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Aim: This study aimed to investigate the determinants of running performance
in a cross-country running race and examine whether running economy and
biomechanics are affected. Moreover, we analyzed whether the magnitude
of change in running economy (RE) is related to changes in biomechanics,
performance, and fitness measures.

Method: Thirteen runners (12 male and 1 female), with an average 10 km
personal best time of 36:46 + 3:17 (min:s), participated in the 30 km cross-
country race, Lidingbéloppet. Assessments of submaximal and maximal running
physiology, biomechanics, and anthropometry were conducted before and
immediately after the race. A multiple linear regression model was applied
to explain performance variance. Pearson’s correlation analyses examined
the relationships between performance and pre-test variables, and between
changes in running economy and both pre-test fitness measures and changes
in biomechanics. Paired Student's t-tests were used to compare pre- and
post-race values.

Results: Performance was best explained using a model including oxygen
uptake at lactate threshold (LT), fat utilization, and allometrically scaled running
economy (R? = 0.918, adjusted R? = 0.887, F = 29.7, p < 0.01). Race performance
also correlated with maximal oxygen uptake (VO,max, r = -0.776, p = 0.003),
fat mass (r = 0.646, p = 0.032), and velocity at VO,max (WO, max, r = =0.853,
p < 0.01). The oxygen cost of running increased (201.8 + 14 vs. 2084 +
9.3 mL kgtkm™; p = 0.041), whereas respiratory exchange ratio (0.91 + 0.04
vs. 0.85 + 0.05; p < 0.01) and body mass (69.2 + 7.5 vs. 67.6 + 77kg; p <
0.01) decreased post-race. Energetic cost of running (0.997 + 0.076 vs. 1.015 +
0.052 kcal kg™-km™; p = 0.192) and all biomechanical measurements, including
cadence, contact time, overstride, vertical displacement, and vertical force, were
unaffected by the race. The magnitude of change in running economy was
related only to pre-test running economy (r = -0.749; p = 0.003) but not to
performance (r = —0.440; p = 0.132), other pre-test fitness measures, or any
changes in biomechanics.

Conclusion: The best performance prediction model included oxygen uptake
at estimated lactate threshold, fat utilization during submaximal running, and
allometrically scaled running economy. Oxygen cost of running increased
post-race, likely due to increased fat oxidation, despite decreased body
mass. No changes in biomechanics were observed, and changes in running
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economy could not be explained by changes in biomechanics. Aerobic fitness,
anthropometry, and performance were not associated with changes in running
economy. Given the small and relatively homogeneous sample, findings should
be considered exploratory, although they suggest that practitioners may benefit
from targeting fat oxidation, oxygen uptake at the estimated lactate threshold,
and running economy in training.
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Introduction

Trail and off-road running races are typically held on
undulating terrain with uneven surfaces, which may affect
running mechanics and, consequently, physiological responses
(Ehrstrom et al., 2018). Although many studies on long-distance
running have focused on flat-ground performance—identifying
maximum oxygen uptake (VO,max), the fraction of VO,max
sustained during performance (fractional utilization, related
to lactate and ventilatory thresholds), and running economy
(RE) as key determinants (Bassett and Howley, 2000; Joyner
and Coyle, 2008; Mclaughlin et al, 2010)—comparatively few
investigations have explored performance determinants in off-road
conditions, especially in races that are not extremely demanding in
terms of elevation change, terrain, or duration.

The classical model of running performance appears less
predictive for trail events conducted in hilly terrain (de Waal et al.,
2021). In these settings, RE and variables related to fractional
utilization generally do not predict performance as strongly as
VO,max. For example, one study found that performance in a
27-km race (with a 1,400-m elevation gain) was best explained
using VO,max, local muscle endurance (measured as a fatigue
index in the knee extensor muscle through a test involving 40
consecutive maximal concentric contractions), and RE on a 10%
slope (Ehrstrom et al., 2018). In another study, VO,max and
the percentage of fat mass were the strongest predictors for
performance in a 27-km event with a 1,700-m elevation gain
(Alvero-Cruz et al.,, 2019). Similarly, in 40- and 55-km races starting
at approximately 1,000 m altitude and involving 2,300-3,500 m of
elevation gain, VO,max and fat substrate utilization at 10 km h!
emerged as the strongest predictors (Pastor et al., 2022). VO, max
and the peak running velocity achieved in the incremental
test were also associated with performance, while RE was not
(Coates et al, 2021). In a shorter-duration, sea-level 7-km

Abbreviations: H-la, Blood Lactate Concentration (mmolL™); PETCO,,
End-Tidal Partial Pressure of Carbon Dioxide; PETO,, End-Tidal
Partial Pressure of Oxygen; RCP, Respiratory Compensation Point;
RER, Respiratory Exchange Ratio; RE, Running Economy: RE,ometric:
Allometrically Scaled Running Economy expressed in mL-kg®’>-km™; REec,
Running Economy (energy cost) expressed in kcalkg™-km™: REec-wb,
Running Economy expressed as Energy Cost excluding Work of Breathing
(kcalkg™*-km™); REox, Running Economy expressed as Oxygen Cost in
mlL-kg™-km™: VE, Ventilation; vVRCP, Velocity at Respiratory Compensation
Point; WO, max, Velocity at VO,max; vOLT, Velocity at Estimated Lactate
Threshold; wb, Work of Breathing (energy cost, kcalkg™®km™); 6LT,
Estimated Lactate Threshold.
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trial with a 486-m elevation gain, performance was associated
with VO,max, vertical uphill speed, lean mass, and body fat
mass percentage (Bjorklund et al, 2019). Although the studies
differ slightly in terms of the most relevant variables, they
consistently highlight that RE does not predict performance, while
VO,max remains a key parameter (Ehrstrom et al., 2018; Alvero-
Cruz et al., 2019; Pastor et al,, 2022; Coates et al., 2021). Only
one study suggested that lactate threshold (LT) might also be
important in XC running over 31 km, with a 550-m elevation gain
(Scheer et al., 2019).

