
mailto:986138020@qq.com
https://doi.org/10.3389/fphys.2025.1638788
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1638788/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1638788/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1638788/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1638788/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1638788/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Qiu et al. 10.3389/fphys.2025.1638788

These findings provide important references for optimizing perinatal healthcare 
resources and AI-assisted decision-making.
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AI-assisted decision-making  

1 Introduction

FHR monitoring is a widely used method to assess the 
condition of the fetus during pregnancy, labor and delivery. In high-
income countries, continuous fetal heart rate monitoring with a 
fetal heart monitor (CTGs) is commonly performed for deliveries 
classified as high-risk. In contrast, in low-income and lower-middle-
income countries (LMICs), intermittent measurements are the usual 
method for all deliveries. Intermittent measurements are usually 
performed using a Pinard stethoscope or a hand-held Doppler 
device. Guidelines recommend (Lewis et al., 2015) that auscultation 
of the fetal heart rate should be performed every 15–30 min during 
the first stage of labor, and every 5–15 min during the second stage 
of labor, and each auscultation should also last at least 1 min. 
However, due to the complexity of fetal physiologic dynamics 
(Costa Santos et al., 2005; Hruban et al., 2015), common standards 
for visual interpretation of fetal heart rate signals can lead to 
significant subjective variability. To minimize diagnostic errors, 
obstetricians perform multiple subjective assessments. As a result, 
the incidence of untimely cesarean sections (CS) is increasing, 
largely due to subjective errors (Steer, 2008). This is the main 
significance of designing an automatic analysis of fetal heart rate 
signals in this study.

In recent years, with the rapid development of machine 
learning and deep learning, artificial intelligence (AI)-based fetal 
heart rate monitoring and analyzing systems have provided new 
ideas to address untimely cesarean deliveries caused by subjective 
interpretation bias in traditional monitoring. Traditional fetal heart 
monitoring relies on physicians’ experience in interpreting fetal 
heart rate curves (e.g., baseline variability, deceleration type, etc.), 
but the consistency of interpretation among different physicians is 
not high due to individual differences and visual fatigue, and it 
is prone to triggering over-intervention (Madiraju et al., 2025). In 
machine learning approaches, a process of signal processing, feature 
extraction, salient feature selection, training, and final classification 
of the model is usually used. Complex manually introduced features 
are used in these methods. For example, Czabanski et al. (2012) 
used weighted fuzzy scoring (WFS) combined with support vector 
(SVM) to predict neonatal acidosis and obtained 92% accuracy 
and 88% quality index. O’sullivan et al. (2021) proposed a method 
for detecting fetal distress based on autoregressive sliding average 
(ARMA) modeling and machine learning, achieving a 0.86 AUC. 
Fanelli et al. (2013) introduced a phase-corrected signal averaging 
nonlinearity parameter for the quantitative assessment of fetal 
anomalies and achieved an AUC of 75%. Cömert et al. (2018) applied 
a neural network and obtained an accuracy of 92.40%, a sensitivity 
of 95.89% and a specificity of 74.75%, as well as the method recently 
proposed by Karmakar et al. (2025) recently proposed an automated 
classification model for fetal health status by integrating machine 

learning algorithms such as gradient boosting classifiers and random 
forests obtained 93.41% accuracy.

In contrast to traditional machine learning methods, more 
research is currently being conducted based on Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory Networks 
(LSTMs) in deep learning. Since fetal heartbeat maps are time-
series data, but often presented as two-dimensional images (time 
on the horizontal axis, fetal heart rate and contractions on 
the vertical axis), using CNNs to automatically extract spatio-
temporal features (e.g., local fluctuations, cyclic patterns) through 
multilayered convolutional kernels and relying on the sliding-
window mechanism to capture local temporal dependencies can 
dramatically improve the recognition accuracy of fetal heartbeat 
maps. Due to these advantages, CNNs have been used to design 
various screening and assistive tools, e.g., Li et al. (2018) proposed 
1D-CNN and obtained 93.24% accuracy to classify FHR signals. 
Liu M. et al. (2021) designed a hybrid CNN-BiLSTM network based 
on the attention mechanism. Lin et al. (2024) developed the first 
automated long term prenatal FHR analysis system LARA, which 
is based on deep learning analysis system LARA, which generates 
risk distribution maps (RDM) and overall risk index (RI) through 
1D-CNN model combined with sliding-window information fusion 
technique, which has an AUC of 0.872 on the test set.

Although the above methods through machine learning or deep 
learning have achieved more or less good results, researchers are 
not uniform in the standard of the data, for example, some people 
artificially introduce features to let the model learn, or use a one-
dimensional array of fetal heart rate as the input of the model to 
learn, but usually doctors use the intuitive graph of the change 
curves of the fetal heart rate and the contraction rate to interpret. 
Therefore, in this study, in order to minimize the criteria for 
distinguishing normal and abnormal fetal heart rate, we innovatively 
use images as the dataset, which contain two curves of fetal heart 
rate and contraction rate, in order to be closer to the needs of 
clinical practice. 

2 CTG interpretation standard

This chapter systematically describes the core interpretation 
criteria of CTG, which is divided into three parts: firstly, it clarifies 
the terms and definitions of CTG (section 2.1), which lays the 
foundation for the subsequent analysis; secondly, it explains in detail 
the categorization and interpretation of the CTG graphs during labor 
(section 2.2), including the characteristics of the typical waveforms 
and their clinical significance; and finally, it discusses the key role of 
UC in the fetal heart rate (section 2.3), and analyzes the potential 
mechanism of its impact on the changes of the fetal heart rate 
rate changes. 
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FIGURE 1
Baseline variation and sinusoidal pattern. (a). Normal variability; (b). Minimal variability; (c). Absent variability; (d). Sinusoidal pattern.

2.1 CTG terms and definitions

Baseline: the average fetal heart rate that fluctuates within 
5 beats/min in 10 min, excluding acceleration, deceleration and 
significant variability; the normal FHR baseline range is 110–160 
beats/min; the baseline must be a graph that lasts for more than 
2 min in any 10 min, and the graph can be discontinuous; if the 
baseline is uncertain during the observation stage, the baseline 
can be determined by referring to the graph of the previous 
10 min; of which (1) fetal tachycardia (tachycardia): refers to 
the fetal heart baseline >160 beats/min lasting ≥10 min. If the 
baseline is uncertain during the observation phase, the baseline 
can be determined by referring to the graph of the previous 
10 min; where: (1) fetal tachycardia (tachycardia): refers to a fetal 
heart baseline >160 beats/min for ≥10 min; (2) fetal bradycardia 
(bradycardia): refers to a fetal heart baseline <110 beats/min for
≥10 min.

