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Epizootic shell disease (ESD) is characterized by shell erosion, pitting, and
melanization in the American lobster (Homarus americanus) and is associated
with a polymicrobial infection. The disease is multifactorial, with several
contributing factors such as rising water temperatures and environmental
pollution, which may facilitate bacterial invasion and increase host susceptibility.
In a previous study, we found that the microbiome composition of the
carapace in lobsters with ESD differed from that of healthy individuals, with
ESD-associated bacteria enriched in the green gland and testis. However,
the effects of bacterial infection on internal organs have not been clearly
identified. In this study, we investigated the effects of ESD on four major
tissues of the lobster (testis, intestine, hepatopancreas, and green gland) using
transcriptomic analysis. A total of 564 genes were differentially expressed in
the testis, 105 in the intestine, 333 in the hepatopancreas, and 112 in the green
gland. The expression of the anti-lipopolysaccharide factor gene was increased
in all tissues, indicating a systemic immune response to bacterial infection.
Notably, chitinase genes involved in chitin degradation were upregulated, while
the acetyl-coenzyme A transporter 1-like gene related to energy metabolism
was significantly downregulated in the testis. In the intestine, expression of
phosphoenolpyruvate carboxykinase cytosolic [GTP] and cytochrome P450
genes, which are involved in gluconeogenesis and xenobiotic metabolism,
respectively, was reduced. The hepatopancreas showed decreased expression
of hemocyanin genes, which play key roles in oxygen transport and immune
defense in crustaceans. The green gland exhibited reduced expression of
heat shock proteins involved in the cellular stress response, organic cation
transporter proteins that mediate the excretion of organic cations, and UDP-
xylose and UDP-N-acetylglucosamine transporters required for glycosylation
and chitin biosynthesis. Together, these transcriptional changes suggest that
ESD may compromise physiological functions such as immune defense, energy
metabolism, and stress response, while promoting chitin degradation and
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cuticle remodeling in response to shell infection. This study revealed tissue-
specific transcriptomic responses to ESD in the American lobster, providing
a foundation for elucidating the molecular mechanisms underlying disease

progression.
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infection

1 Introduction

The American lobster (Homarus americanus) is distributed
throughout the coastal waters of the western North Atlantic. Long
Island Sound, a large estuary between Connecticut and Long Island,
was one of the largest lobster habitats in the United States until
the late 1990s. Over the past 2 decades, however, the region has
experienced a substantial decline in lobster populations (Long Island
Sound Study, 2024). This decline has been associated with the
increasing prevalence of epizootic shell disease (Castro et al., 2012).
First reported in 1996, disease prevalence remains moderate to
high, particularly in the eastern Long Island Sound (Castro and
Somers, 2012; Tanaka et al., 2017).

Epizootic shell disease (ESD) is characterized by erosion, pitting,
and melanization of the shell, resulting from bacterial infection
(Smolowitz et al., 2005). Elevated water temperature is a key
contributing factor, as high temperatures and other stressors can
disrupt lobsters’ homeostasis, molting, and resistance to infection,
increasing their susceptibility to ESD (Dove et al., 2005; Ishaq et al.,
2022; Lorenzon et al, 2007). The genus Aquimarina has been
consistently identified as the primary causative pathogen (Ooi et al.,
2020; Quinn et al, 2017; Quinn et al., 2012), although various
rod-shaped bacteria colonize shell lesions (Davies et al., 2014). In
addition to shell infection, carapace bacteria have been detected in
internal organs (Schaubeck et al., 2023), indicating the possibility
of systemic infection. In lobsters with ESD, the expression of
the ecdysteroid receptor and cytochrome P450 is increased in
the hepatopancreas, while the expression of arginine kinase is
downregulated in the muscle (Tarrant et al., 2010; Tarrant et al.,
2012). Additionally, female lobsters with ESD show elevated levels
of macroglobulin, a protease inhibitor related to the innate immune
system, in the ovary (Tarrant et al, 2010). Male lobsters with
ESD exhibit testicular abnormalities, resulting in over 50% of
spermatozoa being nonviable (Taylor et al., 2021). These findings
suggest that ESD is associated with systemic infection, which may
impair immunity, metabolism, and reproductive function.

Transcriptome analysis provides a powerful approach for
unraveling the complex biological alterations and pathogenic
mechanisms underlying disease, enabling the identification of
key molecular pathways. Under simulating ocean warming
conditions, lobsters exposed to elevated temperatures after the
larval stage showed up to a 7.1-fold increase in the expression
of metabolism-related transcripts, suggesting that failure to meet
rising energy demands could lead to increased mortality from
disease and starvation (Harrington et al, 2020). In addition,
reduced expression of chitin-related and pseudohemocyanin
genes in the hepatopancreas has been linked to the progression
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of impoundment shell disease (Argenta et al., 2024). However,
research on transcriptomic changes across internal tissues during
ESD remains limited.