It should be noted that these studies typically assess
physiological determinants such as RE in a non-fatigued state.
Maintaining RE over time during a prolonged effort appears
to be crucial for optimal performance, with fatigue resilience
emerging as an additional determinant of endurance (Jones et al.,
2021; Brueckner et al, 1991). Moreover, the ability to sustain a
critical speed throughout long-distance running can differentiate
athletes with similar pre-competition capabilities (Jones, 2024),
emphasizing the need to evaluate performance under fatigue.
However, findings regarding how RE responds to fatigue remain
inconsistent across studies. Increases in oxygen uptake or energy
cost at a given speed have been reported following short flat
treadmill trials (approximately 12.5 min, 60 min, or even 24 h in
length) (Candau et al., 1998; Hunter and Smith, 2007; Gimenez et al.,
2013), flat road marathons (Brueckner et al., 1991; Kyroldinen et al.,
2000; Nicol et al,, 2007), and submaximal flat track running (Xu
and Montgomery, 1995). Trail running also shows mixed results,
with some studies reporting worsened RE after 40- and 55-km
races with 2,300-3,500 m of elevation gain (Sabater Pastor et al.,
2021) and after a 43-km uphill race with 3,000 m of elevation
gain (Lazzer et al, 2015), while other investigations have noted
decreased oxygen and energy costs after an ultramarathon of
330 km or no significant changes in several races longer than
65km (Vernillo et al., 2017). These findings suggest that both
the duration and the relative intensity of the race may affect
the cost of running, with higher intensities leading to a larger
increase in cost and longer races showing a smaller increase (Xu
and Montgomery, 1995; Sabater Pastor et al., 2021). Notably, one
study found a positive correlation between race speed in trail
races of 40 km, 55 km, and over 100 km and the degree of change
in RE. This result contradicts the notion that more proficient
athletes exhibit less deterioration in RE (Sabater Pastor et al., 2021).
Additionally, although individual variation in RE change appears to
be influenced by the mechanical power of the lower limb—where
higher power mitigates deterioration (Lazzer et al., 2015)—the role
of aerobic fitness and potential biomechanical adjustments remains
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FIGURE 1

Timeline and flowchart of the experimental protocol.

unclear as some studies report no relationship between changes in
biomechanics and RE (Hunter and Smith, 2007; Kyroldinen et al.,
2000; Nicol et al., 2007), whereas others indicate a connection
(Lazzer et al., 2015; Vernillo et al., 2017).

Therefore, the purpose of this study was to examine the
determinants of performance in a less “extreme” XC running
race while investigating the effects of such a race on RE
and running biomechanics. A further aim was to analyze the
relationship between biomechanical changes and alterations
in RE and assess potential links between the degree of RE
change, race performance, and physiological fitness measures.
To this end, the study focuses on the classical XC running race
Lidingoloppet—a 30-km race with a 550-m elevation gain, run on
gravel roads and grass on Liding® island (Stockholm, Sweden) at sea
level.

Methodology
Experimental overview

The research was conducted using a single-group repeated-
measures, pre-post-test design, in which each participant was
assessed before and after the intervention. All participants
completed three test sessions: two test sessions within 2 weeks,
in a rested state, prior to the Lidingdloppet race, and one post-
test immediately after the race. The first test session, performed
5-10 days prior to Liding6loppet, consisted of a treadmill running
test to measure submaximal and maximal physiological and
biomechanical parameters. The second test session consisted
of an anthropometric assessment of body composition and
was performed 3-7 days following the first test. Post-tests were
conducted immediately after the race in a field-laboratory
constructed at the finish line of the race. The Swedish Ethical
Review Authority approved the study (2022-04035-01), and
participants provided verbal and written consent after being
informed of any potential risks associated with the experiments
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prior to participation. An overview of the experimental design is
provided in Figure 1.

Participants

Thirteen runners (twelve male and one female, average age
35 + 4years, 10km PB = 36:46 + 03:17 min:ss) were recruited
for the study through digital advertising on social media, sports
associations, and sports clubs. Participants were included if they
were healthy individuals between 18 and 40 years old, willing to
participate in the 30 km cross-country race “Lidingdloppet,” and
able to verify their 10 km personal best. Individuals were excluded
if they had any current or recent injury (within the past 6 months),
were smokers, or had a 10 km personal best slower than 40 min, as
verified through official race results or GPS files.

