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Facial video
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measuring average and
quasi-instantaneous heart rate: a
pilot validation study
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Bartlomiej Paleczny2

1Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw,
Poland, 2Department of Physiology and Pathophysiology, Faculty of Medicine, Wroclaw Medical
University, Wroclaw, Poland

Background: Video photoplethysmography (vPPG) is a contactless optical
technique for recording blood pulsations in the blood vessels of the skin
using a digital camera that is increasingly used to measure or estimate various
physiological parameters. In this study, we evaluated the accuracy of average
and quasi-instantaneous heart rate (HR) measurements performed via facial
vPPG technology Shen.AI Vitals and a smartphone camera.

Methods:We studied 35 healthy volunteers in a seated position (median age 25
years, 17 females). Video recordings of participants’ faces were obtained using
the front camera of a smartphonemounted on a tripod. In parallel, a 1-lead chest
electrocardiogram (ECG) was recorded to obtain reference HR values (average
value from the entire 60-s measurement andmultiple values averaged over 10-s
or 4-s periods during the measurement).

Results: The mean absolute errors were 0.1, 0.2, and 0.4 beats per minute (bpm)
for HR averaged over 60-s, 10-s, and 4-s periods, respectively. The errors did
not exceed 1 bpm in 100.0%, 99.8%, and 94.5% of the cases, respectively. For the
latter, our sample included almost 1,900 HR values from a relatively wide range
(46–117 bpm). Regardless of the HR averaging time, the correlation between the
vPPG-based and reference values was very strong (r > 0.99, P < 0.001).

Conclusion: In predominantly young, white, seated subjects, the tested vPPG
technology provided highly accurate HR measurements, both when the values
were averaged over 60 s and in the case of short-term values averaged over
10 s or quasi-instantaneous values averaged over 4 s. To our knowledge, this
is the first study on vPPG technology to examine quasi-instantaneous HR
measurements (averaged over periods shorter than 5 s). The results should be
confirmed in a larger study with greater diversity in age, skin tone, and lighting
conditions.
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1 Introduction

Heart rate (HR), or pulse rate, is one of the vital signs
used in medical examinations for the basic assessment of the
condition of the cardiovascular system. Resting HR can help detect
various diseases and predict cardiovascular and all-cause mortality
(Puig et al., 2022;Olshansky et al., 2023). In particular, aUKBiobank
study of over 500,000 individuals followed for up to 12 years showed
that a 10-bpm increase in resting HR was associated with 22%
and 19% greater risks for all-cause mortality in men and women,
respectively (Raisi-Estabragh et al., 2020). Ameta-analysis including
over 1.2 m individuals followed for up to 40 years showed that a
higher resting HR was associated with increased cardiovascular and
all-cause mortality, independent of traditional cardiovascular risk
factors (Zhang et al., 2016). Moreover, an increase in the resting HR
over time has also been shown to be associated with higher all-cause
mortality, with the risk of death increasing by 33% for every 10-
bpm increase over 6 years (Hartaigh et al., 2015). Therefore, regular
HR assessment is an important part of prevention (Inoue et al.,
2013; Jensen et al., 2021). HR also reflects the body’s response to
stress, emotions, exercise, or other stimuli, making it useful for
self-monitoring in health and wellness contexts (Reeder and David,
2016). It can also be used for monitoring the cardiac rehabilitation
process (Dobrican and Zampunieris, 2016; Etiwy et al., 2019) as
well as for monitoring fatigue and recovery process in athletes to
prevent overtraining and optimize training effectiveness (Borresen
and Lambert, 2008; Daanen et al., 2012; Buchheit, 2014). Moreover,
it can be used tomonitor drivers’ physiological state (Kuo et al., 2015;
Zhang et al., 2017) or to monitor human-computer interactions
(Przybylo, 2019).

Photoplethysmography (PPG), i.e., an optical technique for
detecting blood pulsations in the skin vasculature, is commonly
used for measurements or continuous monitoring of HR and other
vital signs via special probes/clips typically attached to a finger
or ear lobe (Allen, 2007). PPG sensors are also increasingly being
integrated into a variety of wearable devices, such as smartwatches
or wristbands (Bayoumy et al., 2021; Charlton et al., 2023).
The two main limitations of classic PPG-based measurements
are: 1) the need for a special device, such as a pulse oximeter
or a wearable device equipped with PPG technology, which
naturally limits the availability of such measurements, and 2) the
need for skin contact, which may be important in healthcare
facilities or in the case of measurements taken by another person
or using someone else’s device, especially in the event of an
epidemic.