Baseline variability: refers to the change in amplitude of the 
fetal heart rate per minute from the peak to the trough, which 
can be visualized and quantified, of which: (1) absent variability: 
refers to the disappearance of amplitude fluctuations, as shown in 
Figure 1c; (2) minimal variability: refers to amplitude fluctuations 
of ≤5 times/min, as shown in Figure 1b; (3) normal/moderat 

evariability: refers to amplitude fluctuations of 6–25 times/min, 
as shown in Figure 1a.

Acceleration: refers to a sudden and significant increase in 
baseline fetal heart rate with a start-to-peak time of <30 s. The 
time from the start of the acceleration of the fetal heart rate to its 
return to the baseline fetal heart rate level is the time of acceleration. 
(1) Before 32 weeks of gestation, acceleration is ≥ 10 beats/min at 
the baseline level and lasts ≥10 s, but <2 min; (2) At 32 weeks of 
gestation and later, acceleration is ≥ 15 beats/min at the baseline level 
and lasts ≥15 s, but <2 min; (3) prolonged acceleration: it refers to an 
increase in the fetal heart rate that lasts ≥ 2 min, but <10 min; (4) if 
acceleration lasts ≥10 min, the baseline change in fetal heart rate is 
taken into consideration.

Deceleration: (1) early deceleration (ED): deceleration 
accompanied by contractions, usually symmetrical, slow decline 
to the nadir and then return to the baseline, the time from the 
beginning to the nadir ≥30 s, the nadir of deceleration is often 
coincident with the peak of contractions; in general, the beginning 
of deceleration, the nadir, the recovery Generally, the onset, nadir, 
and recovery of deceleration are synchronized with the onset, peak, 
and end of contractions; (2) late deceleration (LD): deceleration 
accompanied by contractions, usually symmetrically and slowly 
decreasing to the nadir and then recovering to baseline, with the 
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FIGURE 2
Several complex variable deceleration. (a). No posterior “shoulder peak”; (b). No front “shoulder peak”; (c). ‘W’ shape variable deceleration; (d). Wide 
variable deceleration.

onset to nadir time ≥30 s, and the nadir of deceleration is usually 
delayed from the peak of contractions. In general, the onset, nadir, 
and recovery of deceleration lag behind the onset, peak, and end 
of contractions, respectively; (3) Variable deceleration (VD): refers 
to a sudden, significant, and rapid decline in fetal heart rate, with 
an onset-to-nadir time of <30 s, a decline of ≥15 beats/min, and 
a duration of ≥15 s, but < 2 min. When varied deceleration is 
accompanied by contractions, the onset of deceleration is usually 
delayed by the peak of contractions. Deceleration is accompanied by 
contractions, and there is no fixed pattern between the onset, depth 
and duration of deceleration and contractions, as shown in Figure 2.

Uterine contraction: (1) normal uterine contraction (normal 
uterine activity): ≤5 times/10 min uterine contraction, observe for 
30 min, and take the average; (2) uterine contraction is too frequent 
(tachysystole) (2) tachysystole: >5 contractions/10 min, 30 min of 
observation and take the average value.

Sinusoidal pattern: clearly visible, smooth, sinusoidal-like 
pattern, long variant of 3-5 cycles/min, lasting ≥20 min, and no 
acceleration exists, as shown in Figure 1d. 

2.2 Interpretation and classification of CTG 
graphics during delivery

Class I graphs: The following conditions must be met: (1) the 
baseline fetal heart rate is 110–160 beats/min; (2) the baseline 
variation is normal variation; (3) there is no late deceleration 
and variant deceleration; (4) there is the presence or lack of 
early deceleration; and (5) there is the presence or lack of 
acceleration, which suggests that fetal acid-base balance is normal, 
as shown in Figures 3a,b.

Class II graphs: All cases other than Class I and Class III 
electronic fetal heart rate monitoring graphs are classified as Class II. 
It is not possible to interpret the presence of fetal acid-base balance 
disorders, but a combination of the clinical situation, continuous 
fetal heart rate monitoring, and other methods of assessment should 
be used to determine the presence or absence of fetal hypoxia, and 

intrauterine resuscitation may be required to improve the condition 
of the fetus, as shown in Figure 4a.

Class III graphs: (1) Fetal heart rate baseline absent variability 
and any of the following conditions are present: ① recurrent 
late decelerations; ② recurrent variable decelerations; ③ fetal 
bradycardia (fetal heart rate baseline <110 beats/min). (2) Sinusoidal 
pattern: It suggests that there is an acid-base balance imbalance 
in the fetus, i.e., fetal hypoxia, and appropriate measures should 
be taken immediately to correct the fetal hypoxia, including 
changing the position of the pregnant woman, administering 
oxygen, discontinuing the use of oxytocin, suppressing contractions, 
and correcting the hypotension of the pregnant woman, etc. If none 
of these measures work, the pregnancy should be terminated in an 
emergency, as shown in Figure 4. 

2.3 The role of UC in fetal heart rate 
monitoring interpretation criteria

When interpreting class I graphs, it is necessary to combine 
with UC to determine whether there is ED or LD (Mendis et al., 
2025), as well as the absent variability plus recurrent late deceleration 
in class III graphs, and failure to combine with contractions 
may lead to the misclassification of many graphs that should be 
classified as class I or class III as class II graphs. For example, 
we know that Figure 3b is a Class I graph and Figure 4a is a 
Class II graph, but it is difficult to differentiate between the two 
if we only look at the fetal heart rate without looking at that 
curve of contractions, and there is a possibility of misclassifying a 
Class I graph as a Class II graph and thus triggering unnecessary 
intervention, or on the contrary, misclassifying a Class II graph 
as a Class I graph and failing to intervene in a timely manner. 
Therefore, the temporal relationship between deceleration pattern 
and contraction is essential in the interpretation criteria of fetal 
cardiac monitoring charts. The FHR signal alone will increase 
the rate of misjudgment, resulting in a unimodal model that 
is prone to misjudging physiological fluctuations as pathological 
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FIGURE 3
Class Ⅰ graphs (The x-axis represents the time and the y-axis is the corresponding FHR/UC signal). (a) Class I graphics with UC without 
acceleration/deceleration, (b) Class I graphics with UC and deceleration.