Data collection

Pre-tests

Participants arrived at the laboratory in a rested state, where
their body mass and height were measured. Participants were
instructed to follow the following standardization guidelines before
testing: avoid any high-exertion training for 3 days prior to the
test, consume the same pre-test meal for each session, refrain from
eating during the 2 h preceding the test, and avoid caffeine for at
least 3 h beforehand. The same pair of running shoes—relatively
new and minimally worn—were to be used for both pre- and
post-tests to minimize their impact on RE (Black et al., 2022).
After these preparations, participants completed a treadmill running
test to assess running biomechanics, the ventilatory marker of
LT (Keir et al, 2022), i.e, OLT and respiratory compensation
point (RCP), along with maximal physiological responses. The
treadmill test started with a 5-min warm-up at a self-selected speed
corresponding to a 10-12 rating of perceived exertion (RPE, on the
Borg RPE scale) (Borg, 1990), followed by 3 min at a self-selected
speed corresponding to 13-15 RPE, and finished with 3 min of
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rest. Then, a submaximal part began, consisting of two stages of
5 min running at 14kmh™' and 16 km h™! for measurements of
cardiopulmonary variables using a metabolic-cart system equipped
with a mixing chamber (COSMED, Quark CPET, Italy). During
the submaximal phase, biomechanical variables (clarified in a later
section) were also measured using a markerless motion capture
system (MotionMetrix, 3D running gait, Sweden), a Stryd sensor
(Stryd Powermeter; Stryd, Inc., Boulder, CO), and a built-in force
transducer in the treadmill. Each 5-min section was followed by
a 1-min break for the collection of a capillary blood sample for
lactate measurement (H-la, EKF Diagnostics, Biosen C-line, United
Kingdom) and assessing RPE (Borg, 1990). The test was terminated
if the respiratory exchange ratio (RER) during the 5-min stage
exceeded 1.0. Six athletes failed to complete the 16 km h™* stage with
an RER below 1.0, whereas all athletes completed the 14 km h™!
stage with an RER below 1.0 (Table 1). Following the two 5-
min submaximal runs, there was a break consisting of 5 min of
rest, followed by a maximal incremental exercise test. The maximal
incremental exercise test started at 10 km h™!, and the speed was
increased by 0.4kmh™ every 30s until task failure. RPE was
collected shortly after task failure, and blood lactate was measured 1
and 3 min after task failure.

Before each treadmill test, the metabolic-cart system, the blood
lactate measurement device, and the markerless motion capture
system were calibrated according to the manufacturer’s guidelines.

At the second test session, body composition was measured
via dual-energy x-ray absorptiometry (DEXA; Horizon Hologic,
United States), including body fat %, body fat (kg), lean mass
%, and lean mass (kg). The participants were instructed to fast
for at least 5h before the test and to refrain from alcohol and
intensive training likely to cause excessive sweating on the preceding
evening.

The race Lidingoloppet

Following the baseline assessment, the participants completed
the XC running race Lidingdloppet—a 30-km race with a 550-m
elevation gain, run on gravel roads and grass on Liding6 island
(Stockholm, Sweden) at sea level. During the race, the runners aimed
to perform maximally. Performance during the race was measured
as the time to completion from the race start, based on the official
chip time. The temperature during the race was ~14 °C, with no
rainfall.

Post-race test

At the finish line of the race, an in-field laboratory was set up
inside a tent to ensure stable environmental conditions. Following
race completion, the participants immediately entered the in-field
laboratory for the measurement of body mass. Thereafter, the
athletes completed 5-min of submaximal running at 14 km h™*. For
the measurement of physiological and biomechanical variables, the
same equipment and standardization procedures as in the pre-test
were used. Only one athlete could be tested at a time; therefore,
participants were tested in the order they finished the race. This
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resulted in an average waiting time of 45:15 + 24:28 (min:ss)
following race completion.

Data analysis

Physiological parameters

Submaximal values of RER, VO, (mL-min_l-kg_1 and L-min™!),
VE (L-min~'), and breathing frequency (L/min) were collected
during the final minute of the 5-min stage at 14 km h™!, both pre-
and post-test. Due to the low number of participants finishing the
16km h™! stage, no analysis was performed on these data. Thus,
all presented analyses refer to the 14 km h™! condition. To ensure
valid measurements of submaximal variables during the 14 km h™!
runs, data from each participant were analyzed for steady state, i.e.,
an increase in VO, of less than 100 mL min~'-kg™! during the last
minute of exercise (Fletcher et al., 2009). Based on metabolic gas
exchange data, RE was expressed as either oxygen cost (RE,,) or
energy cost in kilocalories (REec) per kilogram of body mass per
mL-kg_1~ km™! (Foster and Lucia,
2007) using the following equation:

kilometer at a given speed (RE

ox>

RE,, = VO, /mx min™" x 1000.

RE, expressed as energy cost [RE,, kcalkg'km™
(Fletcher et al., 2009)], was calculated from VO, (L-min~!), RER,
and the caloric equivalent of VO, (Lusk, 1924), body mass (kg), and
running speed (m/min) using the following equation:

VO, x caloricequivalent
ec = .1
mx min

1000

RE .
body mass

RE, expressed as allometrically scaled oxygen cost [RE o metrics
mL-kg_O'75-km_1 (Svedenhag and Sjodin, 1994)], was calculated
from running speed (m/min), VO, (mL-min~"kg™'), and
allometrically scaled body mass using the following equation:

RE = VO, (mL/kg"" | min) | m x min™" x 1000.

allometric

The specific scaling of body mass was arbitrarily chosen based
on the research by Svedenhag and Sjodin (1994).

