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Ferroptosis is an iron-dependent programmed cell death that plays an important
role in neurodegenerative and neuropsychiatric diseases. In the present study,
we have highlighted how different risk factors are involved in the induction of
ferroptosis in brain cells. In addition, we also demonstrated how ferroptosis
plays an important role in different brain diseases. In our study why we
focused and elaborated on the mechanisms of ferroptosis only in brain
cells (Neurons, oligodendrocytes, and microglia) because they are particularly
vulnerable to such kind of cell death. Additionally, brain cells are more
dependent on mitochondrial function, iron regulation, and high levels of
polyunsaturated fatty acids (PUFAs) as compared to peripheral body cells.
Highlighting ferroptosis is more important because it has demonstrated several
important mechanisms of neuronal injury and dysfunction which provides a
deep understanding of the etiology of various brain diseases that were not
sufficiently described by other programmed cell death pathways. Therefore,
it has led to the exploration of new therapeutic strategies against various
brain diseases and thus targeting ferroptosis-related proteins opens a new
therapeutic window for several incurable brain diseases, and various ferroptosis
regulators are now under clinical trials. However, their validation as a preclinical
therapeutic agent is needed. Interestingly, here in our study we also summarize
the most recent potential therapeutic targets and promising interventions
which will provide a beam of light for future therapies against major brain
diseases.
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ferroptosis, lipid peroxidation, oxidative stress, neurodegeneration with brain iron
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Introduction

Ferroptosis is an iron-dependent programmed cell death that
has bridging metabolic dysfunction with redox biology. Iron is
pivotal in normal physiological conditions such as DNA synthesis,
cell division, neurotransmission, cellular respiration, oxygen
transport, and cellular metabolism. Ferroptosis is characterized
by unique biochemical and morphological changes that distinguish
it from other program cells death. The most important features
of ferroptosis are alteration in redox balance, iron homeostasis
and lipid metabolism. Transferrin, Metal Transporter, and Iron
Response Element Binding Protein 2, are important regulators of
ferroptosis that induces cell death and modulating intracellular and
systemic iron homeostasis. Irons overload initiates oxidation of
the acyl tail of unsaturated fatty acid via Fenton reactions which
in turn leads to increase the formation of reactive oxygen species
(ROS) and lipid peroxidation (Stockwell, 2022; Dix et al., 2024;
Jiang et al., 2021; Li et al., 2020; Berndt et al., 2024). Therefore,
higher the level of unsaturated fatty acid more will be the ROS
production and vice versa. Primarily there are two antioxidant
systems know as Glutathione (GSH)/Glutathione peroxidase 4
(GPX4) systems and the Coenzyme Q10 (CoQ10)/Ferroptosis
Suppressor Protein 1 (FSP1) system which catalyzes the reduction
of lipid peroxides. Change in the expression and activity of
these molecules is very crucial to understand the fate of a
cell. Ten years ago, ferroptosis was first documented as a
program cell death of the body which is involved in variety
of biological processes, including muscle atrophy, neuron loss,
tumor growth, ischemia reperfusion and immune escape. It
has been shown that ferroptosis play essential role in health
maintaince and in the development of multiple human diseses
(Supplementary Figure S1).

Unlike other forms of cell death, ferroptosis specifically affects
neurons with high metabolic demands and polyunsaturated
fatty acid-rich membranes, making them especially vulnerable
under conditions of oxidative stress and inflammation.
Recently, increase interest and development of ferroptosis
related research have uncover numeriuos regulators to
facilitate the clinical and precilical application of that agents
and opend a new therapeutic window for feroptisis related
neurodegenerative and psychiatric diseases (Zeng et al.,
2023a; Pan et al., 2023; Liang et al., 2022; Tang et al.,
2021; Li et al., 2023a; Dixon et al., 2012; Peng et al., 2022a;
Liao et al., 2022; Qin et al., 2022). This review comprehensively
elaborates the detail mechanisms, importance in brain diseases,
regulation, therapeutic avenues and different risk factors of
ferroptosis (Figure 1).

We also highlight how to use CRISPR editing on brain disease
risk genes in ferroptosis. Our finding could provide strategies for

FIGURE 1
The graphical summery of the present study. The risk factors involved
in the induction of Ferroptosis mediated neuropsychiatric and
neurodegenerative disorders. Different therapeutic strategies against
Ferroptosis mediated brain diseases such as use of inhibitors,
antioxidant agents, genetic engineering approach, Iron Chelation, etc.,
has been elucidated in the present study.

innovative treatments of ferroptosis-associated diseases, offering
hope for addressing some of the most challenging biomedical
conditions of our time.

Role and importance of ferroptosis in
neurodegenerative, neuropsychatric
diseases and its unifying model

Iron absorption and transport can be disrupted by neurological
disorders, which can result in excessive iron accumulation, elevated
oxidative stress, and cellular ferroptosis. Ferroptosis is a major
contribution to neurodegenerative disorders, according to growing
study (Figure 2) (Wei et al., 2024; Long et al., 2023;Wang et al., 2024).
In diseases such as alzheimer’s, parkinson’s, and multiple sclerosis,
imbalances in iron metabolism and antioxidant protection result
in oxidative stress, rendering neurons and glial cells particularly
vulnerable to ferroptotic injury. Microglia and oligodendrocytes,
responsible for regulating neuroinflammation and myelination,
can experience ferroptosis due to chronic inflammation and
oxidative stress, exacerbating neural injury (Li et al., 2024a). In
diseases such as alzheimer’s, parkinson’s, and multiple sclerosis,
imbalances in iron metabolism and antioxidant protection result
in oxidative stress, rendering neurons and glial cells particularly
vulnerable to ferroptotic injury. Microglia and oligodendrocytes,
responsible for regulating neuroinflammation and myelination,
can experience ferroptosis due to chronic inflammation and
oxidative stress, exacerbating neural injury (Li et al., 2024a).
We have described the ferroptosis drivers across diseases in the
following table.
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Unifying model of ferroptosis drivers
across diseases
Driver Mechanism Impact in disease

context

Iron
Accumulation

Excessive iron increases
Fenton reactions,
generating hydroxyl
radicals that promote
lipid peroxidation

- AD: Iron overload in
cortex/hippocampus

- PD: Accumulation in
substantia nigra

- Depression: Dysregulated
systemic iron

Lipid
Peroxidation
(PUFA-PLs)

Polyunsaturated fatty
acids (PUFAs) in
membranes are oxidized
under stress, forming
toxic lipid ROS like
4-HNE and MDA.