The answer to the above limitations may be video PPG (vPPG),
i.e., a remote PPG technique, also known as remote or imaging
photoplethysmography, which uses digital video images of the skin
to detect tiny changes in skin color caused by blood pulsations
in superficial blood vessels and the resulting changes in the blood
absorption of light incident on the skin (mainly by hemoglobin)
(Molinaro et al., 2022). Such measurements can be performed using
ambient white light (natural or artificial) as the source of light
illuminating the skin, a consumer-grade camera integrated into a
smartphone as the image sensor, and the smartphone processing
power to analyze video images via a mobile app, thus making
this technology accessible to most smartphone users without the
need for any other device and without requiring skin contact.

The possibility of using vPPG for contactless monitoring of HR
and other vital signs has attracted much attention in recent
years (Zaunseder et al., 2018; Chen et al., 2019; Hassan et al.,
2020; Selvaraju et al., 2022; van Es et al., 2023), including the
possibility of remote measurement of vital signs in telemedicine
applications (Tohma et al., 2021), for patient triage purposes
(Capraro et al., 2022; Caspar et al., 2021), or for monitoring drivers
(Xu et al., 2023).

In this study, we investigated vPPG technology developed by
MX Labs (Tallinn, Estonia), called Shen.AI Vitals. This technology
uses face detection and tracking algorithms to obtain vPPG signals
from several regions of facial skin during a 1-min video recording
and then employs various signal processing algorithms to analyze
and combine information from these signals (in the red, green,
and blue channels) to estimate HR as well as other physiological
parameters. In particular, two types ofHR values are provided – after
themeasurement, theHRaveraged over the entire 1 min is provided,
whereas during the measurement (every 1 s), average values from
shorter periods are provided, i.e., the average HR from the previous
10 s (default) or the previous 4 s (optional).

The aim of our study was to assess the accuracy and precision
of HR measurements performed using the tested vPPG technology
and a smartphone camera by comparing them with reference
values obtained from a simultaneously recorded electrocardiogram
(ECG). Specifically, we set out to examine not only the accuracy
of measuring average HR, as is commonly done in vPPG studies
(i.e., HR averaged over 1 min), but also HR averaged over
shorter periods, including quasi-instantaneous HR measurements,
i.e., HR averaged over just 4 s. To our knowledge, no previous
vPPG studies have investigated the accuracy of HR values
averaged over such short time windows (compared with ECG-based
values).

2 Methods

2.1 Subjects

The study was carried out at the Department of Physiology
and Pathophysiology of Wroclaw Medical University (WMU) in
Wroclaw, Poland. We recruited 38 adult volunteers (students,
employees, and collaborators of WMU) aged 20–43 years (median
25 years), of whom 20 were females. The subjects were generally
healthy and in particular did not suffer from any cardiovascular
disease. The exclusion criteria (which ultimately did not have to be
applied) were as follows: arrythmia (other than sinus bradycardia
or tachycardia), neurologic disorders in the form of spontaneous
head tremor, inability to keep the head in the required position
during measurement, respiratory disorders such as irregular or
shallow breathing, facial shape deformation, or extensive damage,
wound, burn, dressing or disease of the facial skin. The study was
approved by the Bioethics Committee at WMU (approval number
227/2022), and written informed consents have been obtained from
all study participants. Due to technical issues with some ECG signals
(excessive noise or artefacts), we had to exclude data from three
subjects, and hence the final analysis was based on data from 35
subjects (17 females). See Table 1 for the characteristics of the study
participants.
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TABLE 1 Characteristics of the study participants (n = 35). Continuous
variables are presented as medians [interquartile range; full range].

Characteristic Value

Number of males/females, n (%) 18/17 (51%/49%)

Age 25 [21–27; 20–42] years

Body mass 64 [57–75; 47–104] kg

Body height 174 [168–183; 160–193] cm

Systolic blood pressurea 115 [111–123; 100–140] mmHg

Diastolic blood pressurea 80 [75–86; 68–94] mmHg

aaverage result of two brachial oscillometric measurements (before and after video
recording) after one discarded measurement.

