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Mass medicine vs. personalized
medicine: from mathematical
methods to regulatory
implications

Inderpal S. Randhawa* and Grigori Sigalov

Food Allergy Institute, Long Beach, CA, United States

Clinical trials of a treatment in traditional mass medicine are based on the
concept of proof of efficacy. It must be proven for a group of subjects that meet
certain selection criteria. Subject variability must be demonstrated to exist and
yet not to invalidate the proof of efficacy. If so, it is assumed that new patients
meeting the same selection criteria would have a uniform response to treatment,
irrespective of their individual traits. However, the variability that can be ignored
for a group should not be ignored for an individual. Standard statistical methods
are designed to estimate an average effect size for large enough groups,
but they cannot predict an expected effect size for a single patient. Such
predictions based on the patient’s individual characteristics, rather than on their
classification as a member of a target population or study group, are possible
in personalized medicine. The latter employs multivariable predictive models via
advanced mathematical methods implemented in Artificial Intelligence (AI), and
it incorporates the subject variability in the predictive models to improve their
accuracy and selectivity. There is a common misconception that personalized
medicine belongs in a narrow area of rare diseases or genotype-guided care.
In this paper, we argue that AI has potential to improve the treatment success
estimates in traditional mass medicine as well at no extra cost to researchers.
The clinical trial data on subject variability that are already routinely collected
only need to be analyzed and interpreted using the methods of personalized
medicine. To implement such improvements in medical practice, they need to
be acknowledged and regulated by FDA and its counterparts in other countries.

KEYWORDS

AI, machine learning, adaptive clinical trials, patient variability, subgroup analysis,
multivariable models, predictive modeling, precision medicine

1 Introduction

Historically, medicine has aimed to treat large groups of people with similar symptoms
using the same intervention (e.g., drug, operation, treatment). This approach, referred to
as mass medicine, has proven effective in the prevention and treatment of widespread
diseases such as smallpox, tuberculosis, syphilis, and polio. To test a new drug, typically, a
placebo-controlled clinical trial is performed with a few hundred participants [Walsh et al.
(2014) report a median sample size of 682 patients based on meta-analysis of 399 trials].
Treatment success is often measured by comparing the percentage of positive outcomes in
the intervention group against the control group. The assumption is that future patients
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meeting the same selection criteria as trial participants will exhibit a
similar rate of success or effect size of treatment.

The group of subjects selected for a trial must constitute a
representative sample of the target population. Variation of patient
characteristics within the study group must be shown to be similar
to the respective distribution within the target population, though
no exact metrics of similarity are specified by the regulators such
as FDA. The trial data analysis must prove the treatment’s efficacy
despite the patient variability. This is often done by using Student’s
t-test to show the statistical significance of the differences between
the intervention group and the placebo control group. Once the
patient variability is demonstrated to be irrelevant to the treatment
efficacy, it is also ignored when it comes to the estimate of the
treatment’s success rate or effect size. This approach amounts
to a zero-parameter model for all patients that belong to the
final analyzed population. Thus, to evaluate expected chances of
success for new patients of mass medicine, medical professionals
rely on simple statistical data (e.g., the average effect size and its
standard deviation or confidence interval [CI]) that are the same
for all patients that meet the treatment criteria, and on empirical
experience, rather than on explicit predictive modeling, with rare
exceptions.

Over recent years, we witnessed considerable progress in
the application of Machine Learning (ML) and, more generally,
Artificial Intelligence (AI) in personalized medicine, which is often
employed to deal with rare diseases, atypical patient conditions, and
genotype-based healthcare. In personalized medicine treatment is
tailored for the individual patient rather than a target population,
which might be too small for meaningful statistical analysis.
Personalized medicine aims at maximizing the effect size for a
narrow sample of subjects or even a single patient, in contrast
to the goal of maximizing the target population coverage with
the minimum demonstrably non-random effect size in mass
medicine.

The novel AI approaches developed for personalized medicine
had no visible effect on traditional mass medicine, which is
widely considered to be an established field where classical
statistical methods are sufficient for clinical trial data analysis and
interpretation. In this paper, we would like to challenge this view.
While the account for patient variability via multivariable models is
as much at themethodological foundation of personalizedmedicine
as the lack thereof is one of the governing principles of mass
medicine, the gap between them is not as formidable as it is often
perceived, and it could (and should) be bridged, for the benefit of
both medical paradigms and for their patients.