- AD: Elevated 4-HNE in
neurons

- PD: Lipid oxidation
damages dopaminergic
neurons

- Depression: Associated with
inflammation

GPX4
Inhibition

Glutathione peroxidase 4
reduces lipid peroxides;
its depletion or
inactivation leads to
ferroptosis

- All: GPX4 downregulated in
affected brain regions

Glutathione
(GSH)
Depletion

GSH is the primary
cofactor for GPX4; low
levels impair antioxidant
defenses

- AD/PD: Low GSH in aging
brain

- Depression: Reduced GSH
in plasma and brain

Increased
ACSL4
Expression

ACSL4 integrates
oxidizable PUFAs into
membranes, sensitizing
cells to ferroptosis

- PD: Increases ferroptosis in
dopaminergic neurons

- Depression/AD: ACSL4
underexplored, emerging
evidence

NRF2
Pathway
Dysfunction

NRF2 regulates
antioxidant defenses
including GPX4 and
ferritin. Its suppression
exacerbates ferroptosis

- AD: Impaired nuclear
translocation

- PD: Suppressed in SN
- Depression: Blunted
antioxidant gene expression

Inflammatory
Cytokines

IL-1β, TNF-α, and IL-6
induce iron uptake,
inhibit antioxidant
enzymes, and enhance
ROS production

- All: Inflammatory milieu
drives iron dysregulation
and ferroptosis

Mitochondrial
Dysfunction

Mitochondria generate
ROS and regulate iron
metabolism; dysfunction
leads to ferroptosis
sensitivity

- AD/PD: Common feature
- Depression: Linked to
metabolic stress and ROS

Dysregulated
Ferritin/FPN1

Loss of iron export (via
FPN1) or ferritin
degradation increases
labile iron pool

- AD: Reduced FPN1 in
cortex

- PD: Impaired ferritin
function

- Depression: May contribute
to iron dyshomeostasis

Excitotoxicity/
Glutamate

Excess glutamate inhibits
cystine uptake (xCT),
reducing GSH and
promoting ferroptosis

- AD: Excitotoxic damage
- PD: Glutamate overactivity
- Depression: Glutamatergic
dysfunction contributes
to stress response

Ferroptosis and alzheimer

Abnormal iron metabolism has been linked to the development
of AD, according to a number of research. Ferroptosis-related
characteristics, such as aberrant iron metabolism, glutamate
excitotoxicity, and the buildup of lipid ROS, have been seen in
the brain tissues of AD patients and AD model mice. Iron levels
in the hippocampus, cortical lobe, and basal ganglia are also
higher in AD patients than in control participants, according to
research. The degree of amyloid deposition has also been linked
to the levels of iron and ferritin in brain tissue. Furthermore, AD
patients exhibit downregulated expression of GPX4 and increased
levels of 4-HNE and Malondialdehyde in different parts of the
brain. According to one study, patients with AD were able to live
better lives after receiving an intramuscular injection of the iron-
chelating drug deferoxami (Bulk et al., 2018; Lee and Lee, 2019;
Yan and Zhang, 2019; Dare et al., 2020; Villalon-Garcia et al.,
2023; Rogers and Lahiri, 2004; Lei et al., 2019; Zhang et al.,
2022a). One known contributing element to the onset of AD is
glutamate excitotoxicity. According to Zhang et al. (2020), AD may
result from an increase in extracellular glutamate concentration
brought on by system Xc–failure during ferroptosis. Additionally,
Feng et al. (2023) found that the hippocampus of a mouse
model of AD in which PSEN1 (Presenilin-1) had been knocked
down had higher expression of ferroptosis-related proteins (GPX4,
SLC7A11, ACSL4, Phosphatidylethanolamine Binding Protein 1)
than did healthy mice (Feng et al., 2024a). Recent studies emphasize
the importance of iron in controlling tau phosphorylation and
aggregation, which may lead to the development of neurofibrillary
tangles in neurodegenerative disorders like alzheimer’s disease. A
notable interaction seems to exist between iron and tau, affecting
disease progression and symptoms. Notably, tau binds to iron,
resulting in its aggregation and potential accumulation as iron-rich
tangles in the brains of individuals with AD. Additionally, increased
iron concentrations may enhance tau phosphorylation in cultured
neurons, indicating a possible connection between increased iron
and abnormal tau in alzheimer’s disease (Mohammadi et al.,
2024). Furthermore, Recent studies suggest that the Iron-driven
production of reactive oxygen species (ROS) could result in protein
misfolding and cell damage. The misfolding and aggregation of
neuronal proteins like α-synuclein, Tau, amyloid beta (Aβ), TDP-43,
or SOD1 is a prevalent characteristic of various neurodegenerative
diseases, and iron has been demonstrated to promote protein
aggregation (Joppe et al., 2019). This suggests that ferroptosis and
neurodegenerative diseases like AD are closely related. Because
of this, ferroptosis could be a key process in the development of
AD. Ferroptosis, driven by iron accumulation, oxidative stress, and
protein aggregation, plays a central role in the pathogenesis and
progression of Alzheimer’s disease (Dare et al., 2020; Feng et al.,
2024a; Zhang et al., 2020; Han et al., 2023).

Ferroptosis and parkinson

Ferroptosis and Parkinson’s disease are closely related,
according to an increasing number of studies. Ferroptosis-like
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FIGURE 2
The Ferroptosis mediated brain diseases. Iron overload, ROS burden and oxidative stress are involved in demyelination, neuroinflammation, and
neuronal loss which in turn lead to various neurodegenerative and neuropsychiatric diseases. Neuroinflammation is further actively participating in the
blood brain barrier disruption.

clinical features of parkinson’s disease (PD) include oxidative
stress, LPO, GSH depletion, and abnormalities of iron metabolism
(da Costa Caiado et al., 2025). Furthermore, the loss of
dopaminergic neurones in the substantia nigra (SN) and striatum
can be avoided by using the iron chelating drug DFP and the
ferroptosis-specific inhibitor Ferrostatin-1 (Fer-1) Lipostatin-1.
Ferroptosis was identified by Do Van et al. (2016) as a new type
of cellular death in parkinson’s disease. In dopaminergic cells,
Erastin causes cytotoxicity through activating Protein Kinase C
(PKC), which sets off MEK signalling and promotes ferroptosis.
Additionally, ferroptosis in PD can be reduced by PKC suppression.
The 140 amino acid protein known as α-Syn is mostly expressed in
the brain and is essential for several neuronal synaptic functions.
One important pathological sign of parkinson’s disease (PD) is
the aggregation of α-Syn, which is a prominent component of
intracellular Lewy bodies. α-Syn produces LPO by producing
ROS, which increases calcium influx and causes cell death
(Dionisio et al., 2021; Thapa et al., 2022; Do Van et al., 2016;
Chartier-Harlin et al., 2004; Angelova et al., 2020). Cumulative
findings showed that lowering α-synuclein levels in dopaminergic
neurons helps prevent ferroptosis, whereas enhanced α-synuclein
levels in neuronal precursor cells from patients with SNCA
triplication increases susceptibility to lipid peroxidation and
ferroptosis (Mahoney-Sanchez et al., 2022). Ferroptosis has a role in
the degenerativemechanism of parkinson’s disease (PD), as research
has shown that elevated iron accumulation or decreased intracellular
glutathione levels contribute to the abnormal aggregation of PD α-
Syn (Angelova et al., 2020). Ferroptosis contributes significantly
to Parkinson’s disease progression through iron accumulation,
oxidative stress, and α-synuclein aggregation, making it a promising
therapeutic target.

Ferroptosis and depression

According to research, neuroinflammation is the immune
response of the central nervous system (CNS) that is mostly the
result of astrocytes and microglia in the hippocampus. A possible
link between iron and neuroinflammation has been suggested by
the association of microglia, which are recognised for having a high
iron content, with depression linked to aberrant glial activation and
iron overload. It is unknown, therefore, exactly how iron overload
upsets neurotransmitter balance and causes anxiety and depressed
symptoms (Li et al., 2024a; Lee and Hyun, 2023; Uzungil et al., 2022;
Zeng et al., 2023b). Recent studies shown that In depression and
associated neuropsychiatric conditions, inflammatory mechanisms
are crucial in promoting ferroptosis. Increased concentrations of
pro-inflammatory cytokines—like TNF-α, IL-6, and IL-1β—can
interfere with glutathione metabolism and inhibit antioxidant
systems such as GPX4, making neurons more susceptible to
oxidative damage. At the same time, inflammation causes iron
imbalances, raising intracellular free iron by enhancing DMT1
expression and degrading Ferritin, which further promotes lipid
peroxidation. These mechanisms establish a feedback loop in
which persistent neuroinflammation drives ferroptosis, leading to
neuronal degeneration and the underlying causes of depression
(Liu et al., 2025; Feng et al., 2025; Dang et al., 2022).