2.2 Study protocol

The subjects were asked not to engage in any strenuous physical
activity before participating in the study. During the study, they
remained seated for the entire time, with the back supported. To
ensure that the measurements were taken under resting conditions,
video recordings were started approximately 5 min after all data
acquisition devices were connected and set up. Arterial blood
pressure was measured twice before the video recording (at a
1 min interval) and once immediately after the video recording. The
subjects were asked to remain steady during the video recording, to
refrain from speaking, and to breathe normally. Each participantwas
measured once in a resting (sitting) condition. This measurement
was followed by two other measurements (in other conditions or
with a specific breathing pattern) that are beyond the scope of
this study.

2.3 Tested parameters

We studied the following HR values provided by the Shen.AI
Vitals technology on the basis of a 1-min facial vPPGmeasurement:

1. HR averaged over 1 min, i.e., the average HR from the entire
measurement;

2. multiple HR values averaged over 10-s periods – these short-
term average HR values (49 values per measurement) are
calculated and provided every 1 s during the measurement
(starting from the 11th second until the 59th second) based
on the preceding 10-s period with a 1-s delay (e.g., at time t =
11 s, the calculated value corresponds to the average HR in the
period between t = 0 and t = 10 s);

3. multiple HR values averaged over 4-s periods – these quasi-
instantaneous HR values (54 values per measurement) are
calculated and provided every 1 s during the measurement
(starting from the 6th second until the 59th second) based on
the preceding 4-s periodwith a 1-s delay (e.g., at time t = 6 s, the
calculated value corresponds to the average HR in the period
between t = 1 and t = 5 s);

FIGURE 1
Location and setup of the measurements. The subject sat with the
back supported. The phone was mounted on a tripod at head level
with an LED lamp in the background.

2.4 Equipment

Video recordings of participants’ faces were taken with the front
camera of a mobile phone (Samsung Galaxy A22) mounted on
a tripod at a distance of approximately 30 cm from the face (on
average) and at a height adjusted to each participant (see Figure 1).
The camera parameters were as follows: f/2.2, sensor resolution
13 MP, video resolution 1080p, and frame rate 30 fps. In parallel,
a 1-lead chest ECG was recorded continuously via the Bio
Amp ML132 module and the PowerLab data acquisition system
(ADInstruments, Dunedin, New Zealand) with the following
configuration of three electrodes (Einthoven lead I configuration):
red (positive) on the right collarbone, white (negative) on
the left collarbone, and black (reference) on the abdomen, to
the left of the navel. Blood pressure was measured using a
validated automatic upper arm blood pressure monitor (Omron M4
Intelli IT).

2.5 Lighting

The measurements were taken during the day, but considering
that they took place in a laboratory located in the semi-basement,
with occasionally limited access to daylight (especially under cloudy
conditions) and potential shadows cast by nearby trees and/or
vehicles passing on a nearby street, to keep the light conditions
constant, we decided to have the window blinds closed and
the ceiling lights on during all measurements, regardless of the
time of day or weather. Additionally, to ensure a good level of
light illuminating the participants’ faces, we used a ring-shaped
LED lamp (with the light color corresponding to natural light)
mounted on the tripod, with the phone in the center and in
front of the lamp (see Figure 1). The intensity of light illuminating
the faces of the study participants was around 1,700 lux (on
average), as measured by a DT-1309 light meter (CEM Instruments,
Shenzhen, China).
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2.6 Video collection and processing

Video recordings were performed using a special mobile app
developed and provided to us by MX Labs. This research app was
designed to record a 2-min facial video that is then sent to the MX
Labs cloud server to be processed and analyzed by the Shen.AIVitals
algorithms to provide estimates of various physiological parameters,
including average HR from selected time windows of the recorded
video. In the publicly available app from MX Labs (called Heart
Monitor), the recording/measurement is limited to 1 min, and
therefore, in the present study, all analyses were performed using
only the first minute of the recorded video (thus ignoring the second
minute). In the Heart Monitor app, all data processing and analysis
takes place on the mobile device instead of on the cloud server,
with the final results (including average HR) displayed to the user
after the measurement and short-term HR values displayed during
the measurement and updated every second. In our study, which
employed the research app, both participants and laboratory staff
were blinded to the results of the video measurements. These results
(for all participants) were calculated on the MX Labs cloud server
using the Shen.AI Vitals algorithms and provided to us by MX Labs
only after the study was completed in digitalized tabular form. In
this way, after calculating the reference HR values from the recorded
ECG signals, we were able to compare the HR values obtained
independently by the two methods. In particular, we were able to
compare the multitude of short-term HR values, which would have
not been possible if we were using the normal (non-research) app,
where these values are displayed every 1 s during the measurement
and are not available after the measurement. Moreover, in this
research app, a special audio signal (a beep)was sent by the app to the
PowerLab system at the beginning and end of each video recording
to facilitate synchronization of the reference ECG signal with the
video measurement, which was crucial for our study.