We have previously revealed that the carapace microbiota
of lobsters with ESD harbors a high abundance of Aquimarina,
Halocynthiibacter, and Tenacibaculum (Schaubeck et al., 2023).
These carapace bacteria have also been detected in internal
organs, including the green gland, hepatopancreas, intestine, and
testis, and appear to be more common in lobsters with ESD
compared to healthy lobsters. Therefore, it is hypothesized that ESD-
associated bacteria translocate from the carapace to internal organs,
where they disrupt local tissue homeostasis, leading to systemic
dysfunction and disease progression. To test this hypothesis, this
study aimed to identify tissue-specific molecular responses in
lobsters affected by ESD.

2 Materials and methods
2.1 Lobster sampling

American lobsters were collected in August 2020 from eastern
Long Island Sound and approximately 50 miles south of Montauk,
in collaboration with local lobstermen and the New York State
Department of Environmental Conservation. Carapace lengths
ranged from 24.0 to 28.5cm, and body weights ranged from
540.5 to 874.6 g (Supplementary Table S1). To prevent cross-
contamination, lobsters were placed in a cooler on ice and sorted
into two groups based on the presence (ESD, n = 37) or absence
(HTH, n = 33) of shell lesions, then immediately transported to the
laboratory. Following ice chilling for 30 min to minimize mobility
and stress, the lobsters were dissected to collect various tissues,
including the testis, intestine, hepatopancreas (HP), and green gland
(GG). The collected tissues were gently washed with phosphate-
buffered saline (PBS, pH 7.4) and stored in RNAlater stabilization
solution (Qiagen) at —80°C until RNA extraction.

2.2 RNA sequencing

Total RNA was extracted from 10mg of homogenized
tissues using the RNeasy® Plus Mini Kit (Qiagen) following
the manufacturer’s instructions. RNA quantity and purity
were evaluated with a NanoDrop OneC microvolume UV-Vis
spectrophotometer (Thermo Scientific). Purity was assessed based
on the A260/A280 ratio, with values between 2.0 and 2.2, indicating

acceptable RNA quality. The RNA samples were stored at —80°C until
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use in RNA sequencing (RNA-seq). The frozen RNA samples were
shipped on dry ice to Genewiz (South Plainfield, NJ) for RNA-seq.
The RNA-seq workflow comprised Poly A selection-based mRNA
enrichment, mRNA fragmentation, and ramdom priming with
subsequent first- and second-strand complementary DNA (cDNA)
synthesis. End-repair 5'phosphorylation and adenine nucleotide
(dA)-tailing were then performed. Finally, adaptor ligation,
polymerase chain reaction (PCR) enrichment, and sequencing using
the Illumina HiSeq 2,500 platform with 2 x 150 bp paired-end reads
were performed. Quality controls and basic statistical methods were
performed using FastQC (https://www.bioinformatics.babraham.
ac.uk) to remove low quality reads as follows: Reads containing
more than 10% skipped bases (labeled as ‘N'), sequencing reads
containing more than 40% of bases with a quality score of less
than 27, and average quality score (<27). Quality distributions of
nucleotide, GC content, PCR duplicate characteristics, and k-mer
sequencing data frequency were calculated.

2.3 Transcript read alignment

Sequencing reads were aligned to the GMGI_Hamer_2.0 H.
americanus genome using STAR software (v.2.7.10a) with default
parameters (accession: GCA_018991925.1, https://www.ncbi.
nlm.nih.gov/data-hub/genome/GCF_018991925.1/). 'Then, gene
expression was quantified using RSEM (v.1.3.3) software with default
parameters and annotation from H. americanus Ensembl genes.

2.4 Analysis process for differentially
expressed genes

Uniquely mapped read pairs were used for differentially
expressed genes (DEGs) analysis. Gene expression counts were
generated using RSEM (v.1.3.3) and normalized to transcripts
per million (TPM). A total of 70 samples were initially used for
RNA-seq. To ensure consistency, samples with a mapping rate
below 65% and those identified as outliers were excluded. As a
result, 53 samples were retained for downstream analysis. The
final dataset consisted of the following tissues: testis (HTH = 6;
ESD = 6), intestine (HTH = 6; ESD = 8), HP (HTH = 5; ESD
= 5), and GG (HTH = 9; ESD = 8). All four tissue types used
for RNA-seq were collected from the same individual lobsters
(Supplementary Table S2). Gene expression differences between the
two groups were considered statistically significant if |Log, (fold
change)| = 1 and p-value <0.05 using the DESeq2 (v.1.34.0) in R
package (v.4.4.1) (Love et al., 2014). A volcano plot was generated
using the EnhancedVolcano package (Blighe et al., 2021), and a
heatmap was generated using Pheatmap (v.1.0.12).

