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Introduction: Non-physiological right ventricular pacing (RVP) is currently the 
mainstay of treatment for patients with high-degree atrioventricular (AV) block 
who have preserved left ventricular ejection fraction. Newer pacing strategies, 
such as left bundle branch pacing (LBBP) and leadless cardiac pacemakers 
(LCPMs), are increasingly being adopted due to their respective advantages 
over RVP. However, there has been no direct comparison between LCPMs and 
LBBP regarding their risk of pacing-induced cardiomyopathy, which is thought 
to arise from interventricular and intraventricular dyssynchrony. Using in silico
modelling, we compared the effects of LBBP and LCPMs on interventricular and 
intraventricular synchrony.
Methods: Using 19 four-chamber healthy heart geometries, we simulated 
LCPMs at the level of the right ventricular outflow tract-septum (RVOT-S), mid-
septum (MS), and apical septum (AS), along with proximal left bundle pacing 
(PLBBP) and distal left bundle pacing (DLBBP) in 3 different settings: 1) intact left 
bundle branch conduction, 2) left bundle branch block (LBBB), and 3) septal scar 
involving the His-Purkinje system (HPS). Ventricular electrical uncoupling (VEU), 
absolute VEU, and left ventricular dyssynchrony index (LVDI) were measured. 
The shortest interval required to activate 90% of both ventricles (BIVAT-90) was 
also recorded.
Results: In the setting of intact left bundle branch conduction, combined LBBP 
configurations had significantly lower VEU (LBBP: −3.3 ± 5.1 vs. LCPM: 24.2 ± 
7.6 ms, p < 0.01) and absolute VEU (LBBP: 5.0 ± 3.5 vs. LCPM: 24.2 ± 7.6 ms,
p < 0.01) than combined LCPM configurations. In the presence of proximal 
LBBB, combined LBBP configurations also had significantly lower VEU (LBBP
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−22.1 ± 0.5 vs. LCPM 25.9 ± 7.9, p < 0.01) and absolute VEU (LBBP 22.1 ± 
0.5 vs. LCPM 25.9 ± 7.9 ms, p < 0.01) than combined LCPM configurations. 
However, there was no significant difference in absolute VEU when combined 
LBBP configurations was compared with RVOT-S configuration alone (LBBP 
22.1 ± 0.5 vs. RVOT-S 21.7 ± 9.0 ms, p = 0.86). In the presence of septal scar, 
combined LCPM configurations had significantly lower VEU compared with 
combined LBBP configurations (VEU: LCPM 31.0 ± 8.4 vs. LBBP 41.7 ± 20.2 ms, 
respectively; p < 0.01). Combined LBBP configurations had significantly lower 
LVDI and BIVAT-90 compared with combined LCPM configurations in both the 
presence and absence of LBBB, but there was no significant difference between 
the two in the setting of a septal scar.
Conclusion: LCPM produces less interventricular dyssynchrony than LBBP in 
the presence of extensive septal scarring involving the HPS. In the setting of 
proximal LBBB, LCPM at the RVOT-S level may be non-inferior to LBBP in terms 
of interventricular dyssynchrony.

KEYWORDS

left bundle branch pacing, leadless right ventricular pacing, intraventricular 
dyssynchrony, interventricular dyssynchrony, in silico modelling 

1 Introduction

Non-physiological right ventricular pacing (RVP) is currently 
the mainstay treatment for high-degree atrioventricular (AV) block. 
However, RVP is associated with the increased risk of pacing-
induced cardiomyopathy, tricuspid regurgitation progression, and 
right ventricular dysfunction (Höke et al., 2014; Kanawati et al., 
2021; Riesenhuber et al., 2021; Tatum et al., 2021; Chung et al., 
2023; Boyle et al., 2024). In recent years, alternative forms of 
ventricular pacing, including left bundle branch pacing (LBBP) and 
leadless right ventricular pacing (LCPM), have been increasingly 
adopted due to their respective advantages over RVP. LBBP provides 
more physiological activation of the ventricles by engaging the 
His-Purkinje system (HPS), whereas LCPMs have been associated 
with significantly reduced progression of tricuspid regurgitation 
compared with RVP (Salaun et al., 2018; Garweg et al., 2023; El-
Chami et al., 2024).