Furthermore, the energy cost from work of breathing (wb,
keal'kg "-km™) was calculated from VE (L-min™!), body mass
(kg), and running speed (m/min) using the following equation
adapted from Coast et al. (1993):

wb = -0.251+0.0382 x VE +0.00176 - VE* /4184 / kg /mx min~! x 1000.

Moreover, the energetic cost of running (RE._ ) without wb
was calculated by subtracting wb from RE,, RE,.—wb.
During the maximal incremental test, VO, max was determined

ec>

as the highest 30-s rolling average of VO, [as previously applied, for
example, by Jones et al. (2021)] for (mL-min_l-kg_1 and L-min™!).
VO,max was defined as a plateau in VO,, despite increased
workload. The plateau was visually determined. Moreover, the first
speed to elicit VO, max was determined as vVO, max. VO, and speed
at OLT and RCP were determined during the maximal incremental
test through analyses of VE, VCO, ventilatory equivalent of VO,
(VE/VO,), and VCO, (VE/VCO,), along with end-tidal pressure of
0, (PETO,) and CO, (PETCO,), as described by Keir et al. (2022).
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TABLE 1 Pre-test anthropometric and physiological data from both submaximal and maximal tests and results of correlation analysis between each

variable and race time.

Pre-test variable Mean + SD ’ Pearson’s r ’ r? p-value
Height (cm) 1752 +7.1 0.213 0.05 0.486
Body mass (kg) 69.2+7.5 0.378 0.14 0.203
) o i Body fat % 16.1+3.1 0.510 0.26 0.109

Anthropometric characteristic and their

relationship to race performance .
Fat mass (kg) 11.0+2.2 0.646 0.42 0.032
Lean mass % 80.0 £3.0 —-0.483 0.23 0.132
Lean mass (kg) 54.88 + 5.96 0.072 0.01 0.833
VO, (L'min™") 3.27 +0.45 0.588" 0.35 0.035
VO, (mL-min~"kg™") 47.1+£45.7 0.554" 0.31 0.05
RER 0.91 £0.04 0.660* 0.44 0.014

Pre-test physiological characteristics from Fat% 28.8£13.0 -0.659" 0.43 0.014

submaximal running at 14 km h™" and correlation

with performance Carb% 71.2+13.0 0.659* 0.43 0.014
RE,, (mLkg'-km™) 201.8 + 14 0.550 0.30 0.051
RE jjometric (mL/kg"”*/km) 581.8 +46.3 0.614* 0.38 0.026
RE, (kcal'kg "km™) 0.997 +0.076 0.591* 035 0.033
VO, max (mL-min~"kg ™) 6224 +6.17 -0.776" 0.60 0.003
vVO,max (km-h™") 18.9+2.1 -0.853" 0.73 <0.001
vPeak (km-h™!) 20.1£2.0 -0.829" 0.69 <0.001

Pre-test physiological characteristics from the

maximal incremental test and correlation with vOLT (km-h™!) 147+ 1.8 —0.842* 0.71 <0.001

performance
VO, at OLT (mL-min~"-kg ") 50.10 + 5.96 -0.743* 0.55 0.006
VRCP (km:-h™) 16.6 +2.2 -0.812" 0.66 0.002
VO, at RCP (mL-min~'-kg!) 56.18 + 6.13 —0.680* 0.46 0.021

"p <0.05; RER, respiratory exchange ratio; RE , running economy oxygen cost; RE i, i

o running economy allometrically scaled oxygen cost; RE,, running economy energy cost; OLT,

estimated lactate threshold; RCP, respiratory compensation point; vPeak, peak running velocity achieved in the incremental test.

Biomechanical parameters

During the pre-and post-test, the mean values of the following
variables, collected using MotionMetrix, were analyzed during
steady-state running between 3:30 and 3:50 of the 5-min stages:
cadence (spm), ground contact time (ms), overstride (cm), vertical
displacement (cm), and vertical force (bw). No side differences were
analyzed; rather, the mean between both sides was used. These
variables were chosen based on the reliability and validity of the
system, which are discussed in the next section.

During the submaximal test at 14 km h™' on the pre-test day,
each runner wore a Stryd sensor (Stryd Powermeter; Stryd, Inc.,
Boulder, CO), securely attached to the shoe, according to the
manufacturer’s recommendations. The sensor streams data at 1 Hz
and records variables including running power output, ground
contact time, vertical oscillation, leg spring stiffness, cadence,
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and step length. According to Stryd’s technical specifications,
no calibration was required beyond entering the runner’s basic
anthropometrics, and the device’s reported measurement error is
approximately 3%. Data extraction was accomplished following the
manufacturer’s guidelines.