2.5 Gene Ontology function enrichment
analysis

Gene Ontology (GO) term enrichment analysis was conducted
using g:profiler (Raudvere et al, 2019). All genes with known
statistical domain coverage were included, and multiple testing
correction was applied using the Benjamini-Hochberg method with a
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significance threshold of 0.05. Gene annotations were obtained from
Ensembl metazoan, which provides genomic data for non-vertebrate
metazoan species including crustaceans (Howe et al., 2020). Pathway
visualization was carried out using ggplot2 (v.3.5.2) in R.

2.6 Kyoto Encyclopedia of Genes and
Genomes analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis was performed to understand various biological functions
and pathways in disease states. KEGG enrichment analysis
of DEGs by tissue was performed using the clusterProfiler
(v.4.12.6) in R (Kanehisa and Goto, 2000).

2.7 Selection of representative genes for
expression analysis

To explore gene expression patterns, we visualized 16 DEGs
(four from each organ) related to gluconeogenesis, innate immune
system, and molting based on GO and KEGG pathway analysis.
Gene expression values for each sample were converted to log, (TPM
+0.1) and visualized as violin plots using GraphPad Prism 10.

2.8 Validation of quantitative real-time
polymerase chain reaction (QRT-PCR)

First-strand cDNA was synthesized from RNA samples using the
Verso cDNA Synthesis Kit (Thermo Scientific) with a 3:1 blend of
random hexamers and anchored oligo-dT. The synthesis conditions
were as follows: 42°C for 30 min, 50°C for 30 min, 95°C for 2 min,
followed by holding at 4°C. The synthesized cDNAs were stored at
—80°C until further use. cDNA amplification was performed using
gene-specific primers targeting acidic mammalian chitinase-like
(LOC121854211), probable chitinase 2 (LOC121878393), chitinase-3-
like protein 1 (LOC121860919), and acetyl-coenzyme A transporter 1-
like (LOC121868265). To verify the functionality of the primers used
in qRT-PCR, preliminary amplification was carried out using the
T100 thermal cycler (Bio-Rad) at the Bio-medical engineering Core
Facility of Dankook University. Following validation, qRT-PCR was
performed using the CFX96 Duet Real-Time PCR System (Bio-
Rad). All reactions were performed using 1 uL of cDNA, 10 pmol
of primers and 2X Taq Pro Universal SYBR qRT-PCR Master Mix in
a final volume of 20 pL. The PCR reaction started with a heating step
at 95°C for 3 min, followed by 40 cycles of denaturation at 95°C for
10 s, annealing at the optimum temperature for 10 s, and extension
at 72°C for 15s. A melt curve analysis was performed from 62°C
to 95°C, with a ramp rate of 0.5°C per minute. Gene expression
was normalized to the expression of glycerol aldehyde-3-phosphate
dehydrogenase (GAPDH), a housekeeping gene. A positive qRT-PCR
reaction was detected based on the accumulation of fluorescent
signals, and the cycle threshold (CT; the number of cycles required
for the fluorescent signal to cross a fixed threshold) is inversely
proportional to the amount of target nucleic acid in the sample.

ZfAACt

Relative gene expression was calculated using the value of

each sample, and qRT-PCR was performed using five technical
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replicates per group for each cDNA sample. The primer sequences
used are listed in Supplementary Table S1.

2.9 Statistical analysis

The pairwise Pearson correlation coefficient was computed
using log-transformed TPM values for all expressed genes. The
correlation coefficients were calculated using the base R function
and visualized as a correlation matrix using the ggcorrplot (v.0.1.4.1)
in R. Principal component analysis (PCA) was performed to assess
sample distribution patterns using the built-in prcomp () function
in R, and the results were visualized with ggplot2. Permutational
multivariate analysis of variance (PERMANOVA) was conducted
to statistically evaluate group differences by tissue type and disease
status. TPM values were log,-transformed, followed by a Hellinger
transformation, and then used to calculate a Euclidean distance
matrix. PERMANOVA was performed with 10,000 permutations
using the adonis function from the vegan (v.2.6-10) in R.
TPM distributions across all samples were visualized using log,,-
transformed values, and density plots were generated with ggplot2
in R. The statistical significance of KEGG pathway enrichment was
determined based on the Benjamini-Hochberg adjusted p-value
(FDR <0.05). To validate RNA-seq results, qQRT-PCR was performed,
and relative gene expression levels (fold changes) were calculated
using the 2724C method. Statistical comparisons between the ESD
and HTH groups were conducted on ACt values using a Student’s
t-test. Significance levels were set at p*<0.05 and p** <0.01.