Both European and American guidelines recommend the use 
of cardiac resynchronisation therapy (CRT) in patients with an 
indication for ventricular pacing and impaired LV ejection fraction 
(LVEF) (Glikson et al., 2021; Chung et al., 2023). The European 
guidelines use a lower LVEF cut-off of <40% (Class I, Level A 
recommendation), whereas the American guidelines use a cut-
off of <50% (2a, B-NR recommendation). However, in patients 
with preserved LVEF (i.e., >50%), the benefit of CRT is less clear, 
even in those with anticipated high ventricular pacing burden 
(Funck et al., 2025). LBBP prevents pacing-induced cardiomyopathy 
in those with preserved LVEF at baseline and preserves right 
ventricular function, but current available evidence points towards 
an increased risk of tricuspid regurgitation progression with LBBP 
(Chung et al., 2023; Hu et al., 2023; Li et al., 2023; Tian et al., 
2023; Bednarek et al., 2024). In contrast, studies, including the 5-
year Micra registry and a meta-analysis, have found that LCPM is 
associated with a significantly lower risk of tricuspid regurgitation 
(TR) progression (Salaun et al., 2018; Garweg et al., 2023; El-
Chami et al., 2024; Yuyun et al., 2024). It is important to note, 

however, that septal positioning of LCPMs may exacerbate TR due to 
interaction with the tricuspid valve (Beurskens et al., 2019; Hai et al., 
2021). Furthermore, LCPM eliminates the risk of pocket- and lead-
related issues, including infection, lead fracture, pneumothorax, and 
haematoma (Salaun et al., 2018; Garweg et al., 2023). Moreover, 
LCPM appears to have significantly lower rates of pacing-induced 
cardiomyopathy when placed in a high septal position compared 
to RVP (0.3%–4% vs. 10%–25%, respectively). This makes LCPM 
an attractive alternative in patients with AV block requiring pacing 
and preserved LVEF. However, the comparison between LCPM and 
LBBP in terms of pacing-induced dyssynchrony, which may lead to 
pacing-induced cardiomyopathy (Tops et al., 2007; Pastore et al., 
2008; Fang et al., 2016; Bansal et al., 2019), remains poorly
understood. 

1.1 Role and clinical relevance of in silico
modelling

The role of in silico modelling has expanded rapidly over the 
past few decades. In silico modelling allows hypotheses to be tested 
noninvasively in the first instance, thereby informing and providing 
justification for in vivo studies and maximising the likelihood 
of detecting relevant outcomes. Patients with a pacing indication 
exhibit heterogeneous responses to pacing, influenced by individual 
and anatomical differences. In addition, septal scarring affects the 
feasibility and efficacy of LBBP, but the extent of septal scarring is 
highly variable among individuals. In silico modelling enables direct 
comparison of LBBP and LCPM under identical conditions, such 
as in the presence of extensive septal scarring and proximal LBBB, 
ensuring that any observed differences can be solely attributable to 
the pacing strategy.

In this study, we aim to compare the effects of LBBP and 
LCPM on interventricular and intraventricular dyssynchrony in the 
setting of complete AV block and preserved LVEF using in silico
modelling.
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2 Methods

2.1 In silico modelling

To perform our electrophysiology simulations, we used 19 
publicly available four-chamber heart geometries from healthy 
subjects, obtained from a previous study (Rodero et al., 2021). 
The heart meshes were composed of linear tetrahedral elements 
with an average resolution of approximately 1 mm. A His-Purkinje 
network was added to each heart geometry based on previous 
studies (Gillette et al., 2021; 2022; Pathmanathan et al., 2024), as 
described in the Supplementary Material. The His-Purkinje network 
included three LV (anterior, septal, and posterior) and two RV 
(septal and moderator band) fascicles that were used to initiate 
the activation of the ventricular myocardium during sinus rhythm. 
Ventricular activation was computed using a reaction–Eikonal 
model with the Cardiac Arrhythmia Research Package (CARP) 
(Vigmond et al., 2002; Neic et al., 2017). The His-Purkinje network 
was assigned a conduction velocity (CV) of 3 m/s, while the 
ventricular myocardium was modelled as a transversely isotropic 
conduction medium, with a CV of 0.6 m/s along the fibres and 
0.24 m/s in the transverse direction, in accordance with normal 
CV ranges measured in mammals (Draper and Mya-Tu, 1959). 
Proximal LBBB was simulated by cutting the connection of the 
left bundle to the LV His-Purkinje system along the His. In the 
Supplementary Material, we outline the fascicles for each of the 
patient-specific geometries. We also demonstrate that the sinus 
rhythm activation simulated by the model is physiological, aligns 
with the Durrer maps (Durrer et al., 1970) and that the resulting 
activation metrics are within the ranges reported in the literature. 
Finally, we demonstrate that the simulated activation during LBBB 
leads to prolonged activation times and delayed LV activation, in line 
with data from the published literature (Neic et al., 2017). 