2.7 ECG processing

ECG signals recorded with the PowerLab data acquisition
system (ADInstruments) were exported to LabChart 8 software
(ADInstruments), which was used for automatic detection of QRS
complexes and calculation of time intervals between successive
heartbeats (R–R intervals). We used the LabChart default (human)
settings for the QRS detection algorithm. In a few cases where
automatic detection of the QRS complex failed, R peaks were
marked manually in the LabChart interface. As mentioned earlier,
in three subjects, the ECG signals were very noisy and contained
various artefacts, which prevented the detection of most QRS
complexes, and therefore, data from these subjects were excluded
from the analysis.

The calculated R–R intervals (in ms) along with their time
stamps (the times of their ends) were exported from LabChart to a
text file, which was subsequently processed as follows using a script
in MATLAB (MathWorks Inc., United States). First, we selected all
R–R intervals that were entirely contained within the 60-s period
corresponding to the first minute of the video recording (based on
the aforementioned audio signal that was also exported to the same
text file). Second, we corrected occasional wrongly identified R–R
intervals (caused by falsely detected additional R peaks that were

merely local noise, as confirmed by visual inspection of the ECG
signals) – this was done by combining two adjacent R–R intervals
whenever their total duration was between 80% and 120% of the
median duration of all R–R intervals identified within the 60-s
period of interest.

2.8 Calculation of reference HR values

The average HR (in beats per minute, bpm) was calculated as the
reciprocal of the mean duration of all R–R intervals in the analyzed
60-s period. Similarly, short-term (10-s) or quasi-instantaneous (4-
s) HR values were calculated as the reciprocal of the mean duration
of all R–R intervals in the given period, i.e., in the previous 10
or 4 s, respectively, with a 1.3-s delay. For instance, reference 4-
s HR average corresponding to the value provided by the tested
technology at time t = 6 s was calculated as the reciprocal of themean
duration of all R–R intervals contained in the period between t =
0.7 s and t = 4.7 s. The additional 0.3-s delay was applied to account
for the typical time shift between R-peaks in the ECG signal and the
pulsation peaks in the facial vPPG signal, so that the R–R intervals
used to calculate the reference short-term or quasi-instantaneous
HR values matched the time intervals between the peaks in the
vPPG signals considered by the tested technology. All reference HR
values were rounded similarly to the tested values, i.e., to the nearest
whole number.

2.9 Statistics

HR values obtained using the tested technology were compared
with reference ECG-based values by calculating mean error (ME),
standard deviations of errors (SDE), mean absolute error (MAE),
and root-mean-square error (RMSE) in absolute terms as well as
in relative terms, i.e., with respect to the reference values. 95%
confidence intervals were calculated using the bootstrap method
(with 10,000 samples). Additionally, for all analyzedHR parameters,
the correlation between the tested and reference values was assessed
using the Pearson correlation coefficient (r) and the agreement
between themwas visualized via scatter plots. Statistical significance
was set at P = 0.05.

3 Results

According to ECG, the median value of the average HR among
the study participants was 75 bpm (total range 52–98 bpm). In
Table 2, we show various measures of accuracy and precision of HR
values estimated by the tested vPPG technology (compared with
ECG-based values), in both absolute and relative terms, i.e., with
respect to reference values. Specifically, we assessed the average
HR from the entire measurement (60 s) and multiple HR values
averaged over shorter periods, i.e., 10 s (short-term HR) or 4 s
(quasi-instantaneous HR). Regardless of the HR averaging time,
the mean errors were close to 0.1 bpm. The mean absolute errors
(MAEs) were approximately 0.1, 0.2, and 0.4 bpm for HR averaged
over 60-s, 10-s, and 4-s periods, respectively. For the average HR
from the entire measurement, there were no errors larger than
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TABLE 2 Measures of accuracy and precision of heart rate estimated by the Shen.AI Vitals vPPG technology (with 95% bootstrapped confidence
intervals).