Statistical analyses

Data were tested for normality using the Shapiro-Wilk test.
For analysis of variables related to performance, a hierarchical
multiple linear regression model was used to explain variance in
performance. Independent variables were added in order of their
correlation to performance. To limit collinearity in the model, the
variance inflation factor and tolerance of the regression model were
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calculated, with an upper limit of 2.0 for the variance inflation
factor and a lower limit of 0.5 for tolerance. The regression
model resulting in the highest R? without collinearity between
variables will be presented. Correlation analyses were performed
between physiological variables, Stryd biomechanical variables
(power output, ground contact time, vertical oscillation, leg
spring stiffness, cadence, and step length), and performance using
Pearsonss r. Differences between pre—post tests for physiological and
biomechanical variables at 14 km h™! were analyzed using paired
sample t-tests for normally distributed variables and Wilcoxon
rank for skewed variables. To study the relationship between
changes in biomechanical variables and changes in RE, computed
A variables (post—pre) for RE and biomechanics were analyzed
using Pearson’s r correlation. If skewed, Spearman’s rho was used.
To further investigate changes in RE, correlation analyses using
Pearson’s r were performed between ARE and pre-test measures
of VO, max (mL-min_1~kg_1), VO, at OLT, RE_,, RER, and race
time (s). Furthermore, correlations between ARE and ARER,
AVE (L-min!), Awb (kcal.kg !-km™), and Abody mass (kg) were
analyzed. Statistical significance was set at p < 0.05. Data are

ox>

presented as the mean + SD, if not stated otherwise. All analyses were
performed using Jamovi (2.3.21, The Jamovi Project, 2022).

Results

Race performance and participant
characteristics

The participants ran the race with an average speed of 13.8
+ 1.7km h™, resulting in an average finishing time of 02:12:20 +
00:14:48 (hr:min:ss), 35% + 15% slower than the winning time and
with a race placement of 398 + 342.

Pre-test anthropometric and physiological data from both
submaximal and maximal tests, along with the results of the
correlation analysis between each variable and race time, are
presented in Table 1. The only anthropometric variable related to
performance was body fat mass (kg) (r = 0.646; p = 0.032). All other
anthropometric variables were not related to race performance. All
the pre-test physiological variables considered were correlated with
the race time under both conditions (submaximal and maximal),
except for RE_.. No significant correlation was found between
the race time and power output, ground contact time, vertical
oscillation, leg spring stiffness, cadence, or step length measured
using the Stryd device.

Race performance regression models

The multiple regression model, with the race time as a dependent
variable resulting in the highest R% is shown in Table 2. After
controlling for collinearity, the best regression model included the
independent variables Fat % at 14kmh™ and VO, at OLT and
RE jjometric- This model explained 91.8% of the variance in the
race time (R*> = 0.918, adjusted R*> = 0.887, F = 29.7, and p <
0.001). The results of the classical endurance performance model,
including VO, max, RE_,, and VO, at OLT, are presented in Table 3.
Collinearity between variables existed, and R? did not reach above
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0.918 (R* = 0.834, adjusted R*> = 0.772, F = 13.4, and p = 0.002).
Although the studied group was fairly homogeneous, with most ages
clustering between the early and late 30s and a CV of only ~11%,
additional analyses including age as a covariate showed that age was
not a significant predictor of the race time (p = 0.566) and did not
improve model fit (adjusted R? = 0.877 vs. 0.887 without age).

Post-race changes

All participants were tested after finishing the race. Physiological
variables measured in both pre- and post-tests are presented in
Table 4. Post-race VO, relative to body mass (mL- min~'-kg™!)
increased significantly by 3.4%, whereas absolute VO, (L-min™",
-0.73%) and VE (4.55%) showed no significant changes. The race

also negatively affected RE,,, which increased by 3.4% from pre-

ox>
to post-race (Figure 2). However, when running economy was

allometrically scaled (RE it did not differ significantly

allometric)’
(2.5%). Furthermore, RE . also showed no significant difference
between pre- and post-tests (2.1%). Substrate utilization (Figure 3)
changed significantly post-race with decreased RER (-6.18%),
increased Fat% (62.22%), and decreased Carb% (—25.32%).

None of the MotionMetrix biomechanical variables, such as
cadence (1.2%), ground contact time (—2.3%), vertical displacement
(-1%), overstride (—6.7%), or vertical force (2.6%), differed
significantly between pre- and post-test for any variable (p > 0.05

for all the variables).

Relationship between changes in RE and
other variables

To examine whether differences in waiting time between the end
of the race and the post-test influenced changes in RE, a Pearson’s
correlation analysis between ARE _ and waiting time was conducted.
The results of this analysis showed that there was no significant
correlation between ARE  and waiting time (r = 0.039; p = 0.898).

Physiological and performance-related
measurements

Participants’ pre-test measurements of  VO,max
(mL-min~'kg™!; r = 0.181, p = 0.573), VO, at OLT (r = 0.253,
p = 0.428), and RER at 14kmh™' (r = —-0.178, p = 0.560)
did not significantly relate to ARE_, Furthermore, participants’
performance did not relate to ARE . (r = -0.440, p = 0.132).
Moreover, no significant relationships between ARE,, and AWB
(r = 0.470, p = 0.105), AVE (r = 0.481, p = 0.096), Abody mass (r
= —0.493, p = 0.087), AH-la (r = 0.496, p = 0.084), and ARER (r =
-0.388, p = 0.191) were observed.

Biomechanical measurements

No significant relationships were found between changes in
biomechanical variables obtained from MotionMetrix and ARE__.
ACadence (r = 0.215, p = 0.480), A ground contact time (r = 0.234,
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TABLE 2 Multiple regression analysis with race time (s) as a dependent variable.

Independent variable Estimate (SE) p ‘ VIF Tolerance
Intercept 10835.95 (1859.49) <0.001
Fat% at 14 km h™! —-27.79 (8.89) 0.014 1.64 0.609
VO, at OLT -101.93 (15.67) <0.001 1.02 0.984
REqjometric 5.2 (2.54) 0.075 1.64 0.609

OLT, estimated lactate threshold; RE o,..ric» Tunning economy allometrically scaled oxygen cost; VIF, variance inflation factor.