FIGURE 4
Class II/III graphs (The x-axis represents the time and the y-axis is the corresponding FHR/UC signal). (a) Class II graphics with UC and late deceleration,
(b) Class II graphics with minimal variability, (c) Class III graphics with UC and absent variability.

decelerations; for the two types of b and c in Figure 4, which only 
require a single signal from the FHR, can be identified, but for 
the pathological conditions of a, b in Figure 3, and a in Figure 4 
and the absence of variability plus late decelerations in the 

class III graph, the pathological conditions cannot be accurately
identified.

In terms of pathophysiological mechanisms, the synergistic 
changes of FHR and UC directly reflect the compensatory state of 
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the fetal-placental unit, for example, the sudden decline of variant 
deceleration (VD) is associated with vagal reflexes due to cord 
compression, but its clinical significance needs to be combined with 
the timing of the occurrence of the out-of-contraction cycle to 
differentiate between episodic compression or persistent hypoxia, 
and the bimodal data can capture this dynamic interaction feature 
through time-domain alignment, whereas the single FHR signal 
provides only isolated information on heart rate fluctuations. 

3 Methods

This chapter describes the datasets, network models, and 
attention mechanisms used in the experiment. First, the 
public dataset (Section 3.1) is summarized, the experimental 
data screening method (Section 3.2) is described, and then 
the network structure (Section 3.3) and its core attention 
mechanism (Section 3.4) are described in detail. 

3.1 Publicly available dataset descriptions

The publicly available dataset CTU-CHB (published by the 
Czech Technical University and Brno University Hospital) is 
widely used as a baseline data source in the current field of 
fetal heart monitoring research. This dataset was created by 
screening 9,164 original fetal monitoring records collected during 
2010–2012, and 552 CTG samples with complete clinical annotation 
were retained (Romagnoli et al., 2020). Although its data size 
and openness facilitate algorithm development, the following key 
shortcomings constrain its clinical value: 

3.1.1 Insufficient racial generalization
The CTU-CHB dataset contains data from only a single 

population of white European pregnant women, whose FHR and 
UC signaling characteristics show a high degree of homogeneity. 
However, the physiologic dynamics of the target clinical scenario 
(a group of Chinese pregnant women) may have geographic 
or population-specific patterns (e.g., baseline heart rate offset, 
differences in contraction pressure response, etc.). This data 
distribution bias leads to difficulties in generalizing models trained 
on a single population to heterogeneous populations, which in turn 
triggers cross-domain decision bias. 

3.1.2 Lack of multimodal data integrity
The vast majority of samples in the dataset had incomplete or 

missing UC signals, forcing studies using this dataset to analyze only 
a single FHR channel (Francis et al., 2024). This unimodal modeling 
approach is a serious deviation from the clinical guideline of “two-
parameter synergistic assessment” (i.e., simultaneous monitoring of 
the time domain/frequency domain coupling of FHR and UC). For 
example, early signs of fetal hypoxia are often characterized by a rise 
in contraction pressure accompanied by an absence of accelerated 
fetal heart rate, and a single FHR signal cannot capture such dynamic 
correlations. 

3.1.3 Introduction of bias by data preprocessing 
methods

For the missing values of FHR signals, existing studies 
commonly use interpolation methods such as linear interpolation 
or spline interpolation to fill them (Li et al., 2025). Although 
such methods can achieve sequence continuity, their mathematical 
smoothing process destroys the original features of biological 
signals, and there is a certain degree of subjectivity in the filling of 
missing values of data, which results in the inability of the model to 
learn the real physiological response patterns. 

3.2 Datasets used

In order to break through the bottleneck of adaptability 
of public datasets in regional clinical applications, this study, 
in conjunction with the Obstetrics Center of Chengdu Tertiary 
Hospital, constructed a dedicated dataset for Chinese pregnant 
women. This dataset consecutively included 326 singleton pregnant 
women who underwent routine fetal heart rate monitoring in 
the obstetrics outpatient clinic of the First People’s Hospital of 
Longquanyi District, Chengdu City, Sichuan Province, China, 
from April 2019 to November 2023, with the information of the 
pregnant women as shown in Figure 5 those with severe fetal 
abnormalities, maternal arrhythmia, and signal loss >5 min were 
excluded. Independently labeled by two obstetricians with ≥5 years 
of experience according to FIGO 2015 guidelines; disagreements 
were arbitrated by a third person. Category distribution: 224 normal, 
102 pathological. The study was approved by the Ethics Committee 
of the First People’s Hospital of Longquanyi District, Chengdu City, 
Sichuan Province, China (approval number: AF-KY-2024014), and 
all subjects signed informed consent.

Compared with the CTU-CHB dataset, its core advantages are 
reflected in three aspects: first, optimizing the signal acquisition 
parameters and evaluation thresholds for the unique physiological 
characteristics of Chinese pregnant women (e.g., the baseline mean 
fetal heart rate of 142 ± 8 bpm is significantly lower than that 
of 148 ± 10 bpm in the European population); second, realizing 
100% synchronous acquisition of the FHR and UC signals with 
time alignment (sampling frequency of 4 Hz, time stamp error of 
Secondly, 100% synchronous acquisition and time alignment of FHR 
and UC signals (sampling frequency 4 Hz, time stamp error ≤0.25 s) 
was achieved to support Coupling Oscillation Analysis (COA), 
which meets the requirements of the clinical guidelines on the 
joint interpretation of multi-parameters; thirdly, data interpolation 
and filling techniques were strictly prohibited to maximally retain 
the original nonlinear characteristics of the biological signals. It 
provides infrastructure support for the subsequent multi-center 
validation and assessment of model generalization ability. 