HR measure Absolute errors (in bpm)

ME SDE MAE RMSE

average HR (60 s) 0.09 [-0.03, 0.20] 0.37 [0.17, 0.49] 0.14 [0.03, 0.26] 0.38 [0.17, 0.51]

short-term HR (10 s) 0.12 [0.10, 0.14] 0.47 [0.45, 0.50] 0.23 [0.21, 0.25] 0.49 [0.47, 0.51]

quasi-instantaneous HR (4 s) 0.10 [0.07, 0.14] 0.78 [0.74, 0.82] 0.45 [0.42, 0.48] 0.79 [0.75, 0.83]

Relative errors (as % of ECG-based values)

MPE SDPE MAPE RMSPE

average HR (60 s) 0.11% [-0.04, 0.26%] 0.48% [0.22, 0.63%] 0.18% [0.04, 0.33%] 0.49% [0.22, 0.66%]

short-term HR (10 s) 0.16% [0.13, 0.19%] 0.62% [0.59, 0.65%] 0.30% [0.28, 0.33%] 0.64% [0.61, 0.67%]

quasi-instantaneous HR (4 s) 0.13% [0.09, 0.18%] 1.02% [0.97, 1.07%] 0.58% [0.54, 0.62%] 1.03% [0.98, 1.08%]

The errors between the vPPG-based and ECG-based heart rate (HR) values are expressed in absolute terms (in beats per minute, bpm) or in relative terms (in percentage of ECG-based values).
Abbreviations: ME, mean error; SDE, standard deviation of errors; MAE–mean absolute error; RMSE, root-mean-square error, MPE, mean percentage error; SDPE, standard deviation of
percentage errors; MAPE, mean absolute percentage error; RMSPE, root-mean-square percentage error.

TABLE 3 Distribution of absolute errors in heart rate (HR) values
estimated by the Shen.AI Vitals vPPG technology. The vPPG-based HR
values were compared with reference values obtained from
simultaneously recorded electrocardiograms. The data show errors in
HR averaged over 60 s as well as over shorter periods (10 s or 4 s).

Error HR (60 s) HR (10 s) HR (4 s)

0 bpm 30 (85.7%) 1322 (77.1%) 1181 (62.5%)

1 bpm 5 (14.3%) 389 (22.7%) 605 (32.0%)

2 bpm 3 (0.2%) 79 (4.2%)

3 bpm 1 (0.1%) 21 (1.1%)

4 bpm 4 (0.2%)

Error HR (60 s) HR (10 s) HR (4 s)

≤1 bpm 35 (100%) 1711 (99.8%) 1786 (94.5%)

≤2 bpm 1714 (99.9%) 1865 (98.7%)

≤3 bpm 1715 (100%) 1886 (99.8%)

≤4 bpm 1890 (100%)

1 bpm (see Table 3). For short-term or quasi-instantaneous HR
values, i.e., average values from 10-s or 4-s periods, the errors did
not exceed 1 bpm in 99.8% and 94.5% of the cases, respectively.
The maximal errors were 3 bpm for the 10-s averaging periods
(1 case out of 1,715) and 4 bpm for the 4-s periods (4 cases out
of 1,890).

Figure 2 presents the HR values obtained using the tested
technology plotted against the reference values from ECG. The
correlation between HR values from the two methods was very
strong, as indicated by the Pearson correlation coefficients: r = 0.992

for the 60-s HR, r = 0.999 for the 10-s HR, and r = 0.997 for the 4-s
HR (P < 0.001 in all cases). For individual subjects, the MAE varied
between 0.2 and 1.0 bpm for the 4-s HR and between 0.1 and 0.5
bpm for the 10-s HR (see Figure 3), and the twoMAEs were strongly
correlated with each other (r = 0.817, P < 0.001).

As shown in Figure 4 (right panel), the quasi-instantaneous
HR values calculated from ECG (averaged over 4-s periods)
showed different levels of variation during the 60-s measurements
in individual subjects (e.g., related to breathing patterns). In
most subjects, these quasi-instantaneous HR values varied within
approximately ±5 bpm, with one subject showing particularly high
HR variation (between 80 and 117 bpm). Across all subjects, we
observed quasi-instantaneous HR values between 46 and 117 bpm.
For HR values averaged over 10-s periods, as expected, the variation
was accordingly lower, with low-frequency trends visible in some
subjects (see the left panel in Figure 4).