TABLE 3 Classical model of endurance performance with race time (s) as a dependent variable.
Independent variable Estimate (SE) p VIF Tolerance
VO,max -101.85 (62.76) 0.143 8.69 0.115
VO, at OLT -8.26 (65.01) 0.902 8.69 0.115
RE,, 30.49 (9.15) 0.010 1.01 0.992

OLT, estimated lactate threshold; RE,, running economy oxygen cost; VI, variance inflation factor.

p = 0.442), AOverstride (r = —0.250, p = 0.411), Avertical force (r
= —0.174, p = 0.569), and Avertical displacement (r = —0.286, p =
0.343) did not relate to ARE_.

Discussion

The main findings indicate that the optimal regression model
(R* = 0.918) included fat% at 14 km h™!, VO, at OLT, and RE erric
as the strongest predictors of performance. The race increased
VO, relative to body mass by 3.4% and RE_, by 3.4%. Post-race
substrate utilization showed a 62.22% increase in fat oxidation
and a 25.32% decrease in carbohydrate use, reducing RER by
6.18%. Biomechanical parameters did not change from pre- to
post-race.

Race performance

(1973), VO, max is not a good predictor among athletes with similar
VO, max; in our cohort, values were homogeneous, except for two
outliers. Thus, VO,max did not add explanatory power, despite its
correlation. Likewise, vVO,max—linked to VO,max and RE and
shown to predict trail-running performance (Alvero-Cruz et al.,
2019; Coates et al., 2021; Sabater-Pastor et al., 2023)—also correlated
with performance but was excluded. Nonetheless, VO,max and
vVO,max remain important determinants of performance.
REallometric
our regression, contrasting earlier trail-running studies of long races
(Ehrstrom et al., 2018; Alvero-Cruz et al., 2019; Pastor et al., 2022;
Coates et al., 2021) and short races (Bjorklund et al., 2019). Those
studies, except for that by Ehrstrom et al. (2018), who measured

and RE correlated with performance and featured in

incline RE, assessed RE on level terrain despite greater elevation gain
and technical demands, which may have obscured its impact. Longer
races may prioritize fractional utilization and muscle preservation
over RE (Millet et al., 2012; Pastor et al., 2022; Coates et al., 2021).
Liding6loppet’s moderate elevation and technicality resemble hilly
road races, where RE strongly predicts marathon performance

Consistent with the classical endurance performance model (Bassett (Barnes and Kilding, 2015). Importantly, only allometrically

and Howley, 2000), performance in the 30 km XC Liding6loppet
correlated with VO,max, fractional utilization (speed and VO,
at OLT), speed at RCP, and RE (allometrically scaled oxygen
and energy cost), but not RE without scaling. Additionally,
race performance was correlated to substrate utilization at
submaximal speed and fat mass. However, a regression with
only VO,max, RE, and fractional utilization was limited by
multicollinearity (R* = 0.834), whereas a model including fat%
at 14kmh™!, VO, at OLT, and RE
(R*=0.918).

Although VO, max correlated strongly with performance, it

allometric €Xplained more variance

was excluded from the optimal regression, somewhat contradicting
previous trail-running studies (Ehrstrom et al, 2018; Alvero-
Cruz et al., 2019; Pastor et al., 2022). As described by Costill et al.
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scaled oxygen cost was related to performance, implying
that VO,/body mass is not strictly proportional (Svedenhag,
1995) across a wide mass range (the body mass range in this
investigation was 54-83.6 kg). Additionally, RE,. correlated with
performance, underscoring the role of substrate utilization in RE
(Fletcher et al., 2009).

OLT and RCP were strongly related to performance; VO, at
OLT featured in the optimal model, aligning with the study by
Scheer et al. (2019). Conversely, VT did not predict performance
in other trail races (Ehrstrom et al., 2018; Alvero-Cruz et al., 2019;
Pastor et al., 2022), likely due to greater technical difficulty, elevation
gain, and longer race duration, where low intensity diminishes
the influence of VT (Millet et al, 2012). In Liding6loppets
shorter, less severe course, participants ran at 93% + 5% of
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TABLE 4 Pre- and post-test physiological data from submaximal running at 14 kmh™* and paired Student's t-test results.

Pre-test Post-test A (post—pre) t, df Effect size
mean + SD mean + SD Mean 95% CI [LL, (Cohen'’s d)
ULI]
VO, (L-min"") 3274045 3294043 0.02 [~0.08, 0.13] 0.482, 12 0.134 0.639
VO, 47.1+33 48.6+22 1.5 [0.07,3.01] 2.284,12 0.634" 0.041

(mL-min~"kg™")

VE (L-min~") 91.33£17.83 95.9 +14.98 4.57 [-0.54, 9.67] 1.949, 12 0.541 0.075

Breathing 42.63 +6.63 50.5 +5.52 7.42 [4.74,10.11] 6.024, 12 1.671* <0.01

frequency

(L-min™")