Studies have demonstrated that Brain-derived Neurotrophic
Factor (BDNF) signal transduction is essential for synaptic plasticity
in depression, and that BDNF downregulation may have neurotoxic
consequences. According to Li et al., iron overloadmay cause BDNF
to be downregulated through the iron urin BDNF pathway, which
could result in injury to the hippocampus. Additionally, Gao et al.
demonstrated that iron deposition in hippocampal microglia is
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Marker Alzheimer’s disease
(AD)

Parkinson’s disease
(PD)

Depression Key references

GPX4 ↓ Expression in hippocampus
and cortex

↓ Levels in substantia nigra ↓ Activity observed in animal
models; may underlie
oxidative damage

Zhang et al. (2024a)

GSH ↓ Brain levels in AD patients ↓ Levels in SN; associated with
dopaminergic neuron loss

↓ Serum levels in MDD; linked
to treatment-resistant
depression

Mazzetti et al. (2015), Gu et al.
(2015)

4-HNE ↑ Accumulated in AD brain
tissues

↑ Found in dopaminergic
neurons in PD

↑ Linked to inflammation and
oxidative damage in depressive
brains

Zarkovic (2003); Mattson
(2009)

ACSL4 ↑ Expression in neurons prone
to ferroptosis

↑ Associated with neuronal
susceptibility to oxidative
damage

Potential ↑ in stress-induced
models; underexplored in
depression

Chen et al. (2023a), Zhuo et al.
(2025)

TFRC (TfR1) ↑ Expression in AD neurons
and microglia

↑ Found in substantia nigra;
enhances iron influx

↑ Expression linked to
inflammatory response and
oxidative stress

Petralla et al. (2024),
Helgudottir et al. (2024)

FPN1 ↓ Expression in cortex and
hippocampus

↓ Causes intracellular iron
accumulation in SN

↓May enhance cellular iron
retention under inflammatory
states

Qian et al. (2023), Gao et al.
(2023)

HO-1 ↑ Overexpressed in astrocytes;
may contribute to redox
imbalance

↑ Observed in PD patients;
associated with glial activation

↑ Induced by inflammation
and chronic stress in rodent
depression models

Neis et al. (2018),
Sebghatollahi et al. (2025)

Lipid ROS ↑ Found in AD mouse models ↑ Detected in midbrain and
striatum

↑ ROS production observed in
stress models

Uttara et al. (2009),
Houldsworth (2024),
Olufunmilayo et al. (2023)

NRF2 ↓ Activity and nuclear
translocation in AD

↓ Impaired in PD; restoration
provides neuroprotection

↓ Activity correlates with
oxidative damage and mood
disorders

Suzen et al. (2022), Brandes
and Gray (2020)

FTH1 Altered—↓ in neurons, ↑ in
glia

Dysregulated; iron
mismanagement observed

↓ Expression can sensitize cells
to ferroptosis

Muhoberac and Vidal (2019),
Shieh et al. (2023)

directly linked to neuronal death and degeneration in a Chronic
Unexpected Mild Stress (CUMS) animal model. Furthermore, Zeng
et al. emphasised how important Nrf2 is as an anti-inflammatory
mediator in controlling iron deposition and neuroinflammatory
reactions in depression. Cao et al. found clear changes in protein
expression between normal mice and CUMS model animals in a
comparative research employing hippocampus proteomics, showing
significant iron deposition and neuronal necrosis activation in the
hippocampus, which encourages the development of depression.
Zhang et al. recently found that CUMSmodelmice had considerably
higher expression levels of different inflammatory markers, but
that this neuropathological alteration was successfully reversed
by treatment with the iron chelating drug deferoxamine (DFO).
All of these results point to a possible connection between
the onset of depression and the neurotoxicity brought on by
iron overload (Zeng et al., 2023b; Shkundin and Halaris, 2023;
Li et al., 2023b; Gao et al., 2019; Cao et al., 2021; Zhang et al.,
2022b; Lima Giacobbo et al., 2019; Williams et al., 2022). Iron
overload–induced neuroinflammation and ferroptosis play a central
role in the pathogenesis of depression by disrupting antioxidant

defenses, impairing BDNF signaling, and triggering neuronal
degeneration. In order to elaborate the ferroptosis related marker
and their correlation with neurodegenerative and neuropschychtric
diseases, we have provided a summarized table.

Mechanisms of ferroptosis

Aging and metabolic impairment could affect iron’s normal
physiological function in the body, increasing the risks of iron-
linked neurodegenerative diseases. Specifically, the free intracellular
divalent iron (Fe2+) is highly reactive, as it promotes the generation
of Reactive Oxygen Species (ROS) via Fenton reactions. These ROS
catalyze the peroxidation of polyunsaturated fatty acids, resulting
in cellular membrane damage. Aging-dependent iron accumulation
in the brain promotes direct ferroptosis and enzyme-mediated
redox reactions such as lipid peroxidation (Dixon et al., 2012;
Li et al., 2021; Benarroch, 2023; Zhou et al., 2020a; Rochette et al.,
2022; Sato et al., 2022; Zhou et al., 2023). Ferroptosis-linked
Neurodegenerative Diseases (NDDs) encompass a complex group
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of conditions associated with neuronal cell death and functional
decline (Sun et al., 2022). Advances in proteomic, genomic,
animal, and cellular approaches have identified several novel
targets recently approved for treating alzheimer’s Disease (AD),
Amyotrophic Lateral Sclerosis (ALS), and other NDDs (Emerson
and Swarup, 2023; Amartumur et al., 2024). Several convincing
studies have revealed that iron accumulation in affected brain
regions and multiple neurodegenerative diseases share pathological
links. The concept that iron overload significantly accelerates
neurodegeneration and acts as a driver of disease progression is
increasingly supported by research. (Stockwell, 2022; Dixon et al.,
2012; Sato et al., 2022; Ndayisaba et al., 2019; D’Mello and Kindy,
2020; Mitchell et al., 1973; Wiernicki et al., 2020; Kurian and
Hayflick, 2013).

In alzheimer’s disease, iron dysregulation contributes to
amyloid-beta plaque aggregation and tau hyperphosphorylation.
Both processes exacerbate oxidative stress and neuronal damage,
ultimately resulting in progressive cognitive decline (Tamagno et al.,
2021). Iron deposition in the hippocampus and basal ganglia
of AD patients correlates with disease severity and is linked to
impaired memory and executive function (Wang et al., 2023a;
Liu et al., 2018). Similarly, ALS is characterized by motor neuron
degeneration, muscle atrophy, and eventual paralysis (Wijesekera
and Leigh, 2009). Iron accumulation in motor neurons has been
shown to contribute to mitochondrial dysfunction and oxidative
stress, key drivers of disease progression (Cheng et al., 2022).
Elevated ferritin levels in the cerebrospinal fluid of ALS patients
suggest disrupted iron metabolism as a significant pathological
feature (Muyderman and Chen, 2014; Hemerkova and Valis, 2021;
Paydarnia et al., 2021; Zheng et al., 2017).

In parkinson’s disease (PD), excess iron in the substantia
nigra is associated with dopaminergic neuronal loss and the
aggregation of alpha-synuclein, a hallmark of PD pathology. Iron-
induced oxidative stress exacerbates neuroinflammation, further
promoting neuronal death and motor dysfunction. Therapeutic
strategies targeting iron accumulation, such as chelation therapy,
show promise in reducing oxidative stress and improving motor
symptoms in PD (Yi et al., 2022; Srinivasan et al., 2021).