4 Discussion

4.1 Key results

In this study on 35 predominantly young, healthy volunteers,
we observed very high agreement between the HR values estimated
by the tested vPPG technology via a smartphone camera and the
reference ECG-based values, particularly for the average HR from
the entire 60-s measurement, for which the errors did not exceed
1 bpm in all subjects, and in 86% of them there was virtually no
difference between the vPPG-based and ECG-based average HR
(both rounded to the nearest whole number). The mean absolute
error (MAE) of these measurements was only around 0.1 bpm,
whereas the root-mean-square error (RMSE) was around 0.4 bpm.
Even for HRs averaged over much shorter periods, i.e., multiple HR
values averaged over 10-s or 4-s periods, the agreement was also
very high, with errors not exceeding 1 bpm in 99.8% and 94.5%
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FIGURE 2
Heart rate (HR) values estimated in 35 subjects using the Shen.AI Vitals
facial vPPG technology plotted against reference values obtained from
simultaneously recorded electrocardiograms (ECGs). (A) Average HR
values from 60-s measurements, (B) short-term HR values averaged
over 10-s periods (49 values per subject), (C) quasi-instantaneous HR
values averaged over 4-s periods (54 values per subject). The dotted
lines indicate error limits of ±5 beats per minute (bpm). Abbreviations:
MAE–mean absolute error, MAPE–mean absolute percentage error.

FIGURE 3
Mean absolute errors (per subject) in heart rate (HR) values estimated
by the Shen.AI Vitals technology in multiple 4-s periods (blue bars,
top) and 10-s periods (red bars, bottom) during 60-s video recording
of the face, as compared with electrocardiogram-based values. For
each subject, the two mean absolute errors correspond to the means
of 54 and 49 values for HR averaged over 4-s and 10-s periods,
respectively (see Methods for details). All bars start at 0.

of the cases, respectively, and the RMSEs of 0.5 bpm and 0.8 bpm,
respectively. To our knowledge, this is the first study on the use of
vPPG technology to evaluate the accuracy of quasi-instantaneous
HR values (averaged over periods shorter than 5 s) compared to
ECG-based values.

4.2 Standards

According to the standard ANSI/AAMI EC13:2002 (R2007)
“Cardiac Monitors, Heart Rate Meters, and Alarms” (ANSI/AAMI,
2007), which was later superseded by ANSI/AAMI/IEC 60601-2-
27:2011 (R2016) (ANSI/AAMI, 2016), the HR measurement error
should not be greater than ±10% or ±5 bpm, whichever is greater. It
should be noted, however, that this standard applies to ECG-based
devices and it specifically excludes PPG-based devices. Nevertheless,
given the lack of more appropriate standards, it is frequently used
as a reference when assessing the accuracy of PPG or vPPG-based
HR monitors (van Lier et al., 2020; Harford et al., 2019). In our
study, we did not observe any errors in HR greater than 4 bpm or
10%, even for HRs averaged over 4-s periods, despite the relatively
high variation in these quasi-instantaneous HR values during 60-
s measurements. We investigated 1,890 such quasi-instantaneous
HR values (54 in each of the 35 studied subjects) with a relatively
wide range of values (between 46 and 117 bpm, according to ECG),
and we observed errors of 4 bpm in only 4 cases (0.2%). These 4-s
average HR values, which we call quasi-instantaneous, can be in fact
treated as instantaneous HRs in line with the expert statement of the
INTERLIVE Network regarding the validity of consumer wearable
HR monitors, which indicates that instantaneous HR values should
be averaged over time periods not longer than 5 s (Muhlen et al.,
2021). The high level of accuracy of these (quasi-)instantaneous HR
values observed in our study suggests that vPPG technology has the
potential to be used in biofeedback applications (De Pascalis et al.,
1991; Cengiz et al., 1997; Peira et al., 2013; Peira et al.,
2014), although further studies are needed to generalize our
findings to other populations and other conditions (see the
Limitations section).
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FIGURE 4
Heart rate (HR) values obtained from electrocardiograms (ECGs) averaged over 10-s periods (left panel) and 4-s periods (right panel) during 60-s
measurements. Each line represents one of the 35 studied subjects (with the same color used in both panels), with HR values updated every 1 s (see
Methods for details).