RER 0.91 +£0.04 0.85+0.05 -0.06 [-0.08, —0.03] -5.083, 12 -1.410" <0.01

Fat% 28.8 +£13.0 47.5+17.5 18.71 [10.64, 26.78] 5.050, 12 1.4" <0.01

Carb% 71.2+13.0 52.8+17.5 —-18.4 [-26.57, -10.23] —4.908, 12 -1.361" <0.01

H-la (mmol-L™") 2.2+0.89 2.82+1.0 0.63[0.11, 1.14] 2.659, 12 0.737* 0.021

HR (bpm) 156 17 166 + 11 6+[-6,17] 1.139,8 0.380 0.288

WB 0.075 £ 0.022 0.083 £0.016 0.008 [-0.00, 0.02] 2.382,12 0.661" 0.035"

(keal'kg"-km™)

RE 201.8+ 14 208.4+9.3 6.6 [0.31, 12.99] 2.284,12 0.633" 0.041
(mLkg " km™)

RE, 1o metric 581.8 +46.3 597.7 +35.9 16.0 [-1.56, 33.47] 1.985, 12 0.550 0.071
(mL/kg"”*/km)
RE,. 0.997 £ 0.076 1.015 £ 0.052 0.019 [-0.01, 0.05] 1.369, 12 0.380 0.196
(kcal~kg'l km™)
RE,. b 0.922 + 0.059 0.933 £ 0.043 0.011 [-0.01, 0.06] 1.389, 12 0.385 0.190
(kcal'kg™"-km™)
Body mass (kg) 69.2+75 67.6 +7.7 -1.6 [-2.13,-1.13] -7.127,12 -1.977* <0.01

p <0.05; 95% CI, 95% confidence interval; LL, lower limit; UL, upper limit; df, degrees of freedom; VE, ventilation; RER, respiratory exchange ratio; H-la, hemo lactate; HR, heart rate; WB,
work of breathing; RE,, running economy oxygen cost; RE
expressed as energy cost excluding work of breathing.

allometric> TUNNing economy allometrically scaled oxygen cost; RE,, running economy energy cost; RE,_ ., running economy

vBLT, indicating race pace and performance VO, near vLT and  Cha nges between pre- and post-race
VO, at OLT.

Substrate utilization correlated with performance; higher fat and RE,, significantly increased post-race, while absolute oxygen
lower carbohydrate oxidation at submaximal speeds likely spare  cost, RE .- and RE . remained unchanged.
glycogen. Pastor et al. (2022) also confirmed the importance of These changes reflect increased fat reliance: a 62.22% increase
substrate utilization. in fat utilization demands more oxygen per energy yield, increasing

Fat mass was positively related to performance, RE,, while RE,. remains stable. RE also remains constant

allometric
consistent with previous studies (Alvero-Cruz et al, 2019;  duetonon-linear body mass scaling. Post-race, H-la increased, RER
Pastor et al., 2022; Bjorklund et al., 2019). Higher fat mass increases decreased (reflecting altered substrate use), WB increased, and body
gravitational work without enhancing capacity, explaining this  mass decreased. VE and biomechanical parameters did not change,
relationship. although biomechanical responses varied individually.

Parameters from the Stryd device (power output, ground contact Absolute oxygen cost did not increase post-race; instead,
time, vertical oscillation, leg spring stiffness, cadence, and step  reduced body mass elevated relative oxygen cost and RE_.
length) did not correlate with performance and were excluded,  Allometric scaling neutralized this change, suggesting that body
simplifying practical assessments by relying solely on metabolic-  mass influences relative oxygen cost (Svedenhag, 1995), although
cart data. ARE . was not significantly related to Abody mass, contradicting
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(A) Mean + SD of running economy oxygen cost (RE.,) during the pre- and post-test at 14 kmh™. (B) Individual values of RE,, at 14 kmh~ during the
pre- and post-test.*Significant difference (p < 0.05) between the pre- and post-test.
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FIGURE 3

(Left panel) Participants’ individual fat utilization (fat%) at 14 kmh™ in
the pre-and post-test. (Right panel) Participants’ individual
carbohydrate utilization (carb%) at 14 kmh™ in the pre- and
post-test.”**Significant difference (p < 0.001) between the pre- and
post-test for group mean.

this notion. Maintaining the same absolute oxygen uptake while
carrying less body mass inevitably increases RE , (mL-kg'km™),
which can give the appearance of poorer running performance.
At the same time, the substantially decreased RER implies greater
fat utilization, a substrate that requires more oxygen per unit
of energy produced than carbohydrate oxidation. This indicates
that the post-race increase in RE., may reflect the combined
influence of body weight loss (via sweat and glycogen depletion)
and a substrate shift toward greater fat oxidation once glycogen
availability is reduced. However, ARE , did not correlate with ARER.
Other studies show large RER shifts with increased energetic cost
(Kyroldinen et al., 2000; Nicol et al., 2007; Sabater Pastor et al.,
2021), likely due to longer, more demanding races, although short
trials also report notable oxygen cost increases (Candau et al.,
1998). Variations in race elevation, duration, population, and test
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conditions likely explain discrepancies. The lack of significant
VE change and absence of ARE, correlations with AVE or
AWB are in contrast with prior findings linking AVE and ARE
(Thomas et al., 1995). Moreover, unchanged biomechanics and their
non-association with ARE_, align with studies showing no relation
between RE and biomechanical changes (Hunter and Smith, 2007;
Kyroldinen et al., 2000; Nicol et al., 2007). Thus, RE , changes might
be likely driven by body mass loss (sweating and glycogen depletion)
and decreased RER, requiring more oxygen for fat oxidation.