2.2 Pacing simulations

Using the in silico model, we simulated ventricular activation 
during sinus rhythm under the conditions of intranodal block 
with junctional escape rhythm (AV node blocked but intact His 
bundle), LBBP in two configurations (Figure 1B)—proximal left 
bundle pacing (PLBBP) and distal left bundle pacing (DLBBP)—and 
LCPM in three configurations (Figure 1A): at the level of the RVOT-
septum (RVOT-S), mid-septum (MS), and apical septum (AS). We 
considered three different baseline rhythm scenarios: 1) intact left 
bundle branch conduction, 2) left bundle branch block (LBBB) and 
3) septal scar involving the HPS. Complete AV block at the level 
of the AV node was simulated in all pacing settings, such that the 
intrinsic rhythm did not contribute to ventricular activation.

2.3 Septal scar mapping

To simulate septal scarring, we integrated a patient-specific 
scar and border zone geometry from a publicly available 1 mm 
resolution LV patient-specific mesh into our 19 heart geometries 
using the universal ventricular coordinates (UVCs) (Bayer et al., 
2018; Mendonca Costa et al., 2019). The septal scar was mapped to 

the meshes in our cohort (as shown in the Supplementary Material), 
and the scar core was simulated as non-conducting tissue. The 
Purkinje fibres overlapping the scar tissue were identified and 
assumed to be non-conducting, under the assumption that scarred 
Purkinje is affected by tissue hypoxia the same way as normal 
myocardium (Mendonca Costa et al., 2019). 

2.4 Measures of intraventricular and 
interventricular dyssynchrony

To assess interventricular dyssynchrony, we computed 
ventricular electrical uncoupling (VEU) and absolute VEU. VEU 
was calculated as the difference between the mean LV and RV 
epicardial activation times (i.e., mean LV epicardial activation 
time–mean RV epicardial activation time) and indicates the 
directionality of dyssynchrony (a positive value indicates that LV 
takes longer to activate than RV, and a negative value indicates that 
RV takes longer to activate than LV). Absolute VEU values were also 
defined to reflect the degree of dyssynchrony between the LV and RV, 
irrespective of directionality. Left ventricular dyssynchrony index 
(LVDI) was used to represent LV intraventricular dyssynchrony and 
calculated as the standard deviation of activation times within the 
LV. The shortest interval taken to activate 90% of both ventricles 
(BIVAT-90) was used to reflect biventricular activation time. When 
computing response to pacing, the areas around the AV valves and 
outflow tracts were excluded. 

2.5 Statistical analysis

Means and standard deviations were used to summarise and 
present continuous variables. The Shapiro–Wilk test was used to 
test for normality of continuous data. Two-tailed Student’s t-tests 
were used to compare two continuous variables with a normal 
distribution. The Wilcoxon rank–sum test was used to compare 
two continuous variables with a non-parametric distribution. A p-
value of <0.05 was considered significant for all tests. All statistical 
analyses were performed using STATA 18.0 (StataCorp. 2019. Stata 
Statistical Software: Release 18. College Station, TX: StataCorp LLC). 

3 Results

Measures including VEU, absolute VEU, LVDI, and BIVAT-
90 of each pacing configuration in all three settings (intact left 
bundle conduction, LBBB, and septal scar affecting the HPS) are 
summarised in Table 1.

3.1 Biventricular activation times

In the presence of normal left bundle conduction, combined 
LBBP configurations (PLBBP and DLBBP) produced lower BIVAT-
90 than combined LCPM configurations (RVOT-S, MS, and AS) 
(42.8 ± 3.8 vs. 71.9 ± 8.2 ms, respectively; p < 0.01) (Figure 2A). 
In the presence of LBBB, combined LBBP configurations produced 
higher BIVAT-90 values but remained significantly lower than 
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FIGURE 1
(A) Leadless cardiac pacing (LCPM) locations: right ventricular outflow tract-septum (RVOT-S) denoted by the green arrow, mid-septum (MS) denoted 
by the blue arrow, and apical septum (AS) denoted by the red arrow. (B) Simulated pacing locations of LBBP and proximal LBBB. Left bundle branch 
pacing was performed along the proximal left bundle (orange dot) and distal left bundle (green dot). Where present, LBBB was simulated at the level of 
the His, affecting only the left bundle (red cross).

TABLE 1  VEU, absolute VEU, LVDI, and BIVAT-90 values in response to each pacing configuration in three different settings (intact left bundle 
conduction, LBBB, and septal scar); (∗) p-value comparing combined LBBP and combined LCPM configurations; and (∗∗) p-value comparing RVOT-S vs. 
combined LBBP configurations.