3 Results

3.1 Clinical symptom and visual
characteristics of epizootic shell disease

American lobsters were collected from eastern Long Island
Sound in August 2020. Lobsters with ESD exhibited carapace lesions
characterized by pitting, erosion, and melanization (Figure 1A). White
triangles indicate pits, pink triangles indicate erosion of the carapace,
and blue triangles denote both pits and melanin deposition.

3.2 Transcriptome sequencing analysis

The Ilumina HiSeq 2,500 instrument was used, and the
read length was 150 bp. The number of uniquely mapped reads
averaged 18,007,700 out of 24,950,208 total reads, with a mapping
rate of 72.25% against the H. americanus reference genome
(Supplementary Table S2). We performed pairwise correlation
analysis based on the total gene expression values across samples to
determine the reproducibility of technical replicates and differences
in gene expression (Figure 1B). Consequently, robust correlations
emerged across multiple tissues, suggesting tissue-dependent
responses, with the testis exhibiting pronounced variability among
lobsters. We visualized the DEGs from all organs using a heatmap
and found that the gene expression differed by tissues and groups
(Figure 1C). Notably, the testis showed clusters of genes that were
strongly upregulated (red) or downregulated (blue) compared
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to other tissues, highlighting significant transcriptional changes
compared to other tissues. PCA was performed to measure the
distance between samples and confirmed significant separation by
tissue (Figure 1D; PERMANOVA, p < 0.0001). Density plots showed
overlapping curves across samples, indicating that the RNA-seq
data were consistent in quality, reproducible across replicates, and
comparable across tissue types (Figure 1E).

3.3 Differentially expressed genes analysis

We analyzed gene expression across tissues using DESeq2 to
identify DEGs in the ESD group relative to the HTH group. In
the testis, 513 genes were upregulated and 51 were downregulated
in ESD compared to HTH. In the intestine, 51 genes were
upregulated and 54 were downregulated. The HP exhibited 107
upregulated and 226 downregulated genes, while the GG showed
42 upregulated and 70 downregulated genes (Figure 2A). Among
these DEGs, the anti-lipopolysaccharide factor gene (LOC121856986)
was consistently upregulated across all tissues examined (Figure 2B).
The testis, HP, and GG shared elevated expression of the soma
ferritin-like (LOC121859498) and two anti-lipopolysaccharide factor-
like genes (LOC121860186 and LOC121860188). Additionally, the
testis, intestine, and HP shared increased expression of the lipase
three gene (LOCI121863816). The HP and GG demonstrated a
consistent decrease in the expression of nine genes, including
heat shock 70 kDa protein (LOC121855754, LOC121855757, and
LOC121870242), la-related protein 6 (LOC121859532), cytochrome
P450 2L1-like (LOC121876874), D-f3 hydroxybutyrate dehydrogenase
(LOC121866996 and LOC121878121), estradiol 17--dehydrogenase
2 (LOC121878174), and an uncharacterized gene (LOC121880200).

3.4 Gene Ontology of differentially
expressed genes

All DEGs identified in the ESD group compared to
the HTH group were analyzed for functional enrichment
based on the GO terms. In the testis, the heatmap revealed
distinct clustering of samples by health status (HTH vs ESD),
although some variability among individuals was observed
(Figure 3A). Upregulated pathways were associated with the
GO terms chitin binding (GO:0008061), hydrolase activity,
hydrolyzing O-glycosyl compounds (GO:0004553), proteolysis
(G0O:0006508), and oxidoreductase activity (GO:0016491). The
chitin binding pathway was enriched with 13 DEGs, and six genes
were predicted to encode chitinase (Supplementary Table S3).
In contrast, the pathways for acetyl-CoA transmembrane
transporter activity (GO:0008521) and DNA damage sensor
activity (GO:0140612) were downregulated. In the intestine
(Figure 3B), the most enriched upregulated pathways included
serine hydrolase activity (GO:0017171) and ATPase-coupled
transmembrane transporter activity (GO:0042626), while the most
significantly downregulated pathways were phosphoenolpyruvate
carboxykinase activity (GO:0004611) and monosaccharide
biosynthetic process (GO:0046364). Additionally, genes involved
in and redox balance

metabolism were downregulated

(Supplementary Table S4). In the HP (Figure 3C), the upregulated

frontiersin.org


https://doi.org/10.3389/fphys.2025.1642696
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Kim et al.