3.3 Dataset preprocessing

Aiming at the grid shadow interference problem in CTGs 
collected from hospitals, this study proposes a noise suppression 
method based on image processing and template matching, and the 
complete flow is shown in Figure 6. The algorithm takes the original 
fetal monitor image set I = {I1,I2, …,IN }∈ ℝm×n×3 (resolution 
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FIGURE 5
Information of pregnant women used in this study.

m = 1,653, n = 2,339) as the input, and achieves the accurate 
extraction and standardization of the signal trajectory through the 
following steps:

Step 1: Image preprocessing and region segmentation: The color 
image Ik is first grayscaled by reading the guardianship recording 
image in grayscale format with a resolution of 1,653 × 2,339 pixels 
and binarized by setting a fixed threshold τ = 50 to convert the 
original image into a black and white binary image (Jia et al., 
2023), where the fetal heart rate and contraction curve regions are 
labeled with foreground value of 1 and the background region of 
0. The grayscale value Gk (x,y)is computed followedby an empirical 
thresholding for binarized segmentation Equations 1, 2 illustrate the 
computational process of its segmentation:

Gk(x,y) =
1
3
∑

c∈{R,G,B}
Ik(x,y,c) (1)

Bk(x,y) =
{
{
{

1 Gk(x,y) > τ

0 otherwise
(2)

where, Ik ∈ ℝm×n×3 denotes the original fetal monitor color image 
(the k-th), Gk (x,y)∈[0,255] denotes the pixel values after grayscaling, 
with coordinates of the x-th row and y-th column in the image, 
and Bk(x,y)∈{0,1} denotes the binarized mask, which is used for 
segmenting the signal track region, andτ = 50 is the empirical 
threshold, which is an operation that can efficiently preserve the 
FHR and UC signal trajectory region, while filtering out the 
background grid interference.

Step 2: Physiological signal template modeling: two types of 
physiologic signal templates are defined based on the mapping 
relationship between clinical ranges and image scales: 

1. Vertical scanning of the image in the region of rows 281 to 569, 
which corresponds to the band of the fetal heart rate curve 
in the paper record chart. The clinical range of 60–210 bpm 

was simulated by a preset linear template to match the 
binarized image column by column, and the weighted average 
of the valid signal points in each column was calculated, and 
the final output of the standardized fetal heart rate signal 
sequence, FHR template TFHR(S) the FHR signal template 
is shown in Equation 3.

TFHR(S) = kFHR · (
ymax − ymin

Send − Sstart
(S− Sstart) + ymin)

+CFHR

(3)

where kFHR = −1 denotes signal reflection (image longitudinal 
coordinates are opposite to the physical range), CFHR = ymax + ymin
is a compensation constant used to align the baseline after inverse 
mapping to the image coordinate system,the pixel range of the scale 
region for FHR is S∈[Sstart , Send), and the corresponding clinical 
range is S∈[Sstart , Send). 

2. Similarly, the contraction pressure curve bands in the region 
of rows 628 to 770 of the scanned image were combined with 
a linear template of 0–100 mmHg to extract the contraction 
signals for each column, UC templateTUC(S) the UC signal 
template is shown in Equation 4.

TUC(S) = kUC · (
y′max − y′min

S′end − S′start
(S− S′start))+CUC (4)

where kUC = −1 denotes signal reflection, kUC = −1 ensures baseline 
zeroing, the pixel range of the scale region of the UC is kUC = −1, and 
the corresponding clinical range is y ∈ [y′min,y

′
max].

Step 3: Longitudinal Signal Extraction and Noise Suppression: 
For each time point i, the longitudinal column of pixel data 
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FIGURE 6
Flow chart of extracting FHR and UC signals from raw data.

is extracted vertically, the binary signal is multiplied with the 
physiological template, and the mean value is computed only for 
the valid data points, i.e., those with Bk = 1, to suppress the noise, 
which is given by the following the calculation process is shown in 
Equations 5, 6.

S(k)1 (i) =
1
|Φ1| + ε

∑
s∈Φ1

Bk(s, i) ·TFHR(S) (5)

S(k)2 (i) =
1
|Φ2| + ε

∑
s∈Φ2

Bk(s, i) ·TUC(S) (6)

where, i∈[0,n]denotes the timeline pixel position, S(k)p (i) denotes the 
p-th class signal in the k-th image (p = 1: FHR, p = 2: UC), Φp
denotes the set of valid pixels for the p-th class signal, and ε = 10−6

avoids division by zero error. This operation generates a normalized 
time series by suppressing the random noise in the non-track region.

Step 4: Time series matrix construction; Perform 
character area localization the constructed matrix is given by
Equation 7.

X =

[[[[[[[

[

S(1)1

S(2)1

⋮

S(1)2

S(2)2

⋮

S(N)1 S(N)2

]]]]]]]

]

∈ ℝ2N×n (7)

where X denotes the two-channel time series matrix after signal 
extraction, N denotes the total number of images, 2N is the number 
of rows (each recorded image has two signal channels, FHR and 
UC), and n is the number of columns i.e., the length of the
time series. 
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FIGURE 7
The internal structure of DenseBlock.

3.4 Network model

Compared with other domains, medical image data usually has a 
small data volume, so the models should be prioritized to lightweight 
type to fit the data missingness (Chen et al., 2024). Although many 
image processing models such as Vision Transformer (Khan et al., 
2022) and Swin Transformer (Liu Z. et al., 2021) have achieved 
good results in recent years, they require large data volumes to 
support them. Obviously, the use of large models leads to their 
overfitting problems on small datasets and high computational 
resource requirements, which makes it difficult to be efficiently 
deployed in resource-constrained healthcare scenarios.

DenseNet121 (Huang et al., 2017) (Densely connected 
Convolutional Networks) is a deep convolutional neural network 
whose core idea is to enhance feature propagation by means of dense 
connections in a Dense Block. First, each layer in the Dense Block 
is connected to all previous layers, and given an input imageX0, 
it is forward propagated through a convolutional neural network 
(DenseLayer) containingLlayers. Each layer L (1≤ L ≤L) performs 
a nonlinear mapping HL(·), which consists of a combination of the 
basic blocks of batch normalization (BN), ReLU activation function, 
and convolutional operations. The feature output of the L-th layer 
is denoted as XL.

This connection makes the features fully reused and fused 
between different layers, enhances the feature transfer efficiency, 
and the gradient can be transferred more efficiently in the 
backpropagation process. Figure 7 shows a DenseBlock containing 
2 DenseLayers, the L-th layer receives X0,X1,……XL−1  from all 
previous layers as input as shown in Equation 8:

XL =HL(X0,X1,……,XL−1) (8)

This structural design allows the network to converge faster 
during the training process and reduces the occurrence of 
the gradient vanishing problem. At the same time, it is also 
characterized by high parameter efficiency; compared with other 
convolutional neural networks of the same type, DenseNet121 has 

FIGURE 8
Parameter comparison of the model.

fewer parameters at the same performance level (He et al., 2016; 
Szegedy et al., 2016), which is only 7.98M, as shown in Figure 8. 
In addition, there is a transition layer in the middle of every two 
Dense Block blocks, which contains 1 × 1 convolution with average 
pooling, actively reduces the feature map dimension through 
channel compression, and compression suppresses overfitting and 
enhances noise robustness. The DenseNet121 network structure 
is shown in Figure 9.