Baseline PLBBP DLBBP RVOT-S MS AS Combined 
LBBP

Combined 
LCPM

p-
value∗

p-
value∗∗

Intact left bundle conduction

VEU 6.8 ± 4.6 −0.4 ± 4.5 −6.1 ± 4.1 21.7 ± 9.0 25.7 ± 7.5 25.2 ± 5.7 −3.3 ± 5.1 24.2 ± 7.6 <0.01 <0.01

Absolute 
VEU

6.9 ± 4.6 3.6 ± 2.5 6.3 ± 3.9 21.7 ± 9.0 25.7 ± 7.5 25.2 ± 5.7 5.0 ± 3.5 24.2 ± 7.6 <0.01 <0.01

LVDI 12.0 ± 1.6 12.0 ± 1.5 12.3 ± 1.6 22.1 ± 2.1 23.0 ± 2.9 24.1 ± 2.0 12.1 ± 1.6 23.0 ± 2.5 <0.01 <0.01

BIVAT-90 38.2 ± 4.3 40.9 ± 3.5 44.7 ± 3.0 70.1 ± 7.3 70.7 ± 9.4 74.9 ± 7.2 42.8 ± 3.8 71.9 ± 8.2 <0.01 <0.01

LBBB

VEU 47.2 ± 5.6 −22.6 ± 3.2 −21.6 ± 3.3 21.7 ± 9.0 30.8 ± 6.0 25.2 ± 5.7 −22.1 ± 0.5 25.9 ± 7.9 <0.01 <0.01

Absolute 
VEU

47.2 ± 5.6 22.6 ± 3.2 21.6 ± 3.3 21.7 ± 9.0 30.8 ± 6.0 25.2 ± 5.7 22.1 ± 0.5 25.9 ± 7.9 <0.01 0.86

LVDI 24.4 ± 2.8 12.2 ± 1.6 12.4 ± 1.7 22.1 ± 0.1 23.1 ± 2.9 24.0 ± 2.0 12.3 ± 0.3 23.0 ± 0.3 <0.01 <0.01

BIVAT-90 78.9 ± 9.0 62.7 ± 5.6 62.0 ± 5.6 70.1 ± 7.3 70.7 ± 9.5 74.9 ± 7.2 62.3 ± 0.90 71.9 ± 1.1 <0.01 <0.01

Septal scar with non-conducting HPS

VEU 44.1 ± 16.7 42.3 ± 19.5 41.0 ± 21.4 24.8 ± 9.0 35.7 ± 5.6 32.7 ± 6.4 41.7 ± 20.2 31.0 ± 8.4 <0.01 <0.01

Absolute 
VEU

44.1 ± 16.7 42.3 ± 19.5 41.0 ± 21.4 24.8 ± 9.0 35.7 ± 5.6 32.7 ± 6.4 41.7 ± 20.2 31.0 ± 8.4 <0.01 <0.01

LVDI 25.4 ± 6.6 25.4 ± 6.6 25.5 ± 6.5 24.5 ± 2.2 29.1 ± 2.4 27.9 ± 2.4 25.5 ± 6.5 27.2 ± 3.0 0.93 0.08

BIVAT-90 80.5 ± 22.1 80.2 ± 22.6 80.5 ± 22.2 75.7 ± 7.3 88.9 ± 7.9 87.5 ± 7.9 80.3 ± 22.1 84.0 ± 9.6 0.47 0.052

Abbreviations: LBBB, left bundle branch block; DLBBP, left bundle branch pacing at the level of left posterior fascicle; PLBBP, left bundle branch pacing at the level of the proximal left bundle; 
RVOT-S, right ventricular outflow tract-septal pacing; MS, mid-septal pacing; AS, apical-septal pacing; VEU, ventricular electrical uncoupling; LVDI, left ventricular dyssynchrony index; 
BIVAT-90, time taken to activate 90% of both ventricles.
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FIGURE 2
BIVAT-90 values in different settings: (A) intact left bundle conduction, (B) proximal left bundle branch block, and (C) septal scar affecting the HPS. (∗) 
Comparison between combined LBBP and combined LCPM configurations; (∗∗) comparison between RVOT-S and mean LBBP. PLBBP, proximal left 
bundle branch pacing; DLBBP, distal left bundle branch pacing; AS, leadless pacing at the apical septum level; MS, leadless pacing at the mid-septum 
level; RVOT-S, leadless pacing at the right ventricular outflow tract-septum level.

those of combined LCPM configurations (62.3 ± 0.9 vs. 71.9 ± 
1.1 ms, respectively; p < 0.01) (Figure 2B). In the presence of a 
septal scar involving the HPS, there was no significant difference 
in BIVAT-90 between combined LBBP and combined LCPM 
configurations (80.3 ± 22.1 vs. 84.0 ± 9.6 ms, respectively; p = 0.47)
(Figure 2C).