10.3389/fphys.2025.1642696

FIGURE 1

<
o e
N 0 0.4 Testis_HTH
o : )
; Testis_ESD
O -40 03 Intestine_HTH
o [ ; 2 Intestine_ESD
’ ]
-80 5 c 02 HP_HTH
g HP_ESD
200 1000 0.1 GG_HTH
PC1 (32.22%) GG_ESD
0.0
® Testis HTH A Intestine HTH ® HP_HTH ¢ GG_HTH 5 0 5
Testis_ESD A Intestine_ESD ® HP_ESD ¢ GG_ESD Log10(TPM)

value

1.00
. 0.75

0.50
0.25
0.00

-

NN ERE N

Tesis_HTH
Tesis_ESD
Intestine_HTH
Intestine_ESD
HP_HTH
HP_ESD
GG_HTH
GG_ESD

Sample collection and RNA sequencing quality assessment. (A) American lobsters with epizootic shell disease (ESD). White triangles indicate pits; pink
triangles indicate erosion; and blue triangles denote both pits and melanin deposition. (B) Pairwise correlation analysis showing tissue-specificity. (C)
Heatmap of differentially expressed genes across tissues. Each column represents a gene, and each row indicates a sample. T: Testis; I: Intestine; HP:
Hepatopancreas; GG: Green gland. (D) Principal component analysis showing tissue-specific transcriptional profiles (PERMANOVA, P < 0.0001). (E)
Density plot showing consistent expression distributions across tissue samples. HTH: Healthy lobsters; ESD: Lobsters with ESD.

pathways included monooxygenase activity (GO:0004497), and ATP-dependent protein folding chaperone (GO:0140662)

heme binding (GO:0020037), and chitin binding (GO:0008061),
while the downregulated pathways were oxidoreductase activity
(GO:0016491) and transmembrane transport (GO:0055085).
Notably, ten downregulated genes associated with oxidoreductase
activity (GO:0016491) were identified as hemocyanin A and
B. The pathway related to ATP-dependent protein folding
chaperone primarily contained six genes belonging to the heat
shock protein 70kDa (Supplementary Table S5). In the GG
(Figure 3D), the spermine synthase activity (GO:0016768) pathway
was upregulated, while transmembrane transport (GO:0055085)
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pathways were downregulated. Consistent with the pattern
observed in the HP, heat shock protein showed decreased
expression (Supplementary Table S6).

3.5 Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis

KEGG pathway analysis was performed to identify metabolic
alterations associated with ESD across lobster tissues. In the testis,
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FIGURE 2

Differentially expressed genes (DEGs) across tissues in lobsters with epizootic shell disease (ESD). (A) Number of DEGs identified in each tissue. HP:
Hepatopancreas; GG: Green gland. (B) Venn diagrams showing the number of shared upregulated and downregulated DEGs among tissues. The
anti-lipopolysaccharide factor gene was consistently upregulated across all tissues in lobsters with ESD.

four KEGG pathways were significantly enriched in the ESD
group. The most significantly increased pathways (Figure 4A)
included: (1) lysosome (hame04142), (2) phagosome (hame04145),
(3) amino sugar and nucleotide sugar metabolism (hame00520),
and (4) autophagy - animal (hame04140). These enrichments
may indicate activation of cellular degradation pathways and
immune defense, along with increased metabolic activity to meet
elevated energy demands. In the HP, the steroid biosynthesis
pathway (hame00100) was significantly increased, which may
reflect increased synthesis of molting- and reproduction-related
hormones. In the GG, the porphyrin metabolism pathway
(hame00860) was significantly upregulated, suggesting a potential
increase in demand for iron metabolism and detoxification
in response to bacterial infection. In contrast, downregulated
pathways were primarily observed in the HP and intestine
(Figure 4B). In the HP, tyrosine metabolism (hame00350) and
pentose and glucuronate interconversions (hame00040) were
significantly ~decreased, suggesting dysregulation of amino
acid metabolism and detoxification pathways. In the intestine,
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downregulated genes were more prominent, with seven KEGG
pathways enriched: (1) citrate cycle (TCA cycle) (hame00020), (2)
pyruvate metabolism (hame00620), (3) glycolysis/gluconeogenesis
(hame00010), (4) FoxO signaling pathway (hame04068), (5)
cysteine and methionine metabolism (hame00270), (6) glycine,
serine and threonine metabolism (hame00260), and (7) lysine
degradation (hame00310). These findings suggest that ESD may be
associated with metabolic suppression in the intestine, potentially
leading to reduced energy production and impaired tissue function.
Detailed results of the KEGG enrichment analysis are provided in
Supplementary Table S7.