In the fetal heart map classification task, DenseNet121 fuses 
the shallow features of the signal with the deeper features through 
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FIGURE 9
The DenseNet network structure.

dense connections, enabling the network to extract rich feature 
information from different levels. This dense connectivity structure 
enables the network to better capture subtle features in fetal heart 
maps, such as short-term details: instantaneous fluctuations in 
fetal heart rate (e.g., variable deceleration) or impulse noise in 
contraction signals (maternal motion interference) (Chen et al., 
2025), and long-time trends: contraction cycles (10–15 min) with 
baseline variability in fetal heart rate,

DenseNet121 progressively fuses features at different scales 
through 3 × 3 convolution cascaded in multiple layers within a dense 
block without relying on complex data enhancement or pre-training 
strategies, a feature that is crucial for capturing the synchronization 
of contraction peaks with fetal heart rate deceleration (Deceleration-
Contraction Coupling).

This feature fusion approach not only improves the 
representativeness of the features, but also allows the network to 
better adapt to the complexity of fetal heart maps and improve the 
classification accuracy.

In the fetal heart map classification task, this means that 
DenseNet121 is able to achieve higher classification accuracy 
without increasing the computational burden. This is especially 
important for practical clinical applications, as its lightweight design 
not only reduces the computational resource requirements, but also 
improves the generalization ability of the model, making it ideal for 
scenarios with limited fetal heart image data. 

3.5 Attention

Although the dense connectivity of DenseNet can aggregate 
multi-scale features (e.g., transient fluctuation and baseline drift) 
across layers, the fixed receptive field of its convolutional kernel 
makes it difficult to dynamically adapt to pathological patterns with 
different spatiotemporal characteristics. Fetal heart deceleration 
during the UC Peak Phase requires a large receptive field to 
capture cyclic correlations, while Beat-to-beat Variability relies 
on local detail extraction, but the fixed size of conventional 

convolution kernels limits the model’s ability to capture multi-
scale physiological dynamics (Li et al., 2023; Zhang et al., 2023), 
and the noise of the fetal cardiogram is not consistent with the 
physiological events (deceleration) interference differs significantly 
from key physiological events (delayed deceleration) in the channel 
dimension, but traditional dense connectivity assigns equal weight 
to all feature channels, resulting in insufficient sensitivity of the 
model to low signal-to-noise ratio regions.

To address the problem of limited data volume and complex 
pathology features in fetal heart maps, this study further introduces 
the Selective Kernel (SK) (Li et al., 2019a) attention module, 
which is inserted after each DenseLayer of the DenseBlock. The 
dense connectivity of DenseNet121 provides an ideal architectural 
foundation for this purpose. The multi-scale feature maps 
(abstraction layers of different Dense Blocks) output by the dense 
connectivity provide rich inputs for the dynamic sense field selection 
of the SK module, which enhances the feature response to key phases 
of contractions (e.g., peak periods) through Channel Recalibration, 
while the dense connectivity ensures that local details (e.g., small 
fluctuations in fetal heart rate) are not forgotten by the deep network 
forgotten by the deep network. SK convolution is implemented by 
three operations, Split, Fuse and Select, the process of which is 
depicted in Figure 10.

Split: two convolution kernels of sizes 3 and 5 are used 
to perform convolution operations on the input features (each 
convolution operation is a set of GBRs), i.e., F1:X→ Y1 ∈
ℝH×W×C and F2:X→ Y2 ∈ ℝH×W×C to obtain two-scale feature 
representations and, for efficiency, a 3 × 3 convolution kernel with a 
null size of 2 is used instead of the 5 × 5 conventional convolution 
kernel. The same input is fed into two “stethoscopes” simultaneously: 
3 × 3 convolution → captures the instantaneous variation (beat-
to-beat) over 0.2–0.4 s; 5 × 5 (null = 2) convolution → covers 
the contraction cycle over 0.8–1.2 s correlation. The two branch 
outputs Y1 and Y2were identical in shape, facilitating subsequent 
pixel-by-pixel fusion.

Fuse: in order to enable neurons to adaptively adjust the size 
of their receptive fields according to the content of the stimulus, 
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FIGURE 10
Selective kernel convolution.

the results of the two branches are first fused by elemental 
summation, i.e., the corresponding elements in a tensor of the same 
shape are summed:

Y = Y1 +Y2 (9)

then the global information is then embedded through global 
average pooling to generate the channel statistics for s ∈ R^C, 
specifically, the cth element of s computed through the spatial 
dimensions H × W shrinking Y.

sc = FGAP(Yc) =
1

H×W

H

∑
i=1

W

∑
j=1

Yc(i, j) (10)

this step is equivalent to an obstetrician quickly going through the 
entire curve and noting which bands are abnormal in energy.

Then, a fully connected operation is performed on the channel 
statistic S containing global information to obtain the low-
dimensional eigenvector z after dimensionality reduction and 
abstraction, which retains the key information of the input and 
significantly reduces the dimension, so as to reduce the parameters 
of the subsequent attention layer and improve the inference speed:

z = FFC(s) = δ(B(Ws)) (11)

where W ∈ ℝd×C, B denotes batch normalization, δis the ReLU 
function, and z has dimension d. The formula is as follows 
as shown in Equation 12:

d =max(C
r
,L) (12)

where r is the ratio of dimensionality reduction, when r is larger 
sacrifice part of the expression ability to improve efficiency, suitable 
for small models/lightweighting, so in this study, r is set to 16 and
L = 32 is the lower limit value, in order to prevent over-compression 
of the information, to ensure that the ability of expression.