Neurodegeneration with Brain Iron Accumulation
(NBIA) disorders, such as Pantothenate Kinase-Associated
Neurodegeneration PKAN, are rare conditions involving
abnormal iron deposition in the basal ganglia. Clinically, these
disorders present with progressive movement abnormalities,
dystonia, parkinsonism, and cognitive decline. The excessive
iron in these regions triggers ferroptosis, leading to neuronal
degeneration and the observed neurological deficits (Tonekaboni
and Mollamohammadi, 2014; Dusek et al., 2022).

Understanding the interplay between ferroptosis and these
neurodegenerative diseases is crucial for developing therapeutic
strategies aimed at preventing ferroptosis-mediated neuronal
damage. By targeting iron dysregulation, oxidative stress, and lipid
peroxidation, researchers hope to mitigate the progression of these
debilitating conditions.

Recent research indicates lipid and amino acid metabolism
provides a foundation for ferroptosis. For example, in 1973, Jerry
Mitchell revealed that acetaminophen induces hepatic necrosis in
rats dependent on Cysteine and glutathione (GSH). Similarly, the
polyunsaturated fatty acids in themembrane lipidswere identified as

an essential peroxidation substrate for ferroptosis (Stockwell, 2022;
Mitchell et al., 1973). However, ferroptosis has multiple molecular
regulators, and it is still unclear whether it is programmed cell
death because the molecular pathway in normal physiology has
not yet been well explored. Multiple pathways need to be explored.
However, the most recent and studied mechanisms involved in
regulating ferroptosis are loss of the antioxidant system of the
cell, iron dyshomeostasis, and lipid peroxidation (Stockwell, 2022;
Dixon et al., 2012; Wiernicki et al., 2020).

Redox reaction imbalance and
ferroptosis

Active factors disrupting the antioxidant system-mediated
ferroptosis are aging, Type 2 Diabetes (T2D), chronic obesity, etc.
(Deng et al., 2023; Li et al., 2023c). Aging could negatively affect the
transfer of RNA between cells (Dluzen et al., 2017; Hamdan et al.,
2021), factors involved in protein syntheses such as Translation
Elongation Factor 2 (TEF2), and the level of C-Glycosyl Tryptophan.
Increased glycosylation of tryptophan and increased (C-gly Trp)
strongly correlate with aging (Li et al., 2023c; Anisimova et al., 2018;
Parrado et al., 1999; Menni et al., 2013; Schmidt-Sommerfeld et al.,
1992; Il’yasova et al., 2012; Cindric et al., 2021). Translation
Elongation Factor 2 (TEF2) is relatively less active and more
fragmented with age, which results in the decline of protein
synthesis.This phenomenon induces ROS, and, in turn, this reactive
oxygen species inhibits the activation of TEF-2 (Parrado et al., 1999;
Li et al., 2024b; Ball et al., 2021). Dysregulated RNA transfer is
related to the poor quantity and quality of MicroRNAs (miRNAs).
All these aging-related impairments ultimately affect cell growth,
cell survival, protein synthesis, and antioxidant defensemechanisms
of cells. Recent research revealed that metabolic syndrome and
metabolic panel dysregulation are strongly linked with diabetes and
obesity (Ball et al., 2021; Iorio and Croce, 2012; Bonomini et al.,
2015; Zhang et al., 2023a). T2D and obesity could trigger multiple
pathways, such as the inflammatory pathways that include activation
and translocation ofNecrotic FactorKappaB (NF-kB), TNFα, INOS,
IL-1β, INF-γ, leukocyte infiltration, MCP-1, etc (Mahmoud and
Abdel-Rasheed, 2023;Marunaka, 2023; Khan et al., 2021). Increased
free fatty acid and hyperglycemia are the two most common
worst conditions in obese diabetic patients. This could activate
both insulin-resistant and oxidative stress pathways (Khan et al.,
2021; Tangvarasittichai, 2015; Fryk et al., 2021; Chandrasekaran
and Weiskirchen, 2024). Aberrant activation of the JAK/STAT
pathway is linked with the induction of inflammatory cytokines,
producing Superoxide Anions (SA) and Advanced Glycation End
Products (AGEs) (Simon et al., 1998). Stress Kinase (JNK) and
transcription factor Nuclear Factor kappa B (NF-κB) activation
and phosphorylation actively induce insulin resistance via Insulin
Receptor Substrate 1 (IRS1) disruption (Solinas and Becattini, 2017;
Yung and Giacca, 2020; Baker et al., 2011). Collectively, Age, T2D,
and obesity-related signaling pathways end at induction of oxidative
stress and disruption of first-line defense Antioxidants-Superoxide
Dismutase (SOD), Catalase (CAT), and Glutathione Peroxidase
(GPX) (Novak et al., 1996; Wang and Zhang, 2024; Zgutka et al.,
2023; Promyos et al., 2023; Gusti et al., 2021). On the other hand,
it can also regulate BTB and CNC Homology 1 (BACH1) and Heme
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FIGURE 3
Schematic representation illustrating how aging, Type 2 Diabetes (T2D), and obesity lead to ferroptosis and neurodegeneration. Aging, T2D, and obesity
hinder antioxidant defenses by affecting RNA transfer, lowering TEF2 activity, and triggering chronic inflammation. These conditions trigger oxidative
stress pathways such as JAK/STAT, NF-κB, and JNK, resulting in decreased activity of essential antioxidant enzymes (SOD, CAT, GPX). Increased free
fatty acids, AGEs, and cytokines intensify ROS generation and insulin resistance. Ferroptosis is facilitated by BACH1-driven inhibition of GSH production
alongside HO-1–triggered iron accumulation and lipid peroxidation. The consequent ferroptotic cell death aids in neurodegeneration and
demyelination via TCR signaling.

oxygenase-1 (HO-1) (Kondo et al., 2013; Jin et al., 2023; Ryter, 2022).
BACH1 promotes ferroptosis by repressing gene transcription that
regulates Glutathione (GSH) synthesis and intracellular labile iron
metabolism (Irikura et al., 2023; Soni et al., 2024). At the same
time, HO-1 can act as a mediator of ferroptosis. HO-1 can increase
the labile iron pool and promote lipid peroxidation, leading to
ferroptosis (Han et al., 2022; Chen et al., 2023b). Ferroptosis in the
brain works very closely with the demyelination of the neuronal
cells, which is dependent on T Cell Receptor (TCR) signaling
(Luoqian et al., 2022; Qin et al., 2023). Aging, Type 2 Diabetes, and
obesity converge on oxidative stress and inflammatory pathways that
disrupt antioxidant defenses and promote ferroptosis, contributing
to neurodegeneration and demyelination (Figure 3).