In a less strict standard, ANSI/CTA-2065 “Physical Activity
Monitoring for Heart Rate and Related Measures” (CTA, 2018),
developed by the Consumer Technology Association (CTA) for
wearable devices for continuous HR measurements during physical
activity, the accuracy criterion is that the mean absolute percentage
error (MAPE) should not be greater than 10% for all measurements
during the protocol proposed in that standard (pooled for all
participants). Althoughwe did not study a device for continuousHR
measurements during physical activity, the short-termHR (averaged
over 10 s) and the quasi-instantaneous HR (averaged over 4 s) are
provided by the tested technology every 1 s, and hence, they can
be treated as a kind of continuous HR measurements, which could
last longer than the current measurement time (60 s). We observed
MAPEs of only around 0.3% and 0.6% for HRs averaged over 10-
s and 4-s periods, respectively, which are markedly lower than the
level required by the above standard, although we emphasize that we
studied sedentary and inactive subjects, which of course is of great
importance here.

4.3 Time shift between the ECG and vPPG
peaks

Note that for HR values averaged over 10-s and 4-s periods, the
reference ECG-based values were averaged over the corresponding
periods lagged by 0.3 s to account for the fact that peaks in the vPPG
signals are delayed with respect to R peaks in the ECG used for
heartbeat detection. For simplicity, in all subjects we used the same
time shift of 0.3 s, which was approximately the typical time shift
observed in our dataset. However, this time shift varied to some
extent both between and within subjects (during the measurement).
This means that in some cases, the reference ECG-based HR values
could have been based on a slightly different number of heartbeat
intervals, e.g., the number of R–R intervals in the given 4-s period
could have been lower or higher by one compared to the number
of peak-to-peak time intervals in the vPPG signal analyzed by

the tested technology. We believe that this may at least partially
explain some of the differences between the HR values estimated
by the tested technology and the reference values, which could
be avoided or at least mitigated by using personalized time shifts
instead of the fixed value of 0.3 s (or even better, using dynamic time
shifts). Therefore, we expect that the accuracy of the short-term or
quasi-instantaneous HR values provided by the tested technology
could be even higher, although even using a fixed time shift in
our calculations, the observed errors are generally very low, and
in particular lower than the maximum error levels required by the
aforementioned standards. For the HR averaged over the entire
measurement (60 s), we did not use any time shift when calculating
the reference values from the ECG, as in this case such a time shift
has a negligible impact. Again, taking into account such a time shift
could lead to even better results in terms of accuracy of vPPG-based
average HR values.

4.4 Previous studies

To the best of our knowledge, most data on the accuracy of
vPPG-based measurements of HR are available for the Lifelight
technology. In their largest study (VISION-D), which involved over
10,000 HR measurements in more than 5,700 subjects, the mean
error (ME) was 0.3 bpm with a standard deviation of errors (SDE)
of 4.0 bpm (Heiden et al., 2022), which was markedly higher than
that in our study (0.1 and 0.4 bpm, respectively), although their
study not only was much larger than ours but also included a
very diverse population of patients and healthy volunteers, with
a wide range of ages, health conditions, and skin tones, and a
wider range of HRs (32–183 bpm). Note also that they used
reference HR values from a sphygmomanometric measurement
performed during a 1-min vPPG measurement, which on the one
hand makes the comparison less reliable than when compared with
ECG-based reference values, but, on the other hand, could explain
greater errors. In a more recent, smaller study on the Lifelight
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technology, with 57 measurements in 19 participants and ECG-
based reference HR values, the ME was higher in absolute terms
(−0.6 bpm), but the SDE was lower (1.8 bpm) (van Putten et al.,
2024), and hence, these measurements were more precise than
those in their previously mentioned large study. In another study
that investigated 1-min vPPG measurements of HR in 45 seated
subjects (with relatively low variation in terms of age and skin
tone), the MAE was reported to be 1.7 bpm, with an SDE of 2.1
bpm (Jain et al., 2016). In a study on 9 young, healthy volunteers
with 8 measurements per subject, the results were only slightly
worse than those in our study, with an ME of −0.2 bpm and an
SDE of 0.6 bpm, compared with ECG-based values, although that
study involved 2-min measurements with various breathing rates
and depths (Shoushan et al., 2021).