Select: the input is the feature compact descriptor z, through 
the cross-channel soft attention mechanism, that is, through the 
attention weight, the information that dynamically determines 
which branch each channel should focus on, through exponential 
operation and normalization, the score is converted into a 
probability value acand bc, satisfying ac + bc = 1, and its mathematical 
expression is:

ac =
eAcz

eAcz + eBcz
,bc =

eBcz

eAcz + eBcz
(13)

where A,B ∈ ℝd×c represent the learnable parameter matrix, and the 
learnable matrix A,B maps z into two probabilities a and b. a≈1, b ≈ 
0: the model believes that the current channel should be dominated 
by instantaneous details, such as at the starting point of mutation 
deceleration; a≈0, b ≈ 1: the model pays more attention to long-
term trends, such as determining whether the baseline continues to 
decline at peak contractions; a and b between 0 and 1: the model 
blends the two scales to adapt to the transition interval. Each row of 
each matrix corresponds to a channel of weight calculation, with a, b 
representing the Y1 and Y2 soft attention vectors. Note: Ac,Bc ∈ ℝ1×d

represents the c row of the matrix A,B corresponding to the weight 
parameter of the c channel, and ac, bc represents the c element of a,b. 
Finally, feature fusion:

Vc = ac ·Y1c + bc ·Y2c (14)

where V = [V1,V2, ……,V c], Vc ∈ ℝH×W, the final output V c is 
equivalent to adjusting the volume of the two stethoscopes in real 
time according to “clinical importance”.

The Selective Kernel (SK) attention mechanism used in this 
study achieves intelligent focusing on key pathological features in 
fetal heart-contraction bimodal signals through dynamic gating 
weights, and its core innovation is to mimic the process of diagnostic 
cognition of irregular physiological events by obstetricians. During 
contraction stress, the SK module generates feature mappings 
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of differentiated receptive fields through parallel processing of 
multibranch convolutional kernels (Equation 9) - 3 × 3 kernels 
capture transient variability (e.g., subtle fluctuations in beat-to-beat 
variability), whereas null convolution of equivalent 5 × 5 kernels 
captures cyclic associations (e.g., lag phase difference between 
deceleration and contraction). Global average pooling (Equation 10) 
compresses the spatiotemporal features into a channel statistic s, 
which essentially quantifies the energy distribution of different 
frequency components. The fully connected layer (Equation 11) 
constructs in effect a low-dimensional streaming representation of 
the dynamic properties of the signal by means of an abstract feature 
vector z extracted from the bottleneck structure (r = 16), where each 
dimension corresponds to a typical pathological pattern.

The calculation of gating weights (Equation 13) realizes 
the embedding of clinical a priori knowledge through the 
learnable parameter matrix A,B- when the input signal has a 
contraction-triggered steep drop (e.g., a W-type valley of variability 
deceleration), the weights of the larger receptive field branches (5 × 
5 equivalent kernels) ac are automatically augmented by the Softmax
function (>0.7), allowing the model to prioritize the temporal 
relationship between the overall pattern of deceleration and the 
contraction cycle; conversely, when subtle fluctuations are detected 
(e.g., baseline variability decay), the weights bc of the smaller 
receptive field branches (3 × 3 kernels) are elevated, focusing on local 
slope changes. This adaptive selection mechanism (Equation 14) 
achieves a triple optimization at the physiological level: 1) in the 
time domain, the dynamic weight assignment strengthens the 
characteristic response of the critical phase of contraction (15 s after 
the peak), and weakens the redundant information of the inter-
contraction interval; 2) in the frequency domain, the interference of 
the maternal motion artifacts (high-frequency noise) is suppressed 
by the channel re-calibration, and the hypoxia-associated fluctuation 
in the frequency band of 0.04–0.15 Hz is enhanced; 3) Spatially, 
multi-scale feature fusion ensures that transient but clinically 
significant signal transitions (e.g., W-shaped double valleys of 
variable deceleration) are not smoothed by the fixed receptive 
fields of conventional convolution, and automatically enhances 
the detection sensitivity of subtle but prognostically critical signal 
turning points (e.g., deceleration recovery slopes <1 bpm/s) during 
the contraction stress phase to maximally mimic the obstetrician’s 
interpretation process. 

4 Experimental results and discussion

4.1 Experimental setup

This study is based on PyTorch 2.6.0 and CUDA 12.0 as a deep 
learning framework to build neural network models, the ratio of the 
training set to the test set is 7:3, and the experiments are all run on 
the NVIDIA RTX4060 equipped with AMD 7735, and 16 GB DDR5, 
and the hyperparameters are shown in Table 1.

4.2 Evaluation indicators

Because of the uneven proportion of data, in order to more fully 
validate the performance of the model in this study, several metrics 

TABLE 1  Hyperparameters for proposed method.

Hyperparameter Value

K 32

Epochs 100

Learning rate 0.001

Batch Size 32

Loss Function FocalLoss

Optimisation Adam

such as precision, recall, F1 score, confusion matrix and subjects’ 
work characteristic curves (ROCs) and area under the ROC curve 
(AUCs) were introduced for assessment.

In this assessment framework, CTG plot normal is defined 
as positive category and abnormal as negative category. Based 
on this setting, the model prediction results were defined as 
follows: cases in which the model correctly predicted fetal 
normality were called True Positive (TP); cases in which the model 
incorrectly predicted fetal abnormality as a positive category were 
called False Positive (FP); cases in which the model correctly 
predicted fetal abnormality as a negative category were called True 
Negative (TN); and the situation where the model incorrectly 
predicts fetal normal as a negative category is referred to as
False Negative (FN).

The precision rate indicates the proportion of samples predicted 
to be in the normal/abnormal category that are actually in the 
normal/abnormal category and measures the ability of the model to 
avoid misdiagnosis the calculation method for precision is shown in 
Equations 15, 16.

PrecisionNormal =
TP

TP+ FP
(15)

PrecisionAbnormal =
TN

TN+ FN
(16)

Recall represents the proportion of true normal/abnormal 
samples correctly identified by the model to the total number of 
actual normal/abnormal samples, which reflects the model’s ability 
to capture normal/abnormal categories. In the fetal heart rate 
monitoring scenario, this metric is of key clinical significance: false 
positives will lead to missed high-risk cases and delayed necessary 
interventions (emergency cesarean section), thus jeopardizing the 
safety of mother and baby, while false negatives, although they may 
lead to over-medical interventions, have a significantly lower risk of 
adverse clinical outcomes than false-positive scenarios. Therefore, 
minimizing the proportion of FP by optimizing the recall rate is a 
central goal to guarantee the safety of decision-making in high-risk 
pregnancies and is highly consistent with the guideline of clinical 
priority to reduce the rate of missed diagnoses the recall rate is 
calculated as shown in Equations 17, 18.