Abnormal iron metabolism and
ferroptosis

There are several well known health condition which aguments
iron dyshomeostasis and activates different pathways that leads to
iron load and lipids peroxidation in the central nervous system.
Among them, Cardiovascular diseases, high cholesterol, smoking,
diabetes, and high blood pressure are the common abnormilities
that could induces cerebral ischemia and stroke. These factors
lead to the building of plaques and clots in the arteries, which

lead to a lack of blood flow to the brain (Ekker et al., 2023).
The other causes like many babies develop hypoxic conditions
in their brains if the oxygen is not distributed correctly to the
brain immediately after birth. This sometimes creates a group of
conditions collectively known as cerebral palsy (CP) (Paul et al.,
2022). Therefore, the proper distribution of oxygen in the body
is necessary. Poor, insufficient, or lack of oxygen supply to the
organ results in hypoxia, infarction, or ischemia, which aggravates
several cell death pathways mediated through lipid peroxidation
and iron overload. Cerebral infarction and brain ischemia
mediate Ubiquitin-Specific Protease 14 (USP14), Cyclic Guanosine
Monophosphate–Adenosine Monophosphate Synthase cGAS-
STING, JAK-STAT3, HIF-1α, and Nrf-2 signaling (Zhang et al.,
2023b; Ma et al., 2023; Huang et al., 2022; Li et al., 2023d; Liu et al.,
2024a; Hu et al., 2022). Recent studies showed that USP14 activation
is involved in iron overload, while inhibition enhances mitophagy
and normalizes the mitochondrial defects of Parkin KO human
neurons (Bernardo et al., 2024). Hypoxic damage in the brain could
also activate HIF-1α, which is a transcription complex. HIF-1α
can increase iron levels in the brain via upregulating Transferrin
Receptor 1 (TfR1) (Baranova et al., 2007; Vela, 2018). TfR1 is
involved in transporting iron in the cell (Vela, 2018; Ding et al.,
2011; Wang et al., 2020a; Fillebeen et al., 2019). Besides cerebral
ischemia, Traumatic Brain Injury (TBI) is a leading cause of brain
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damage and paralysis. Kids and Athletic people are more vulnerable
to such kinds of injuries. TBI not only causes acute brain damage
but also sometimes leads to chronic and long-term disabilities.
Recently, several studies have explored the mechanisms involved
in TBI-related brain pathologies. Besides other pathologies, TBI is
also actively involved in brain iron dyshomeostasis and overload
via inhibition of the TrkB/PI3K/Akt/Nrf2 signaling pathway. Other
conditions like metabolic disorders could induce iron overload via
endoplasmic reticulum stress, ROS, and suppression of cytokine
signaling three expressions. A recent study highlighted the critical
role of hypothalamic iron in obesity development. This study
revealed that reducing iron overload in AgRP neurons inhibits
AgRP neuron activity, endoplasmic reticulum stress, Suppressor
of Cytokine Signaling 3 (SOCS3), oxidative stress, and NF-κB
signaling. This mechanism works like a feedback loop where iron
overload induces obesity, and on the other hand, obesity and
metabolic disorders will accelerate iron overload (Zhang et al.,
2024b; Li et al., 2023e). The aging process could connected
with increased hepcidin, while increased hepcidin is associated
with increased ubiquitination. This could significantly reduce
the iron exporters known as Ferroportin-1 (FPN1) (Sato et al.,
2022). Various health conditions—such as cardiovascular disease,
cerebral ischemia, hypoxia, traumatic brain injury, metabolic
disorders, and aging—converge on iron dyshomeostasis and
oxidative stress pathways, promoting ferroptosis and contributing
to neurodegeneration.

Iron overload has been implicated in the development of
neurodegenerative diseases such as alzheimer’s via increased tau
phosphorylation and abnormal cleavage of amyloid precursor
proteins, as shown in Wang et al. (2023a), Wang et al. (2022),
Wang et al. (2020b) (Figure 4).

Lipid metabolism and ferroptosis

Many types of brain injury, insult, or stress could induce
the production of Reactive Oxygen Species (ROS). During the
oxidative phosphorylation process within the mitochondria, many
electrons leak from the electron transport chain, interacting with
the oxygen molecule and producing superoxide radicals (O2-).
They are byproducts of normal metabolism in the body. These
superoxide radicals are converted into other ROS like hydrogen
peroxide (H2O2) and Hydroxyl Radicals (HO-). When the cellular
antioxidant system cannot control and balance this reactive species,
it will generate oxidative stress (Pizzino et al., 2017; Brieg et al.,
2012). These free radicals are very reactive and attack unsaturated
fatty acids in a cell membrane, known as lipid peroxidation. Lipid
peroxidation is a chain reaction that damages the cell membranes
(Pre, 1991). Lipid peroxidation causes ferroptosis by activating
or inhibiting several signaling pathways. Recent studies have
shown that LPO inhibits the PI3K/AKT/mTOR signaling pathway.
Inhibiting the PI3K/AKT/mTOR pathway can increase autophagy.
Excessive autophagy can lead to iron accumulation and higher
oxidative stress levels, amplifying ferroptosis (Butler et al., 2017;
Yang et al., 2023; Zhang et al., 2023c). It is essential to know that
LPO-mediated oxidative stress burden can trigger the expression
of Regulator of Calcineurin 1 (RCAN1) (originally called Adapt78)
and Cyclin-Dependent Kinase 5 (CDK5). In old animals, it has been

observed that CDK5 over-activation significantly triggers the GSK3
beta activities, which in turn leads to Tau hyperphosphorylation
(Ermak et al., 2011; Guo et al., 2018; Engmann and Giese, 2009;
Plattner et al., 2006; Lloret et al., 2011). It is well-recognized that
lipid peroxidation also activates other stress-related pathways that
come with ferroptosis. The most relevant is the phosphorylated JNK
pathway. JNK activates the transcription factors such as NF-κB and
initiates the release of cytokines and chemokines. These cytokines
work in both ways, i.e., on one side, they disrupt the antioxidant
system, while on the other, they induce microgliosis, astrocytosis,
and neuroinflammation. LPO induces ferroptosis, which is involved
in amyloid beta aggregation and neurodegeneration (Figure 5)
(Banji et al., 2022; Khan et al., 2016).

Besides these commen ferrosptosis mechanisms, there are
several well documented studies which indicated that the cellular
iron is mainly processed in the cytoplasm, mitochondria, and
endosomes, where it experiences uptake, utilization, storage, and
regulation. Iron is taken up by the cell through transferrin
receptors, released in endosomes where it is reduced from
Fe3+ to Fe2+, and then moved into the cytoplasm by divalent
metal transporter 1 (DMT1). In the cytoplasm, surplus iron
is securely stored in ferritin, while mitochondria use iron for
producing heme and iron-sulfur (Fe-S) clusters, crucial for cellular
respiration and enzyme functions. Iron dysregulation and build-
up significantly affect mitochondrial performance, as mitochondria
are key consumers and controllers of cellular iron. An overload
of iron in mitochondria stimulates the production of reactive
oxygen species (ROS) via Fenton reactions, resulting in oxidative
damage to mitochondrial DNA, proteins, and lipids. This hinders
electron transport chain function, lowers ATP synthesis, and
interferes withmitochondrial membrane potential.With time, these
alterations can induce mitochondrial dysfunction, facilitating cell
death mechanisms like ferroptosis. Additionaly, Iron dysregulation
and excess significantly affect mitochondrial dynamics, resulting
in disrupted movement, fusion/fission balance, and mitophagy.
This disturbs the mitochondrial membrane potential and impacts
motor proteins crucial for correct mitochondrial transport along
axons and dendrites. Moreover, impaired mitochondria do not
efficiently undergo mitophagy as a result of oxidative changes to
mitophagy receptors and hindered autophagosome development.
The buildup of impaired mitochondria leads to energy shortages,
neuroinflammation, and the advancement of neurodegeneration,
as observed in conditions like parkinson’s and alzheimer’s diseases
(Tang et al., 2021; Cheng et al., 2022; Bharat et al., 2023; Ru et al.,
2024; Onukwufor et al., 2022; Zhao et al., 2024a; Duan et al., 2022a;
Chen and Chan, 2009; Chen et al., 2023c; Zong et al., 2024; Beal,
1995; Wang et al., 2023b; Mishra et al., 2022; Wen et al., 2025;
Feng et al., 2023; Fang et al., 2023).