3.6 Expression analysis of selected target
genes

We selected 16 genes involved in glucose biosynthesis

(energy metabolism), immune function, and the chitin synthesis
pathway to further examine differential expression between
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Gene ontology (GO) enrichment analysis of differentially expressed genes (DEGs) in lobsters with epizootic shell disease (ESD) compared to healthy
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number of associated DEGs, and color represents statistical significance (adjusted p-value). HTH: Healthy lobsters; ESD: Lobsters with ESD. The
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the ESD and HTH groups. In the testis of the ESD group,
three chitinase-related genes—acidic mammalian chitinase-like
(LOC121854211), chitinase-3-like protein 1 (LOC121860919),
and probable chitinase 2 (LOC121878393) — were significantly
increased, while acetyl-CoA transporter-1 (LOC121868265)
was decreased (Figure 5A). In the intestine, all three genes
from the phosphoenolpyruvate carboxykinase cytosolic [GTP]
(LOC121879005, LOC121879006, and LOCI121879007), as well
as cytochrome P450 6kI-like (LOC121865918), were decreased
in the ESD group (Figure 5B). In the HP, UDP-xylose and UDP-
N-acetylglucosamine transporter-like (LOC121853811), heat shock
cognate 70 kDa protein (LOC121862092), hemocyanin A chain-like
(LOC 121877422), and hemocyanin B chain-like (LOC121863701)
were decreased in the ESD group (Figure 5C). Similarly, in the
GG, several genes showed decreased expression, including heat
shock protein 70 kDa protein-like (LOC121855757), heat shock
70 kDa protein cognate 4-like (LOC121870242), UDP-xylose and
UDP-N-acetylglucosamine transporter-like (LOC121869218), and
organic cation transporter protein-like (LOC121863009) (Figure 5D).
These results demonstrate tissue-specific molecular responses
to ESD, characterized by enhanced chitinase activity in the
testis and suppressed metabolic and stress-related pathways
in the intestine, HP, and GG.
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3.7 Validation of quantitative reverse
transcription polymerase chain reaction
(gRT-PCR)

We performed qRT-PCR to confirm the expression levels of
three chitinase genes and the acetyl-coenzyme A transporter I-
like gene in the testis of the ESD and HTH groups (Figure 6A).
These genes were selected based on enrichment on gene expression
and functional relevance to chitin metabolism and immune
response pathways. qPCR validation was performed using the
same testis samples as those used for RNA-seq. Expression
of the chitinase genes, including acidic mammalian chitinase,
chitinase-2, and chitinase-3, increased by 3.09-fold (p = 0.09),
2.66-fold (p = 0.28), and 2.99-fold (p = 0.11), respectively,
in the ESD group compared to the HTH group. Although
these changes were not statistically significant, the qRT-PCR
results confirmed the gene expression patterns observed in
the RNA-seq data (Figure 6B). In contrast, expression of the
acetyl-coenzyme A transporter 1-like gene was significantly
decreased by 0.59-fold (p < 0.01) in the ESD group relative
to the HTH group. These findings suggest that ESD may
involve dysregulation of genes related to chitin metabolism and
energy transport.
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Discussion

Our study is the first to characterize gene expression changes
in the internal organs of the American lobster with ESD using
high-throughput sequencing technology. Among 1,114 DEGs,
the anti-lipopolysaccharide factor-like gene was upregulated in all
tested organs of lobsters with ESD. Anti-lipopolysaccharide factors
(ALF) such as ALFHa-1 and ALFHa-2 have been identified
in H. americanus, and notably, the expression of the ALFHa-
I gene has been shown to increase in the gills following
exposure to Vibrio fluvialis (Beale et al., 2008). ALF function
as key components of the innate immune system by binding
to lipopolysaccharides (LPS) in the outer membrane of Gram-
negative bacteria, thereby neutralizing endotoxins and increasing
permeability of bacterial membrane (Chaby, 2004). Therefore, the
upregulation of ALF-like gene expression in the testis, intestine, HP,
and GG indicates an innate immune response to Gram-negative
bacterial invasion and supports the presence of systemic infection
associated with ESD (Schaubeck et al., 2023).