RecallNormal =
TP

TP+ FN
(17)
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TABLE 2  Comparison between using DenseNet alone and integrating other attention.

Attention Accuracy  Normal  Abnormal

Precision Recall F1-score Precision Recall F1-score

DenseNet121 (Huang et al., 2017) 0.8969 0.92 0.92 0.92 0.84 0.84 0.84

ECA (Wang et al., 2020) 0.8660 0.91 0.89 0.90 0.79 0.81 0.80

SimAM (Yang et al., 2021) 0.8969 0.90 0.95 0.93 0.89 0.78 0.83

SGE (Li et al., 2019b) 0.9175 0.91 0.97 0.94 0.93 0.81 0.87

CoorAtt (Hou et al., 2021) 0.9278 0.94 0.95 0.95 0.90 0.88 0.89

CBAM (Woo et al., 2018) 0.9381 0.92 1.00 0.96 1.00 0.81 0.90

DAN (Fu et al., 2019) 0.9485 0.98 0.94 0.96 0.89 0.97 0.93

SE (Hu et al., 2018) 0.9588 0.98 0.95 0.97 0.91 0.97 0.94

SK (Li et al., 2019a) 0.9588 1.00 0.94 0.97 0.89 1.00 0.94

RecallAbnormal =
TN

TN+ FP
(18)

The F1 score represents the reconciled mean of precision and 
recall and is used to balance the two the calculation method for F1 
scores is shown in Equation 19.

F1− score = 2× Precision×Recall
Precision+Recall

(19)

Accuracy indicates the number of correctly predicted samples as 
a proportion of the total number of samples the calculation method 
for accuracy is shown in Equation 20.

Accuracy = TP+TN
TP+TN+ FP+ FN

(20)

Confusion Matrix is a matrix structure for evaluating the 
performance of classification models (Valero-Carreras et al., 2023), 
which quantitatively presents the accuracy and error distribution of 
classification results by cross-referencing the true categories of the 
samples with the predicted categories of the model the confusion 
matrix is shown in Equation 21.

Con fusionMatrix = [

[

TP FN

FP TN
]

]
(21)

ROC is a visualization tool for evaluating the performance of a 
binary classification model, with the False Positive Rate (FPR) on 
the horizontal axis and the True Positive Rate (TPR) on the vertical 
axis. The ROC depicts the model’s ability to discriminate between 
positive and negative categories by traversing all the classification 
thresholds: the closer the curve is to the upper left corner (FPR 
approaches 0, TPR approaches 1), the better the classification 
performance, and the AUC is the area enclosed by the ROC 
curve and the coordinate axis to quantify the overall classification 
effectiveness of the model. The ROC curve depicts the model’s 
ability to discriminate between positive and negative categories by 

traversing all classification thresholds: the closer the curve is to 
the upper left corner (FPR tends to 0, TPR tends to 1), the better 
the model’s classification performance is, and the AUC is the area 
bounded by the ROC curve and the axes, which is used to quantify 
the model’s overall classification effectiveness. “When AUC = 0.5, the 
model is equivalent to a random guess; when AUC = 1, the model 
has the ability to classify perfectly, and its formula is the calculation 
method for AUC is shown in Equation 22.

AUC = ∫
1

0
ROC(t)dt (22)

 

4.3 Results

Table 2 compares the side-by-side comparisons using the 
DenseNet121 backbone network and fusion of eight mainstream 
attention mechanisms, in which SK achieves the optimal 
performance with an accuracy rate of 0.9588, which is tied for 
first place with classical SE attention, but demonstrates significant 
advantages in key clinical metrics: the normal samples achieve a 
100% precision rate (Precision = 1.00), which effectively avoids the 
risk of misdiagnosing the normal The normal samples achieved 
100% precision (Precision = 1.00), effectively avoiding the risk 
of misdiagnosing normal fetal heart as abnormal; the abnormal 
samples achieved 100% recall (Recall = 1.00), ensuring that 
all abnormal cases were effectively detected. In terms of the 
comprehensive assessment indexes, both the normal category 
F1-score (0.97) and the abnormal category F1-score (1.00) 
were significantly better than the comparison scheme, with an 
improvement of 5.0% and 16.0%, respectively, compared with the 
baseline method, and the confusion matrices are shown in Figure 11. 
The experimental results show that the SK module enhances the 
model’s hierarchical characterization of fetal heart fluctuation 
features through the strategy of dynamically selecting multi-
scale convolutional kernels, and its channel attention mechanism 
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FIGURE 11
Confusion matrix for different attentions: (a) Only DenseNet121 (b) ECA (c) SimAM (d) SGE (e) CoorAtt (f) CBAM (g) DAN (h) SE (i) SK.

precisely focuses on the pathology-related features, which results in 
a clearer decision boundary for the normal/abnormal category. This 
performance advantage is valuable in clinical scenarios to eliminate 
the waste of medical resources caused by false-positive diagnosis and 
avoid the medical risks caused by false-negative missed diagnosis.

Table 3 summarize the results of the evaluation of existing 
methods for fetal heartbeat monitoring classification, covering 
the performance of different models in machine learning, deep 
learning on their respective datasets. It can be seen that this 
study achieved AUC: 94.4/Acc: 95.88/F1: 97 on the self-constructed 
bimodal dataset, whereas the performance of unimodal (FHR only) 
dropped to AUC 81.2/Acc 87.69/F1 0.79 under the same model 
structure, a result that validates the value of contraction signals 

as an auxiliary feature. The comparison results in Table 3 do not 
constitute a strict performance ranking, and there are limitations 
in directly comparing the performance of these methods due to 
the following reasons: first, the cited studies each used a different 
private or public dataset, with sample sizes ranging from 83 to 
4,473 cases, and the difference in sample sizes may affect the 
assessment of the model’s generalization ability. Second, some of 
the methods were designed based on 1D fetal heart rate signals, 
whereas our DenseNet121-SK model deals with 2D images after 
bimodal signal conversion. Even if the reproduction on the same 
dataset is forced, the signal needs to be resampled, windowed, or 
spectrally transformed, which introduces additional preprocessing 
bias and leads to less rigorous performance comparisons. Therefore, 
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TABLE 3  Aggregate of existing methods and proposed methods use only the effect of monomodality.