Methodological approaches

This review article aims to summarize the findings of studies on
ferroptosis’s mechanism and therapeutic approach. The motivation
for preparing this review was based on our previous studies on
ferroptosis. Here, we searched for potential research articles on
ferroptosis and its mechanisms. In addition, to identify studies
on the mechanism and therapeutic strategies of ferroptosis, we
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FIGURE 4
Traumatic brain injury (TBI), Ischemia, Aging, and ethanol addiction interfere with iron metabolism via signaling pathways including USP14, HIF-1α, and
JAK/STAT3. Iron accumulation is worsened by heightened expression of Transferrin Receptor 1 (TfR1) and decreased iron export through Ferroportin-1
(FPN1), especially in older individuals. Furthermore, the buildup of iron in the hypothalamus linked to obesity encourages oxidative stress and
inflammation via SOCS3 and NF-κB. Together, these mechanisms promote lipid peroxidation and ferroptosis, connecting systemic issues to
neurodegeneration in conditions like Alzheimer’s through tau hyperphosphorylation and amyloid dysregulation.

conducted searches using the keywords “ferroptosis,” ferroptosis
mechanisms,” and “therapeutic strategies” in all available and
independent databases. The abstracts were thoroughly studied, and
the main findings were recorded to understand these studies clearly.
All studies covering animal and cellular models were included.

Potential therapeutic strategies

It has been reported that artesunate prevents brain damage at
low doses by blocking ferroptosis, and iron chelators such as DFO
and DFP have demonstrated positive effects against iron-related
neurodegenerative disorders. In tauopathy, Dihydroartemisinin
(DHA) may have a neuroprotective effect via interacting with
O-GlcNAcylation and phosphorylation, pointing to a possible
treatment for tau pathology-related learning and memory
impairments (Xia et al., 2021). Inmice fed a high-fat diet, grape seed
extract lowers calcium and iron levels and acts as an antioxidant
to prevent ferroptosis. Iron regulatory proteins are crucial for
preservingmitochondrial and cellular iron homeostasis. By blocking
the iron regulating protein in dopaminergic neurones, BJP-IVb
lowers iron content to stop parkinson’s disease. Additionally,
rapamycin lessens the substantia nigra’s dopamine neurone loss via
controlling ferroptosis and ferritinophagy. By inhibiting ferroptosis,
the iron absorption inhibitor ferristatin II offers neuroprotection,
while HBED therapy reduces secondary damage following TBI
by attaching to Fe2+ and changing it into Fe3+. Only DFO, DPF,
and DFX are presently authorised for clinical usage. (Xia et al.,
2021; Kong et al., 2019; Tsurusaki et al., 2019; Guan et al., 2021;

Du et al., 2019; Du et al., 2021; El Ayed et al., 2017; Manolova et al.,
2019; Li et al., 2024c; Liu et al., 2023a; Khalaf et al., 2018;
Yan et al., 2021; Ge et al., 2021).

Sulfasalazine’s neuroprotective properties can be used
therapeutically to prevent catastrophic neuronal death (Ryu et al.,
2003). By regulating neuroinflammation and ferroptosis through
the Nrf2/HO-1 signalling pathway, astragaloside IV reduces stroke-
induced early brain damage (Zhang et al., 2023c). By preventing
ferroptosis, curcumin protects against disease by upregulating
Nrf2 expression and its downstream targets, HO-1 and GPX4,
in hepatocytes, cardiomyocytes, neurones, renal tubule cells, and
chondrocytes. Eriodictyol inhibits ferroptosis by stimulating the
Nrf2/HO-1 pathway, which greatly improves cognitive impairments.
Similar processes are used by forsythiin A, salidroside, tetrahydroxy
stilbene glycoside, and spermidine to prevent ferroptosis in
AD, PD, and myocardial I/R injury. By triggering the Nrf2
pathway and upregulating the expression of GPX4 and SLC7A11.
morroniside prevents ferroptosis in dopaminergic neurones in
parkinson’s disease. Through the SIRT1/Nrf2 signalling pathway,
edaravone prevents ferroptosis and may be used as a treatment
for depression, traumatic brain injury, and stroke. By activating
Nrf2, Tertiary butylhydroquinone (TBHQ) and hinokitiol have also
been demonstrated to have neuroprotective effects (Zhang et al.,
2023c; Pardieu et al., 2022; Luo and Zhang, 2021; Peng et al., 2022b;
Wang et al., 2023c; Du et al., 2023; Wang et al., 2021).

By downregulating ACSL4 expression independently of PPAR-
γ, rosiglitazone prevents ferroptosis and lessens MASH brought on
by arsenic. Nicorandil may prevent ferroptosis and the translocation
of ACSL4 into the mitochondria. By preventing ACSL4 activity,
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FIGURE 5
Mitochondria-derived reactive oxygen species (ROS) initiate lipid
peroxidation, which disrupts membrane integrity and activates
signaling pathways—such as PI3K/AKT/mTOR inhibition,
CDK5–GSK3β–Tau hyperphosphorylation, and JNK–NF-κB-mediated
neuroinflammation—ultimately promoting ferroptosis and
neurodegeneration. The signaling mechanism has been summarized
in the manuscript.

triacsin C can alleviate parkinson’s disease (PD); and clausenamide
can also alleviate behavioural impairments in PD animal models
by preventing the nuclear translocation of ALOX5. Methyl ferulic
acid controls the expression of ACSL4 to reduce neuropathic pain
in mice. By reducing the expression of ACSL4 and ALOX15 in
spinal cord tissue, proanthocyanidin therapy dramatically improves
spinal cord damage (Wei et al., 2020; Guo et al., 2023; Li et al.,
2023f; Chen et al., 2024; Huang et al., 2024; Duan et al., 2022b;
Iqbal et al., 2023; Tang et al., 2023; Li et al., 2023g; Liu et al.,
2023b; Zhou et al., 2020b; Cheng et al., 2020). To summarize
the potentiali therapeutic agents against ferroptosis in various
neurodegenerativ and neuropsychatric diseases, we provided a
representative table below.

Table of potential therapeutic
candidtes

One popular technique for enhancing the bioavailability and
retention duration of bioactive substances is the use of nanoparticles.
Quercetin’s bioavailability is a significant concern and a major
barrier to its application in AD treatment. Liu et al. created a smart
nanoparticle (TQCN) to treat AD by addressing ferroptosis. It
was made from quercetin and modified with triphenylphosphine.
TQCN, a specific type of nanomedicine efficiently chelates iron