3.2 Interventricular dyssynchrony

In the presence of intact left bundle conduction, combined 
LBBP configurations had significantly lower VEU (−3.3 ± 5.1 vs. 
24.2 ± 7.6 ms, respectively; p < 0.01) and absolute VEU (5.0 ± 3.5 
vs. 24.2 ± 7.6 ms, respectively; p < 0.01) than those of combined 
LCPM configurations (Figure 3A). Similarly, in the presence of 
LBBB, combined LBBP configurations produced significantly lower 
absolute VEU (LBBP 22.1 ± 0.5 ms vs. LCPM 25.9 ± 7.9 ms; p < 
0.01) than combined LCPM configurations (Figure 3B). However, 
when combined LBBP configurations were compared to RVOT-S 
alone, there was no significant difference in absolute VEU (RVOT-S 
21.7 ± 9.0 vs. combined LBBP 22.1 ± 0.5 ms; p = 0.86). Conversely, 
in the setting of a non-conducting septal scar, combined LCPM 

configurations produced significantly lower VEU and absolute VEU 
than those of combined LBBP configurations (both VEU and 
absolute VEU: combined LCPM 31.0 ± 8.4 vs. combined LBBP 
41.7 ± 20.2 ms; p < 0.01) (Figure 3C). Notably, in 6 of the 19 
heart models, a proportion of Purkinje fibres supplied by the left 
anterior fascicle remained conductive as they were located beyond 
the area of scar tissue (Figure 4A). In these models, LBBP produced 
significantly lower VEU than the RVOT-S (combined LBBP 13.3 ± 
4.9 vs. combined LCPM 31.0 ± 8.4 ms; P < 0.01). In the remaining 
13 out of 19 heart models, both the anterior and posterior fascicles 
were within the non-conducting scar zone, with no activation of 
the Purkinje network (Figure 4B). This resulted in combined LCPM 
configurations producing less interventricular dyssynchrony than 
LBBP configurations (combined LCPM 31.3 ± 8.4 vs. combined 
LBBP 54.7 ± 5.4 ms; p < 0.01).

3.3 Intraventricular dyssynchrony

In the presence of intact left bundle conduction, combined 
LBBP configurations produced significantly lower LVDI than that 
of combined LCPM configurations (12.1 ± 1.6 vs. 23.0 ± 2.5 ms, 
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FIGURE 3
VEU values in different settings: (A) intact left bundle conduction, (B) proximal left bundle branch block, (C) and septal scar affecting the HPS. (∗) 
Comparison of VEU between mean LBBP and mean LCPM, (∗∗) comparison of absolute VEU between mean LBBP and mean LCPM, and (∗∗∗) 
comparison of VEU between RVOT-S and mean LBBP. Blue charts denote VEU, and orange charts denote absolute VEU. PLBBP, proximal left bundle 
branch pacing; DLBBP, distal left bundle branch pacing; AS, leadless pacing at the apical septum level; MS, leadless pacing at the mid-septum level; 
RVOT-S, leadless pacing at the right ventricular outflow tract-septum level.

respectively; p < 0.01) (Figure 5A). Similarly, in the context of LBBB, 
LBBP configurations had significantly lower LVDI than LCPM 
configurations (12.3 ± 1.6 vs. 23.0 ± 2.5 ms, respectively; p < 0.01, 
Figure 5B). However, in the setting of a septal scar, combined 
LBBP configurations produced similar LVDI to combined LCPM 
configurations (25.5 ± 6.5 vs. 27.2 ± 3.0 ms, respectively; p = 0.93)
(Figure 5C).

4 Discussion

4.1 Intraventricular dyssynchrony

LBBP produced improved intraventricular synchrony in the 
presence and absence of LBBB, but this effect on intraventricular 
synchrony was attenuated in the setting of a non-conducting septal 

scar. In the presence of a septal scar affecting the HPS, rapid 
conduction via the specialised cells of the Purkinje network is 
no longer feasible, resulting in slower conduction through the 
ventricular myocardium, which has a considerably lower inherent 
conduction velocity, and, consequently, markedly heterogeneous 
and prolonged LV activation times. This is consistent with the 
in vivo findings of Elliott et al. (2023), who reported that 
the presence of a septal scar is associated with an attenuation 
of LBBP’s beneficial effects on intraventricular dyssynchrony. 
In contrast, the effects of LBBP were not attenuated in the 
presence of proximal LBBB. Because the LBBB is located more 
proximally relative to the site of left bundle pacing, normal 
rapid activation of the left ventricle distal to the block is still 
possible via the specialised cells of the left bundle branches, 
resulting in significantly less heterogeneity in LV activation
times.
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FIGURE 4
Anterior–posterior view of LV with an electrical activation map. Grey color denotes the area of a non-conducting scar. Red color denotes earliest 
activation, and dark blue denotes latest activation. The green arrow marks the terminal of the left anterior fascicle. (A) Heart model where the left 
anterior fascicle terminates beyond the area of the scar (where the Purkinje network is viable). (B) Heart model where the anterior fascicle terminates 
within the scar (where the Purkinje network is not viable).