We identified the chitin binding pathway as the most enriched
differentially expressed gene pathway in the testis, with chitinase
genes significantly upregulated within this pathway. Chitin is a
homopolymeric carbohydrate composed of repeating N-acetyl-p-
D-glucosamine (GIcNAc) units (Rowley and Coates, 2023). This
compound is primarily found in the shells of crustaceans and
the cell walls of fungi, providing the rigidity and mechanical
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strength needed to support the structure and shape of the
organism (Zhang et al, 2021). Crustaceans such as shrimp
and crabs contain the highest levels of chitin, which is highly
associated with their growth and development (Zhang et al., 2021).
Chitinase hydrolyzes chitin at intermediate regions to produce
GIcNAc oligomers and is known to be induced in shrimp shells
before molting (Rocha et al, 2012). Therefore, the observed
upregulation of chitinase in lobsters with ESD may represent a
molting-like response induced by shell infection. Although the
upregulation of chitinase expression in the testis has not been
widely reported, it is plausible that systemic immune and stress
responses induced by ESD may also affect reproductive tissues.
Chitinases are known to be involved not only in chitin degradation
but also in immune defense and tissue remodeling across various
tissues (Niu et al., 2018; Liu et al., 2019; Muthukrishnan et al.,
2019; Lee et al., 2011). Therefore, the increased expression of
chitinase observed in the testis may reflect a localized immune
activation or structural remodeling of damaged tissue. Further
investigation is required to clarify the functional role of chitinase
in testicular physiology, particularly under disease conditions. In
contrast, we observed significant downregulation of the acetyl-
CoA transmembrane transport pathway in the testis. Acetyl-CoA
is directly involved in major cellular processes, including energy
metabolism, mitosis, and autophagy (Pietrocola et al.,, 2015), and
also serves as a key substrate for chitin biosynthesis (Abo Elsoud and
Kady, 2019). Additionally, we identified downregulation of genes
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encoding the transport protein responsible for the translocation of
UDP-N-acetylglucosamine, a key precursor in the chitin synthesis
pathway. Given that molting and reproduction are tightly coupled
processes in crustaceans (Waddy et al., 2017), disruptions in chitin
biosynthesis within the testis may reduce the systemic availability of
chitin precursors, thereby impairing exoskeletal regeneration during
infection.

We found that the expression of phosphoenolpyruvate
carboxykinase cytosolic [GTP]-like gene was downregulated in the
intestine of lobsters with ESD. The intestine, as the first line of
defense, is one of the main sites of microbial and parasitic infections
and serves as a critical organ that requires an efficient and specific
immune response to eliminate invading pathogens (Du et al., 2016;
Su et al., 2024). Phosphoenolpyruvate carboxykinase catalyzes the
conversion of oxaloacetate to phosphoenolpyruvate within the
gluconeogenic pathway, thereby playing a key role in maintaining
glucose homeostasis (Jane et al., 2024; Sudhakaran et al., 2022;
Xing et al., 2025; Yu et al., 2021). For example, increased activity of
phosphoenolpyruvate carboxykinase enhances glucose production,
which can exacerbate diabetes, whereas enzyme deficiency impairs
gluconeogenesis, leading to hypoglycemia (Yu et al, 2021). In
addition, phosphoenolpyruvate carboxykinase has been implicated
in cold tolerance in lobsters (Farhadi et al., 2023). Thus, the
downregulation of phosphoenolpyruvate carboxykinase in lobsters
with ESD may indicate impaired glucose production and reduced
capacity for stress adaptation.
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The HP, also known as the digestive gland, is a major organ
involved in energy metabolism, digestion, and nutrient storage, and
is known to play an important role in various physiological processes
such as stress adaptation and immune response (Farhadi et al., 2023;
Ren et al,, 2019; Roszer, 2014; Xin et al., 2024; Zhou et al.,, 2017).
Therefore, the gene expression profile of the HP is considered an
ideal indicator of stress, immune, and metabolic status (Xin et al.,
2024). We found that the expression of the heat shock protein
(HSP) 70 kDa genes was significantly downregulated in the HP
of lobsters with ESD. HSPs are important for the maintenance of
protein homeostasis in cells (Junprung et al, 2021) and play a
role in cellular processes during and after exposure to oxidative
stress caused by harmful environmental and microbial agents
(Kumar et al,, 2022). Thus, a decrease in these genes may reflect
dysregulation of the cellular stress response. We also found that
hemocyanin gene expression was significantly downregulated in
the HP of lobsters with ESD. Hemocyanin is a copper-containing
protein responsible for oxygen binding, transport, and storage
in the blood of invertebrates, and performs several additional
functions, including phenoloxidase-like activity (melanization,
cuticle hardening), hormone transport, ecdysis, and blood clot
formation (Coates and Costa-Paiva, 2020; Kuballa and Elizur, 2008).
Hemocyanin also functions as a non-specific immune protein and is
an essential component of innate immunity in aquatic invertebrates
(Coates and Talbot, 2018; Ji et al., 2024). Together, the significant
downregulation of hemocyanin gene expression in the HP may
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reflect impaired immune function and reduced shell integrity,
possibly increasing susceptibility to bacterial infection.