by spontaneous coordination mediated by plant polyphenols and
self-assemble metal-phenol nanocomplexes in situ, reducing iron
overload and related free radical outburst by utilizing advantageous
brain targeting and mitochondrial localization features. TQCN
also lowers cellular lipid peroxidation, restores iron metabolism
balance, and activates the Nrf2 endogenous defence system. Due
to its multimodal modulation of the pathogenic process that
causes ferroptosis, TQCN therapy may alleviate severe cognitive
impairment in AD mice and relieve a variety of neurodegenerative
illnesses associated with brain iron buildup (Liu et al., 2024b;
Herpich and Rincon, 2020). Neurotrophin, nerve growth factor, and
edaravone are examples of neuroprotective medications that protect
the brain from ferroptosis and oxidative stress. However, because of
their short circulation half-life and limited BBB permeability, these
neuroprotective medications frequently fall short of the anticipated
therapeutic effect. Zhang et al. used the acidic pathological features
of ischaemic tissue to build a pH/GSH-supported polyamino acid
nanogel (NG/EDA). To increase the neuroprotective effects of
edaravone, NG/EDA is triggered by the acidic and edaravone-
induced high levels of GSH microenvironment. This allows for the
selective and prolonged release of edaravone at the site of ischaemic
injury. The findings demonstrated that in rats with pMCAO,
NG/EDA could effectively accumulate at the site of cerebral
ischaemia damage and cross the blood-brain barrier. By preventing
ferroptosis, NG/EDA dramatically increases the survival rate of
OGD neurones while also considerably lowering the infarct volume
and neurobehavioral score of pMCAO mice. A novel and promising
model for neuroprotection in cerebral I/R injury and other illnesses
of the central nervous system may be offered by this pH/GSH
dual-responsive nanoplatform. Inflammatory cytokine production
has a key role in the pathophysiology of disorders involving
I/R damage. A class of copper-based, neutrophil membrane-
coated nanoparticles (N-Cu5.4O@DFONPs) with excellent stability
and biocompatibility was described by Ding et al. By efficiently
scavenging iron and exhibiting strong antioxidant qualities, these
nanoparticles reduce oxidative damage and inflammatory reactions,
thereby enhancing I/R damage (Herpich and Rincon, 2020; Jin et al.,
2017; Zhang et al., 2024c; Zhuge et al., 2024; Ding et al., 2023).
A flavonoid glycoside obtained from locust plants, rutin has
strong antioxidant properties and has been widely used to treat
neurological and cardiovascular conditions. To get rid of ROS and
stop ferroptosis, Feng et al., created rutin-loaded polydopamine
nanoparticles (PEG-PDA@rutin NPs). PEG-PDA@rutin NPs have
a diameter of roughly 100 nm and demonstrate both ROS-
triggered drug release and superior ROS clearance capabilities.
PEG-PDA@rutin NPs have the ability to efficiently enter cells, stop
ferroptosis, remove ROS, and heal mitochondrial damage. Ren
et al. developed a ROS-responsive drug nanocore, mPEG-b-Lys-
BECI-TCO, for SCI repair, and combined MSCs with Fer-1 to
create a synergistic drug release nanoparticle system (Niu et al.,
2021; Muvhulawa et al., 2022; Negahdari et al., 2021; Feng et al.,
2024b; Zhang et al., 2021). Following SCI, this multimodal therapy
approach may prevent inflammation and ferroptosis and provide a
fresh approach to building drug-synergistic cell treatment systems
that target ferroptosis. An innovative flavonoid glycoside with
potent antioxidant properties is apigenin-7-O-glucoside (AGL).
By selectively binding to HO-1 and monoamine oxidase b, AGL
helps to avoid ferroptosis and preserve mitochondrial function
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Drugs Model Dose Mechanism Signal Refs

Salidroside Aβ1−42-induced AD
model
glutamate-induced
HT-22 cell AD model

In vivo: 50 mg/kg
In vitro: 10, 20,40,
80, 160, 320 μM

Nrf2/HO-1 pathway ↑ SOD, GSH, GPX4,
SLC7A11 ↑, ROS, Fe2+,
MDA ↓

Yang et al. (2022)

Edaravone C57BL/6J mouse CSDS
model

10 mg/kg RTA GSH, SOD, GPX4,
GSH-PX, Nrf2, HO-1 ↑
MDA, ROS ↓

Dang et al. (2022)

Phenothiazine derivative
51

MCAO-induced SD rat
stroke model

0.01, 0.1, 1 μM RTA GSH ↑ ROS, MDA ↓ Yang et al. (2021)

Resveratrol MCAO-induced SD rat
stroke model
OGD/R-induced
primary cortical neuron
stroke model

In vivo: 30 mg/kg
In vitro: 5,
10, 20 µM

RTA GPX4, GSH ↑ ROS,
ACSL4, Fe2+ ↓

Zhu et al. (2022)

Vitamin E PTZ-induced SD rat
chronic epilepsy model

200 mg/kg ALOX inhibitor GPX4, GSH ↑MDA,
ROS, 15-LOX ↓

Zhang et al. (2022c)

Baicalein FeCl3-induced C57BL/6J
mouse PTE model
FAC-induced HT-22 cell
PTE model

In vivo: 100 mg/kg, In
vitro: 1, 2, 4, 8, 16, 32 μM

ALOX inhibitor GPX4 ↑ ROS, PTGS2,
4-HNE, 12/15-LOX ↓

Li et al. (2019)

Zileuton Glutamate-induced
HT-22 cells

1, 10, 50, 100 µM ALOX inhibitor ROS, 5-LOX, lipid
peroxidation ↓

Liu et al. (2015)

Vilda Collagenase-induced
C57BL/6J mouse ICH
model

50 mg/kg/d DPP-4 inhibitor GPX4 ↑MDA, Fe2+ ↓ Zhang et al. (2022d)

GKT137831 PQ- and maneb-induced
SHSY5Y cells

0.5 μM NOX inhibitor GSH, GPX4 ↑
ROS, MDA ↓

Hou et al. (2019)

Baf-A1 6-OHDA-induced PC12
cell PD model

100 nM Autophagy inhibitor GPX4, FTH1 ↑
NCOA4 ↓

Tian et al. (2020)

CPX Glutamate-induced
OHSC

5 μM Iron chelator ROS ↓ Dixon et al. (2012)

DFO FAC-induced
PC12-NGF cell PD
model

Unknown Iron chelator GPX4, FTH1 ↑
DMT1, TfR1, FPN,
ACSL4, ROS ↓

Zen et al. (2021)

Lip-1 RSL3-induced OLN-93
cell line SCI model

1 μM RTA GPX4, GSH, FSP1 ↑
MDA, ROS ↓

Fan et al. (2021)

Fer-1 Collagenase-induced
C57BL/6 mouse ICH
model
Hb-induced OHSC ICH
model

In vivo: 1 pmol of Fer-1
In vitro: 10 μM

RTA MDA,4-HNE, ROS,
PTGS2 ↓

Li et al. (2017)

by preventing the buildup of Fe2+ and the generation of ROS.
However, AGL’s limited practical use is due to its weak water
solubility. Zhao et al. created two amphiphilic compounds, mPEG-
TK-DA and DTPA-N10-10, with ROS-scavenging properties in
order to get around this restriction. They also self-assembled AGL
through hydrophobic and hydrophilic contacts, creating multi-site
ROS-scavenging nanoparticles known as PDN@AGL. By lowering
ROS levels and lipid peroxidation, PDN@AGL prevents ferroptosis,

and it is thought that the ATF3/SLC7A11 pathway is a key
player in this process. The possible use of PDN@AGL to treat
human disorders is supported by the control of ATF3/SLC7A11-
mediated ferroptosis. PDN@AGL offers a promising treatment
approach for conditions marked by ferroptosis and oxidative stress
by resolving the solubility problem and boosting AGL’s antioxidant
capability (Yao et al., 2023; Feng et al., 2022; Zhao et al., 2024b;
Katz et al., 2021).
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FIGURE 6
The diagrammatic representation of crispr/cas9 approach to engineer ferroptosis related gene. The TFRC gene exon FASTA sequence was copied from
NCBI and the respective gRNA were designed using CHOP CHOP software. The deletion of the nucleotide sequence from the corresponding exon will
lead to knockdown of the TFRC gene.