With respect to shorter measurements, Hassan et al. compared
several vPPG methods for 30-s measurements of HR in 45
healthy volunteers and obtained relatively high errors, with MEs
ranging from 3.5 to 11.0 bpm and SDEs ranging from 3.5 to
8.2 bpm, although they studied measurements in a more natural
environment, with uneven illumination of the participants’ faces and
possible shadows or reflections, with a distance of 0.8 m between the
camera and the face (Hassan et al., 2017). In a study on 25 subjects
with 20-s vPPG measurements using a smartphone camera with a
flash, Sanyal and Nundy reported an ME of −0.1 bpm and an SDE
of 4.2 bpm (Sanyal and Nundy, 2018). In a study examining 10-s HR
measurements (during 2-min video recordings) in 22 subjects, the
ME was −0.2 bpm and the SDE was 1.8 bpm (Rivest-Hénault et al.,
2021). Tran et al. investigated HR averaged over 8-s periods during
1-min video recordings in 10 subjects and reported an ME of −0.5
bpm and an RMSE of 5.7 bpm, although their dataset included
measurements taken at various distances between the camera
and the face, various lighting conditions, and intentional head
movements (Duc Nhan et al., 2015). For an overview of the accuracy
of vPPG-based measurements of HR, including older studies with
low-resolution and/or low-frequency cameras, see the reviews by
Rouast et al. (2018); Molinaro et al. (2022); Xiao et al. (2024).

4.5 Limitations

Our study had certain limitations. First, we studied a relatively
small and homogeneous sample, which included onlywhite subjects,
and therefore our results are not necessarily generalizable to dark-
skinned individuals, in whom PPG signals are usually of lower
quality because more light is absorbed by the skin than reflected
(Nowara et al., 2020; Fine et al., 2021). Second, we studied subjects
in a sitting position who, in accordance with our request and
requirements of the tested technology, kept their heads relatively still
during the measurements and refrained from speaking. Although
the tested technology includes a face tracking algorithm to account
for possible head movements or changes in facial expressions, we
have not investigated how these factors may affect measurement
accuracy, which would require a separate study with intentional
headmovements and/or changes in facial expressions. Furthermore,
our study used a single smartphone camera. Given that camera
parameters, particularly sensor size and aperture, can significantly
affect the amount of light collected by the camera (including the
amount of light reflected from the face, as in our study) and

therefore affect the quality of recorded vPPG signals, future studies
should include measurements with different smartphone cameras
with different parameters. However, the phone used in our study
(Samsung Galaxy A22) was released in 2021, and therefore one
should expect that newer phones will generally have higher quality
cameras. This issue may therefore be more relevant when using
cameras from other mobile devices, such as laptops, which generally
have lower-quality cameras compared to smartphones. Moreover,
our study was conducted in a laboratory setting, with controlled
lighting conditions and the smartphone camera placed in a stable
position at the participant’s head level. Although these conditions
were similar to those typically observed in studies of this type, which
facilitates comparisons of results across study participants, our
results may not necessarily be generalizable to other, more natural
settings. In particular, in our study the level of light illuminating
the participants’ faces (on average around 1,700 lux) corresponded
to a well-lit workspace for tasks requiring good visibility, such
as detailed drawing or mechanical work. Therefore, the accuracy
of the tested vPPG technology should be confirmed under lower
facial illumination levels, i.e., lower than in our study but still
sufficient to perform the measurement (with insufficient lighting,
the quality of the vPPG signals will be too low and the user
will be asked to improve the lighting conditions). On the other
hand, higher illumination levels could potentially lead to better
results (in outdoor conditions, the light intensity of 1,700 lux
may correspond to midday of an overcast day, while on a bright,
sunny day, the light intensity may exceed 100,000 lux). Finally, in
our study the participants’ faces were illuminated relatively evenly.
Although uniform facial illumination is one of the requirements
of the tested vPPG technology, it may not always be easy to
achieve in more natural conditions, and therefore the measurement
accuracy should be further confirmed in studies with less even facial
illumination.

5 Conclusion

In a group of predominantly young, white participants in a
resting (sitting) position, the tested facial vPPG technology provided
highly accurate heart rate measurements, both in terms of the
average HR from measurements lasting 60 s as well as short-
term HR values averaged over 10 s and quasi-instantaneous HR
averaged over just 4 s, with errors not exceeding 1 bpm in 100.0%,
99.8%, and 94.5% of the cases, respectively. Our results support
the feasibility of using a smartphone camera and facial vPPG
technology tomeasure restingHR even over very short time periods,
although this should be further confirmed in a study involving
a larger group of participants with greater diversity in age, skin
tone, and lighting conditions (both in terms of light intensity and
uniformity).
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