Reference  Method  Evaluating indicator Dataset used Sample size Performance (%)

AUC Acc F1

Krupa et al. (2011) SVM √ Private 90 87

Spilka et al. (2014) NB,SVM,DT √ Private 217 71.5

Czabanski et al. (2012) WFS + LS-SVM √ Private 186 92.0

Fanelli et al. (2013) ST √ Private 122 75

Dash et al. (2014) GM,NB √ Private 83 69.9

Stylios et al. (2016) LS-SVM √ CTU-UHB 552 72.81

Georgoulas et al. (2017) LS-SVM √ CTU-UHB 552 68.54

Cömert et al. (2018) LS-SVM √ CTU-UHB 552 64.64

Li et al. (2018) CNN √ Private 4,473 93.24

O’sullivan et al. (2021) ARMA + SVM √ CTU-UHB 552 86

Lin et al. (2024) LARA √ Private 114 87.2

Ours (Only FHR) DenseNet121+SK √ √ √ Private 326 81.2/87.69/79

Ours (FHR + UC) DenseNet121+SK √ √ √ Private 326 94.4/95.88/97

the comparison results in Table 3 are more of a reference for method 
trends rather than a strict performance ranking. 

4.4 Disscussion

The following limitations of this study need to be accounted 
for: first, the limitations of the dataset size and geographic origin 
(single center in Southwest China) may lead to the model’s 
insufficient ability to generalize to specific populations (e.g., 
obese pregnant women); second, although the SK Attention 
module significantly improves the model’s performance (3.2% 
improvement in accuracy), its computational complexity is 
increased by approximately 15% compared to the base DenseNet121 
(Liu et al., 2023; Tang et al., 2023), and the Optimization measures 
such as quantization compression may be required in extreme 
resource-constrained environments; third, due to the lack of publicly 
available bimodal fetal heart monitoring benchmark datasets, 
existing comparison experiments can only be compared with 
unimodal methods and traditional machine learning baselines, 
and this benchmark discrepancy may affect the objectivity of the 
performance evaluation; lastly, there is a lack of standardized signal 
preprocessing and annotation specifications in the current field of 
fetal heart monitoring, which makes it difficult to directly compare 
the results of different studies with each other. Results are difficult 
to compare directly. These limitations suggest the need for further 
research in multi-center large sample validation, computational 
efficiency optimization, and standardized baseline establishment. 

5 Future plans

5.1 Multi-center retrospective validation

To assess the generalization ability of the model, this study 
plans to conduct multi-center validation jointly with several tertiary 
hospitals in the future. Each center independently collected 150 
fetal cardiac monitoring samples (including 10% extreme pathology 
cases) to ensure no overlap with the training set. The following 
metrics were used to quantify model performance decay the 
calculation equation for GDR is shown in Equation 23.

GDR =
AUCTrainingset −AUCExternal set

AUCTrainingset
× 100% (23)

where GDR (Generalization Decay Rate) reflects the model 
cross-center performance decay rate. When GDR >15%, a 
domain adaptation fine-tuning strategy based on Maximum Mean 
Discrepancy (MMD) is initiated: the Adam optimizer (learning rate 
1 × 10−4, batch size 16) is used to minimize the feature distribution 
of the source domain and the target domain in the RKHS space 
difference. 

5.2 Special testing for high-risk groups

In order to verify the applicability of the model in high-risk 
pregnancy populations, special validation is planned to be carried 
out in the future for three high-risk subpopulations: gestational 
diabetes, preeclampsia and fetal growth restriction. The stratified 
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FIGURE 12
Flow chart of using the proposed method to assist diagnosis.

sampling strategy is used to ensure that the samples of each 
subset are representative, and the ability of the model to identify 
pathologically-specific patterns (such as loss of acceleration in 
the gestational diabetes group and variation deceleration in the 
preeclampsia group) is emphasized. When the F1 value of a specific 
subset is verified to be less than 0.80, the Focal Loss function (γ = 
2) will be used to retrain the subset samples to alleviate the problem 
of class imbalance. At the same time, an adversarial discriminator 
(gradient penalty coefficient λ = 0.3) was introduced to minimize the 
distribution differences between the source domain and the target 
domain in the feature space, and improve the generalization ability 
of the model to the characteristics of high-risk groups. 

5.3 Future research directions

In the future, we will also study image segmentation models 
in the field of fetal heart rate monitoring, in order to use 

image segmentation technology to identify important parts such 
as acceleration, deceleration, and baseline in the fetal heart rate 
monitoring chart, as well as the most popular large language model 
in the field of AI recently. 

6 Conclusion

The model proposed in this study uses a bimodal (FHR + 
UC) signal fusion design to simulate the clinical habits of the two 
dynamically related clinical habits (such as the timing coupling 
of peak contractions and fetal heart rate deceleration), and its 
input form (including hyperbolic images) is highly consistent 
with the clinical interpretation scenario. It provides obstetricians 
with reliable objective opinions during CTG monitoring during 
childbirth and reduces misinterpretation caused by subjective 
differences. The introduction of the SK attention module
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dynamically adjusts the receptive field: small-scale convolution 
captures details for transient fetal heart rate fluctuations (e.g., 
beat-to-beat variations) and large-scale convolutional trends for 
contraction cycle associations (e.g., the lag relationship between 
late deceleration and contractions), which is consistent with the 
clinical focus on different pathological patterns and compensates 
for the shortcomings of DenseNet121s fixed receptive fields. The 
DenseNet121-SK architecture is only 8.3M (7.98M for the base 
DenseNet121 and 0.32M for the SK module), which guarantees 
95.88% accuracy and 100% abnormal sample recall while low 
computational cost, allowing it to run on mid-range GPUs or 
high-performance CPUs without relying on high-end computing 
clusters. For primary medical institutions lacking GPUs, model 
quantization (such as INT8 precision) can further compress the 
computational requirements while reducing memory footprint, 
and the dataset is not filled with interpolation, retaining the 
original signal characteristics, reducing the dependence on complex 
preprocessing processes, and facilitating reuse in scenarios with 
simple data acquisition conditions (such as the original image 
output by fetal heart rate monitors in primary hospitals). These 
characteristics enable the system to effectively assist in clinical 
decision-making and provide a reliable basis for timely intervention 
in high-risk pregnancies, and Figure 12 shows the process of the 
proposed model assisting in the diagnosis of intrapartum CTG 
maps. However, it should be emphasized that the system output 
should always be used in conjunction with clinical evaluation to 
form a complete diagnosis and treatment decision-making chain.
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