FIGURE 5
LVDI values in different settings: (A) intact left bundle conduction, (B) proximal left bundle branch block, and (C) septal scar involving the HPS. PLBBP, 
proximal left bundle branch pacing; DLBBP, distal left bundle branch pacing; AS, leadless pacing at the apical septum level; MS, leadless pacing at the 
mid-septum level; RVOT-S, leadless pacing at the right ventricular outflow tract-septum level.
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4.2 Interventricular dyssynchrony

We computed both VEU and absolute VEU in our in silico 
modelling. VEU is a measure of interventricular dyssynchrony 
with directionality. A positive VEU indicates that the LV epicardial 
activation time is longer than the RV epicardial activation 
time, resembling LBBB, whereas a negative VEU indicates 
that the RV epicardial activation time is longer than the LV 
epicardial activation time, resembling RBBB. Absolute VEU simply 
reflects the degree of dyssynchrony between ventricles, without
directionality.

Our in silico modelling demonstrated that combined LBBP 
configurations resulted in significantly less interventricular 
dyssynchrony (as reflected by VEU and absolute VEU) than 
combined LCPM configurations in the presence of intact left 
bundle branch conduction. In contrast, when proximal LBBB was 
present, combined LBBP configurations produced a greater amount 
of dyssynchrony, owing to later RV activation, than when left 
bundle branch conduction was intact. This prolonged RV activation 
is because, in the presence of proximal LBBB, activation of the 
right bundle via the left bundle is not possible during LBBP, and 
electrical propagation takes place via non-specialised cell-to-cell 
conduction, leading to delayed RV activation. This is reflected in 
the increase in the mean biventricular activation time (BIVAT-90) 
from 42.8 ms, in the presence of intact left bundle conduction, to 
62.3 ms in the presence of proximal LBBB. Our in silico modelling 
finding replicates the in vivo finding of Ali et al. (2023a), who 
investigated the electrical response, using ECGi, of patients with 
LBBB to LBBP, His bundle pacing, and conventional biventricular 
pacing. They found that LBBP resulted in prolonged RV activation 
and, consequently, greater interventricular dyssynchrony than His 
bundle pacing, in which both the right and left bundles could 
be activated simultaneously. The prolonged RV activation in the 
presence of proximal LBBB also explains why combined LBBP 
configurations yielded similar absolute VEU values as LCPMs in the 
RVOT-S configuration–because both LBBP and RVOT-S produced 
a small amount of dyssynchrony but in opposite directions (VEU: 
combined LBBP: −22.1 ± 0.5 ms, RVOT-S: 21.7 ± 9.0 ms). This is 
important because, although much of the focus has been on pacing-
induced left ventricular delay, pacing-induced right ventricular 
delay has also been linked to poor prognosis, including a higher risk 
of impaired haemodynamics and increased mortality (Hesse et al., 
2001; Ploux et al., 2015; Sillanmäki et al., 2020). Although this issue 
may be mitigated with RV anodal capture, this requires significantly 
higher pacing output, resulting in impaired battery longevity with no 
significant improvement in biventricular haemodynamics (Ali et al., 
2023b). In our simulations, we did not consider different types of 
pacing configurations (bipolar vs unipolar or RV anodal capture). 
Although RV anodal capture might provide better interventricular 
synchrony in some cases, it is not always clinically possible as it 
relies on direct contact of the anode electrode with the RV septum 
(Ali et al., 2023b). Therefore, we did not include this scenario in 
our study. Notwithstanding, Lu et al. (2023) found that implanting 
factors such as deployment of the lead tip in an oblique fashion 
and in the anterior-middle septum area increase the chances of 
successful RV anodal capture.

In the setting of a septal scar, LBBP configurations still resulted 
in a significant reduction in interventricular dyssynchrony in 

the models where the left anterior fascicle terminates beyond 
the area of scar tissue (6 out of 19). In the remaining 13 
models where the left anterior fascicle terminated within 
scar tissue, the positive effect of LBBP on interventricular 
dyssynchrony is attenuated, and in these cases, LCPM configurations 
were superior in reducing interventricular dyssynchrony. 
This shows that the extent of a septal scar matters when
implanting LBBP.

Figure 6 illustrates the activation patterns in response to 
different pacing configurations in one of the heart models.