The performance level did not correlate with ARE_, consistent
with findings of Sabater Pastor et al. (2021), indicating that
performance does not influence the degree of RE degradation in
long trail races or XC races such as Lidingdloppet. This contradicts
hypotheses linking RE deterioration and “fatigue resistance”
(Jones et al., 2021; Brueckner et al, 1991), warranting further
studies. Aerobic fitness, measured as VO, max, LT, and submaximal
running substrate use, also did not influence ARE,. Pre-test RE_,
negatively correlated with ARE_: runners with higher initial oxygen
cost changed the least, and only two with high pre-test RE, reduced
cost post-race (Figure 2). Notably, the top performer had the best
pre-race RE,, but the largest worsening (+23%), suggesting that
higher initial RE_, reserves allow a greater margin for decline. This
variability underscores the importance of individual responsiveness
post-race. This challenges the principle of Jone and s (2024) that the
best resilience (least decline in critical power/velocity) confers an
advantage. Although we did not consider the increase in energy cost
at the individual critical speed or changes in critical power/velocity,
our findings suggest that the subject with the best RE  in a fresh state
might still have an advantage despite the post-competition decline.
However, the heterogeneity of our sample makes it difficult to draw
definitive conclusions, and further investigation is warranted.

Limitations

There are some methodological limitations in the present
study that need to be considered and discussed. The only speed
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tested that was common to all runners included in the study was
14 kmh'!; therefore, it was not possible to capture physiological and
biomechanical responses post-race at different intensities. During
the post-tests, waiting time before testing was minimized, resulting
in a practical upper limit on the number of participants. On
average, post-race measurements were delayed by 45:15 + 24:28
(min:sec). This relatively long and inconsistent waiting period may
have allowed participants to recover to varying degrees, potentially
affecting the recorded physiological values and masking the true
magnitude of immediate fatigue or metabolic disturbances. To avoid
waiting times exceeding ~45 min, approximately 15 participants
could have been included, depending on the ranges in finishing
times. With a sample size of 13, however, the statistical power to
detect moderate effect sizes (Cohen’s d = 0.6) is low (0.512), and
large effect sizes (Cohen’s d = 0.8) are required for sufficient power
(>0.8). This suggests a likely large risk of type 2 errors in this study,
indicating that moderate effect sizes do not reach significance due
to the sample size. Accordingly, observed non-significant changes
with moderate effect sizes should be interpreted with caution before
conclusions are drawn. However, previous studies (Candau et al.,
1998; Hunter and Smith, 2007; Kyroldinen et al., 2000; Nicol et al.,
2007; Sabater Pastor et al., 2021; Lazzer et al., 2015) investigating
the effect of fatigue caused by running on RE had sample sizes
of 7-26. Another limitation in the sample size was that the group
included one elite runner who was an outlier. When this elite runner
is excluded, the regression model’s explained variance decreases
from 91.8% to 84.9%, indicating that the presence of this outlier
has an impact on our analyses. The group otherwise included
runners ranging from amateur to well-trained, which limits the
conclusions that can be drawn regarding the effects of fatigue in
elite runners and the differences in responses between elite and
well-trained athletes. However, the observed relationships did not
differ much from previous research, and the participants’ results
were logical and therefore included. It is also likely that adding more
data points from a broader range of athletes would yield similar
results. In our sample, there was only one female athlete; therefore,
the results may not be representative of the female population,
although the exclusion of this subject did not alter the variance
explained by the model, which remained at 91.8%. Finally, the
lack of a control group restricts the ability to establish causal
relationships. Future studies should include larger sample sizes to
increase statistical power, address sex differences, and explore the
potential deterioration of running economy at different running
speeds.

Conclusion

This study showed that performance in the 30km XC-
running race Lidingoloppet was related to RE, VO, max, vVO,max,
OLT, along with RCP, substrate utilization, and fat mass. The
best performance model could explain 91.8% of the variance
in performance and included VO, at OLT, fat% at 14 km h7l,
and RE
model of performance were also related to performance in XC

allometric- Physiological variables included in the classical

running; however, exchanging VO,max with fat% at 14 km h™
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increased the model’s ability to explain variance in performance.
This could practically be used by athletes and coaches to better
direct training to improve performance in this type of XC race.
The oxygen cost of running, RE_, increased post-race, likely due to
decreased body mass and increased fat oxidation. No biomechanical
changes were observed post-race, and biomechanical changes could
not explain increased RE_ . The participants’ aerobic fitness and
performance level did not influence or correlate with the degree of
change in RE_.

Larger and more diverse studies are needed before generalizing
practical applications. The present results, while important,
should be
constraints such as the limited sample size and variability in

considered exploratory due to methodological

post-race measurement timing. However, based on this study,
it can be suggested that practitioners prioritize exercise and
nutritional strategies that enhance fat oxidation at submaximal
intensities and incorporate both plyometric and resistance training
to improve allometrically scaled running economy—thereby
elevating speed at the lactate threshold. Furthermore, since
VO, at OLT, fat% at 14kmh™!, and RE
the
relying on metabolic-cart measurements rather than wearable-

allometric emerged

as strongest performance predictors, we recommend
derived biomechanical metrics for XC performance assessment
and training guidance. Future research is still needed to
explain the observed changes in RE, and why they differ
inter-individually. Moreover, further research is required to
determine whether the performance level is related to the

deterioration in RE.
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