The GG, also known as the antennal gland, is an excretory
system responsible for maintaining water and mineral homeostasis,
osmotic stabilization, ion regulation, and nitrogen excretion
(Buranajitpirom et al., 2010; Khodabandeh et al., 2005;
Kruangkum et al., 2024; Ross et al., 2019; Tsai and Lin, 2014). It has
recently been shown to act as a natural entry point for viruses and
bacteria and has also been implicated in the excretion of metabolites
such as molting hormone (De Gryse, 2021; De Gryse et al,
2020). Supporting this role as an entry point, carapace bacteria,
including Aquimarina, Halocynthiibacter, and Tenacibaculum, have
been more frequently detected in the GG than in other organs,
particularly in lobsters with ESD (Schaubeck et al., 2023). In the
present study, we observed significant downregulation of genes
encoding HSPs in the GG of lobsters with ESD, consistent with
findings in the HP. In addition, genes encoding organic cation
transporter proteins were also significantly downregulated in
the GG. In humans, organic cation transporter one is primarily
expressed in the intestines and liver, while transporter two is
highly expressed in the kidneys (Motohashi et al., 2002; Nies et al.,
2009; Zhang et al., 1997). Notably, the downregulation of these
transporters has been associated with various cancers (Heise et al.,
2012; Visentin et al., 2018). Therefore, the reduced expression
of these transporter genes in the GG of lobsters suggests a
potential disruption of excretory and detoxification functions,
which may contribute to disease progression. Chitin, a major
component of the exoskeleton, is composed of N-acetylglucosamine
(Rowley and Coates, 2023; Zhang et al.,, 2021), which requires
specific transporters for intracellular delivery. In this study, we
identified downregulation of genes encoding UDP-xylose and
UDP-N-acetylglucosamine transporters in the GG of lobsters
with ESD. This downregulation may impair the transport of N-
acetylglucosamine, thereby compromising chitin synthesis and
exoskeletal integrity.

ESD primarily manifests as a localized infection of the shell,
and lobsters may be able to overcome the disease by shedding the
infected shell through molting. However, in our study, we observed
a significant reduction in the expression of the estradiol 17f3-
dehydrogenase 2-like gene in both the HP and GG of lobsters with
ESD. This gene is known to play a role in the metabolic regulation
of molting in crustaceans. Previous studies have reported that 170-
estradiol is found in the HP and molting gland of crustaceans
(Fuetal.,2022; Liu etal., 2021) and is involved in regulating molting-
related processes (Fu et al., 2022; Head et al., 2019). In addition,
RNA interference of estradiol 173-dehydrogenase in the HP of Scylla
paramamosain resulted in a significant decrease in shell hardness
(Fu et al., 2022), further supporting the gene’s role in maintaining
exoskeletal integrity. Together, these findings suggest that reduced
expression of 17E2DH may impair molting, preventing the lobster
from shedding the infected shell. This molting failure or delay could
exacerbate the infection and potentially lead to systemic disease
progression (Schaubeck et al., 2023). Therefore, the downregulation
of the estradiol 17f3-dehydrogenase 2-like gene serves as an important
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molecular indicator of impaired molting and disease severity in
lobsters with ESD.

Our transcriptomic analysis revealed gene expression changes
across multiple tissues in lobsters with ESD, highlighting enhanced
chitin degradation, suppressed energy metabolism, and reduced
cellular stress responses and immune defense. These results provide
valuable insight into systemic host responses and the molecular
mechanisms underlying disease progression. By uncovering ESD-
related genes and tissue-specific expression patterns, this study
enables the identification of potential diagnostic markers for the
early detection of disease onset. These markers can also support
the selection of disease-resistant stocks, contributing to more
effective population management and improved long-term health
of lobster populations. However, this study is limited by the
incomplete gene annotation of H. americanus. Among the analyzed
DEGs, some are uncharacterized genes with unknown functions,
making it difficult to fully interpret their biological significance.
Despite this limitation, our analysis identified key functional
pathways involved in ESD and provides new evidence that ESD
may be driven not only by localized shell infection but also by
systemic dysfunction across internal organs. Continued efforts to
improve genome annotation and functional characterization of
genes in this species will be essential for bridging knowledge gaps
in ESD pathogenesis and for developing effective strategies for
disease management.
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