4.3 Septal scar involving the HPS

In the presence of a septal scar rendering the HPS 
nonconductive, LBBP resulted in more interventricular 
dyssynchrony than LCPM (VEU 41.7 ± 20.2 vs. 31.0 ± 8.4 ms, 
respectively, p < 0.01) with the RVOT-S configuration producing 
the lowest VEU (24.8 ± 9.0 ms) compared to all other LBBP and 
LCPM configurations. This is because in the majority (13 out 
of 19) of our heart models, where the scar renders the Purkinje 
fibres of the left bundle non-conducting, the activation wavefront 
travels retrogradely from the pacing stimulus up the left bundle 
into the right bundle, with RV depolarisation first, followed by 
LV depolarisation via non-specialised myocardial conduction. 
In contrast, pacing at the site of the RVOT-S, away from the 
scar tissue, affords a degree of biventricular activation via non-
HPS septal myocardium, leading to overall lower interventricular 
dyssynchrony. In real-world cases, complete interruption of the HPS 
is relatively uncommon, and septal scars are often heterogeneous 
in their transmurality and conductivity. More than one location 
on the septum can usually be explored to achieve left bundle 
branch area capture when the initial deployment fails to achieve 
this. The findings from 6 out of 19 of our heart models, where 
a portion of the Purkinje network supplied by the left anterior 
fascicle located just beyond the area of scar remained conducting, 
demonstrate that LBBP may still have a beneficial effect in the 
presence of a less extensive septal scar. In rare cases where extensive 
transmural septal scarring occurs and renders the HPS non-
conducting, such as in severe cases of septal viral myocarditis, 
advanced infiltrative diseases such as amyloidosis and sarcoidosis, 
and extensive myocardial infarction caused by proximal left anterior 
descending artery occlusion (Imran et al., 2010; Cheng et al., 2024), 
our modelling suggests that LCPM may yield less interventricular 
dyssynchrony than LBBP.

Interestingly, Elliot et al. investigated the effects of LBBP with the 
use of ECG in 10 patients (five had LBBB, one had RBBB, and four 
had RV-paced rhythm) and found that the presence of septal scar, 
either midwall or subendocardial, attenuated the resynchronisation 
effects of LBBP on the LV (i.e., reduced intraventricular synchrony). 
This suggests that the resynchronisation effects of LBBP may be 
reduced even when the septal scar is not transmural and the 
conductivity of the HPS is not completely abolished. Although 
Elliot et al. did not compare biventricular activation times or VEU 
between those with and without the septal scar, our in silico
modelling suggests that LBBP effects on interventricular synchrony 
are also reduced by septal scarring. 
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FIGURE 6
Anterior–posterior epicardial activation maps of each pacing configuration in different settings of one of the heart models. Top row: intact left bundle 
conduction. Middle row: presence of proximal LBBB at the level of the His bundle. RV activation is delayed during LBBP in the presence of proximal 
LBBB compared to that during intact left bundle conduction. Bottom row: septal scar rendering HPS non-conductive. PLBBP, LBBP at the level of 
proximal left bundle; DLBBP, LBBP at the distal left bundle; AS, leadless pacing at the apical septum level; MS, Leadless pacing at the mid-septum level; 
RVOT-S, Leadless pacing at the right ventricular outflow tract-septum level. Activation scale: the extreme left of the scale (dark red) denotes earliest 
activation (0 ms), and the extreme right of the scale (dark blue) denotes latest activation (140 ms). BIVAT-90 and VEU values are presented as the mean 
± standard deviation.

4.4 Clinical implications

The implications of our in silico modelling are as follows: 

1. LCPM is superior to LBBP with respect to interventricular 
synchrony in the presence of extensive septal scarring 
affecting the HPS. This finding is consistent with previous 
in silico and in vivo studies demonstrating an attenuation 
of the beneficial effects of LBBP on LV resynchronisation 
and positive remodelling in the presence of a septal scar 
(Chen et al., 2023; Elliott et al., 2023; Strocchi et al., 
2023). This may make LCPM a more suitable option 
than LBBP in those with a ventricular pacing indication 
and preserved LV function, considering the absence of 
pocket- and lead-related complications and the increased 
technical complexity of LBBP implantation in the setting 
of septal scarring (Ponnusamy et al., 2020). Furthermore, 
the recent introduction of the Abbott AVEIR dual-chamber 
leadless pacemaker—which maintains atrioventricular (AV) 

synchrony—has positioned LCPM as a viable alternative for 
patients with persistent high-degree AV block (Knops et al., 
2023). Although LCPM is associated with a lower overall risk 
of TR progression, studies have shown that implantation close 
to the tricuspid valve, such as in the high septal position, 
may increase the risk of TR progression (Salaun et al., 2018; 
Beurskens et al., 2019; Hai et al., 2021; Garweg et al., 2023; 
El-Chami et al., 2024; Yuyun et al., 2024). Therefore, further 
clarification is required through in vivo studies to determine 
whether the benefits of LCPM implantation in the RVOT-S 
position to minimise interventricular dyssynchrony are offset 
by the increased risk of TR progression.