CRISPR/CAS9 based therapeutic
strategies

A novel therapeutic approach for both central and peripheral
disorders is gene level editing. Gene editing techniques like
CRISPR/CAS9 can be used to treat diseases caused by genetic
mutations, according to a number of well-known studies. For
example, Transferrin Receptor Protein 1 gene, after downloading the
FASTA sequence (mRNA) from NCBI and copying the exon (the
coding sequence), sgRNA was created to the crosponding exon. In
the present review, we provide a research direction that by deleting
a tiny amount of DNA from the relevant exon, the gene of interest
will be knocked down, thereby preventing ferrosptsis-mediated
degeneration (Konstantinidis et al., 2022; Wadhwani et al., 2019;
Kolanu, 2024; Abdelnour et al., 2021; Deneault, 2024) (Figure 6).

Challenges and future directions

Despite the promise of ferroptosis inhibition in neuroprotection,
several challenges remain. One major obstacle is the complexity
of ferroptosis regulation in the brain and its intricate
interplay with other cell death pathways, including apoptosis,
autophagy, and necroptosis. Dissecting the precise molecular
mechanisms underlying ferroptosis and its pathological role in
neurodegeneration remains a significant research priority.

Iron dysregulation is central to ferroptosis, and therapies
targeting iron homeostasis, such as chelation, have shown mixed
clinical success. Iron chelators like deferoxamine and deferiprone
reduce labile iron and mitigate reactive oxygen species (ROS), yet
they face limitations in crossing the BBB effectively. Emerging
strategies, such as nanoparticle-based delivery systems, could
improve BBB penetration, allowing targeted chelation therapies
to reach affected brain regions (Nunez and Chana-Cuevas,

2018; Popescu and Nichol, 2011). Additionally, mapping brain
metals using advanced imaging techniques, such as quantitative
susceptibility mapping (QSM), offers a promising non-invasive
approach to identify iron deposition and monitor therapeutic
responses in diseases like AD (Uchida et al., 2022). However,
challenges remain in standardizing QSM and interpreting regional
brain iron concentrations across diverse neurodegenerative
disorders (Ward et al., 2014). Genetic factors, such as PRMT1
expression, also complicate ferroptosis regulation. PRMT1promotes
ferroptosis by suppressing key antioxidant systems, including solute
carrier family 7-member 11 (SLC7A11), and its inhibition could
provide dual therapeutic benefits—enhancing neuroprotection
while improving treatment responses in conditions like gliomas
(Li et al., 2024d). Advanced genome-editing approaches,
particularly CRISPR/Cas9-based techniques, hold significant
promise for precisely targeting ferroptosis-related genes to attenuate
neurodegeneration (Nouri Nojadeh et al., 2023). However, ensuring
the safety and specificity of CRISPR-based interventions in the
central nervous system (CNS) remains a challenge. Delivery systems
such as adeno-associated viruses (AAVs) offer a potential solution
for CNS-specific targeting of ferroptosis regulators but require
further optimization and validation in preclinical models. Another
challenge is the intersection of ferroptosis with neuroinflammatory
pathways. Excess iron accumulation in the substantia nigra, as seen
in PD, exacerbates oxidative stress and neuroinflammation, further
driving dopaminergic neuronal loss. Neuroinflammatory cytokines
and immune activation pathways, such as NF-κB signaling,
may synergize with ferroptosis to amplify neurodegeneration.
Addressing both iron dysregulation and inflammatory processes
will require combination therapies that target multiple pathological
pathways simultaneously.

In amyotrophic lateral sclerosis (ALS), elevated ferritin and
transferrin receptor levels in cerebrospinal fluid have been
associated with reduced survival, suggesting that disrupted iron
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metabolism may serve as both a biomarker and a therapeutic
target. However, identifying patient-specific factors, such as genetic
predispositions or iron regulatory gene polymorphisms, will be
crucial for tailoring ferroptosis inhibitors to individual patients.
Biomarkers like serum ferritin, oxidative stress markers, and
QSM-based iron mapping may aid in predicting therapeutic
responses and monitoring disease progression. Lastly, syndromes of
neurodegeneration with brain iron accumulation (NBIA), such
as pantothenate kinase-associated neurodegeneration (PKAN),
exemplify the devastating clinical effects of ferroptosis driven
by excessive iron deposition. NBIA disorders often present
with progressive dystonia, parkinsonism, and cognitive decline,
highlighting the urgent need for therapies that prevent ferroptosis-
mediated neuronal loss (Ward et al., 2014; Ayton et al., 2017;
Nadjar et al., 2012; Belaidi and Bush, 2016; Schneider and Bhatia,
2012). Overcoming these challenges requires a multifaceted
approach involving novel drug delivery systems, advanced
imaging modalities, and genetic targeting technologies to optimize
therapeutic efficacy and safety.

Conclusion

Ferroptosis represents a novel and distinct form of regulated
cell death, characterized by iron dysregulation, lipid peroxidation,
and oxidative stress. Its involvement in neurodegeneration with
brain iron accumulation highlights its pathological significance.
The evidence linking ferroptosis to neuronal loss underscores its
potential as a critical driver of neurodegeneration in regions of
the brain where iron accumulation and oxidative damage are
pronounced (Ayton et al., 2017; Belaidi and Bush, 2016; Schneider
and Bhatia, 2012). A sophisticated understanding of the molecular
mechanisms regulating ferroptosis—including disruptions in the
antioxidant defense system, iron homeostasis, and lipid metabolism
has paved the way for identifying therapeutic targets to mitigate
neurodegeneration and preserve neuronal function.

Current therapeutic approaches targeting ferroptosis hold
promise for neuroprotection. Strategies such as iron chelation
therapy, antioxidant supplementation, and small-molecule
ferroptosis inhibitors have shown efficacy in preclinical models
by reducing oxidative stress, limiting lipid peroxidation, and
restoring iron homeostasis. Advanced therapies, such as
CRISPR/Cas9-based gene editing, offer a precise means to target
ferroptosis-related genes (Li et al., 2024d; Zhang et al., 2024d).
Furthermore, innovations in nanoparticle-based drug delivery
systems and brain-penetrant chelators address longstanding
challenges related to therapeutic access across the blood-brain
barrier. These advancements suggest that a combination of
pharmacological, genetic, and nanotechnological approaches may
offer synergistic benefits for slowing or halting disease progression
(Ashok et al., 2022; Zhou et al., 2024).

Despite these promising developments, significant challenges
remain in translating ferroptosis-targeting therapies to clinical
practice. The complex interplay between ferroptosis and
other cell death pathways, such as apoptosis, autophagy, and
neuroinflammation, necessitates further investigation. Identifying
robust biomarkers, such as serum ferritin levels, oxidative stress
markers, and advanced neuroimaging techniques like quantitative

susceptibility mapping (QSM), will be necessary for patient
stratification and therapeutic monitoring (Ward et al., 2014;
Ayton et al., 2017; Nadjar et al., 2012). Additionally, understanding
the heterogeneity of ferroptosis mechanisms across different
neurodegenerative diseases and patient populations will enable the
development of tailored therapies.

In conclusion, targeting ferroptosis provides a promising
therapeutic avenue for combating neurodegenerative diseases
marked by iron dysregulation and oxidative damage. Continued
research into themolecularmechanisms of ferroptosis, coupledwith
advancements in therapeutic delivery and biomarker development,
is essential for realizing its clinical potential. By integrating
multidisciplinary approaches and addressing current challenges,
ferroptosis-targeted strategies hold the potential to transform the
treatment landscape for neurodegenerative disorders, ultimately
improving outcomes and quality of life for affected individuals.
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