2. There is possible equipoise between LBBP and RVOT-
S in interventricular dyssynchrony in the presence of 
LBBB. First, LCPM at the RVOT-S position yielded similar 
absolute VEU values as LBBP. Second, even considering 
VEU (with directionality) instead of absolute VEU (without 
directionality), both LBBP and RVOT-S produced VEU 
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values of <40 ms (combined LBBP −22.1 ± 3.3 vs. RVOT-S 
+21.7 ± 9.0 ms), below the threshold for the widely accepted 
definition for interventricular mechanical delay (Cleland et al., 
2005). This is a new finding and warrants further in vivo
comparison between LBBP and LCPM, specifically in the 
RVOT-S configuration, in patients with LBBB.

4.5 Limitations

The heart geometries used in this study were derived from 
healthy subjects to closely reflect the cardiac morphology of patients 
with preserved LV function and high-degree AV block. Therefore, 
results from this study may not be translatable to patients with 
heart failure with reduced ejection fraction. We did not simulate RV 
anodal capture in our in silico modelling. Although this may have 
mitigated delayed RV activation caused by LBBP in our simulation, 
particularly in the context of LBBB, real-world data suggest that 
it is not always clinically possible, comes at a considerable cost 
of significantly higher pacing output, and does not improve acute 
haemodynamics (Ali et al., 2023b). Similarly, although the use of 
epicardial biventricular pacing may reduce RV activation delay by 
optimising LV-RV delay in the context of LBBB, the aim of our 
study was to compare LCPM and LBBP in those with preserved 
LV function and complete AV block, where the use of conventional 
epicardial biventricular pacing is not guideline-recommended. In 
our study, the location of LBBB was simulated to be within the 
bundle of His. Therefore, the results of this modelling may not be 
translatable to scenarios where the location of LBBB is different, 
such as distal and diffuse LBBB. Depending on the level and nature 
of the block (focal or diffuse), left bundle capture or retrograde RV 
activation via the right bundle may or may not be possible, affecting 
VEU and overall biventricular activation times. In our modelling 
of proximal left bundle branch block, where the level of block is at 
the left intra-Hisian level, the activation wavefront starts in the RV 
and spreads across the septum slowly. If the activation wavefront 
came into contact with the LV Purkinje system, it was activated, 
and depolarisation within the LV could take place via the Purkinje 
network. It is unclear whether such Purkinje network activation 
takes place within the LV, but the close correlation of our generated 
in silico measurements of total ventricular activation time (TAT) 
with an in vivo study by Ploux et al. (2015) supports the validity of 
our left bundle branch block simulations.

Animal studies have shown that some Purkinje cells may 
survive an infarct with partial to complete recovery of function 
(Friedman et al., 1973; Garcia-Bustos et al., 2019; Sayers et al., 
2025). In our models, Purkinje fibres that overlap the scar zone 
were treated as non-conducting under the assumption that Purkinje 
fibres are affected by hypoxia the same way as normal myocardium, 
to illustrate the impact of the most severe cases of myocardial 
scarring on the Purkinje system. Our in silico modelling results 
demonstrated that interventricular dyssynchrony can be minimised 
when LCPM is placed in the RVOT-S position. Although the high 
septal placement simulated in our in silico modelling is feasible 
(Garweg et al., 2023; Shantha et al., 2023; El-Chami et al., 2024), 
specific target deployment of LCPM onto the septum may not 
always be possible, particularly in smaller hearts. Our study did not 
account for the mechanical effects of lead implantation, particularly 

its impact on tricuspid valve function. Mechanical simulations are 
computationally more demanding, and their application remains 
limited to studies involving a small number of simulations. In the 
future, this study could be extended to include mechanics and 
investigate the effects of leadless pacing on valve function. Finally, 
this is a computational modelling study with a small number of heart 
models. Although statistical significance is presented, due to the 
small sample size, these values should be interpreted with caution. 

5 Conclusion

To date, no direct comparison between LBBP and LCPM has 
been performed to investigate their effects on intraventricular 
and interventricular dyssynchrony, which are implicated in the 
development of pacing-induced cardiomyopathy. Our in silico
modelling suggests that, in the presence of an extensive septal 
scarring rendering the Purkinje network non-conducting, LCPM is 
superior to LBBP in terms of interventricular synchrony, consistent 
with findings from previous studies. More interestingly, in the 
setting of LBBB, LCPM at a high septal position may be non-inferior 
to LBBP in interventricular dyssynchrony. Further in vivo studies are 
required to validate these findings.
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