The natural pathway to such a synthesis of ideas would be
to proactively employ the mathematical apparatus of personalized
medicine, that is, multivariable modeling implemented in the form
of appropriate AI methods, for analysis and interpretation of data
obtained in clinical trials of standard designs used inmassmedicine.
In what follows, we plan to demonstrate that enough useful data
are already being collected in such trials but not utilized to the
full extent. Therefore, the advances in predicting the treatment
outcomes for new patients could come at zero additional cost of
data acquisition, while the extra costs of data maintenance, storage,
analysis, etc., are comparably low.

Below, we examine the key distinctions between traditional
statistical tools used in mass medicine and advanced AI models

employed in personalized medicine. We provide examples of
published clinical trial cases and discuss how some data, collected
but not fully analyzed, could be used to better explain the
outcomes. We also suggest that the mathematical differences
between the methods of classical statistics and modern AI
should be reflected in evolving regulatory requirements to
accommodate novel clinical trial designs and approaches to
data analysis.

2 Statistical measures of treatment
efficacy in mass medicine and
personalized medicine

For the benefit of readers coming from different backgrounds,
wewill provide a correspondence between the termsused to describe
the logic and data flow of clinical trials in medical literature, on one
hand, and in mathematics, on the other hand. Here, we use the term
‘mathematics’ in a wide sense so as to include its applied fields such
as statistics, ML, and AI.

The concept behind the search for a new treatment, i.e., a
drug, through a clinical trial is very simple: if a large group of
patients is selected from the target population using a fixed set of
selection criteria, and the drug is tested successfully on members
of that group, then one can expect similar results when the same
drug is administered to other subjects from the target population.
Typical general design of a placebo-controlled clinical trial is as
follows: the test group is randomly split into the intervention and
the control groups, the former receiving and the latter not receiving
the drug. If there is a statistically significant difference between the
occurrence of the desired positive outcome in the intervention group
as compared to the control group, then it must be due to the effect
of the drug rather than pure chance.

In mathematical terms, one selects a class of objects that satisfy
the same conditions and are therefore assumed to have the same
statistical property with respect to a certain test (corresponding to
the medical intervention). When the test is applied to an object, the
latter either passes the test (positive outcome) or fails it. One cannot
know in advance whether any particular object would pass or fail
the test, but it is assumed that the probability of passing is the same
for any randomly selected subset of the class, within a confidence
interval depending on the subset size. This assumption makes it
possible to estimate the probability of passing the test for a selected
subset (subjects of a clinical trial), and then use it to predict the
average chances of passing for the rest of the class (new patients). In
the terms ofAI, amodel is trained and validated on a training dataset
collected during the clinical trial. Finally, the trained model is used
to predict the probability of the positive outcome in out-of-sample
cases, that is, for new patients.

A model in which all objects are assumed to have the
same probability of passing the test is parameter-free and
therefore the easiest to design and test. It may not be the most
accurate though for test objects that are not identical, such as
humans—as opposed to coins flipped or dice thrown in the classical
experiments at the foundation of probability theory and statistical
science.
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2.1 Account of patient variability in clinical
trials via subgroup analysis

Clinical trial participants are not identical but are expected
to exhibit similar treatment responses, at least statistically. To
prove that different individuals could show a similar response,
one must demonstrate that their differences would not affect
the trial’s conclusions. This is done, in particular, via subgroup
analysis. For example, in a study of the effect of feeding newborn
infants with a Cow Milk Formula (CMF) on the onset of Cow
Milk Allergy by their second birthday (Urashima et al., 2019) the
subgroup selection was based on tertiles of serum 25(OH)D levels,
a biomarker of vitamin D status. The intervention, defined here
by avoiding CMF for a period of time after birth, was found to
be significant (P = 0.02) for the middle tertile, but not for the
other two. The study lists 16 additional participant characteristics
(APCs) such as parental age and the incidence of several allergies
in the infants’ parents and siblings. The mean numerical values
for these characteristics are provided only to claim—without an
analysis of statistical significance or correlation—that they are
similar across the intervention and control groups. Thus, it is
demonstrated that there is a certain variation of APCs among the
trial subjects, and yet, the intervention was effective for the middle
tertile of the intervention group. Therefore, a conclusion is made
that those APCs are not essential and could be ignored when
selecting new patients to whom the intervention in question could
be recommended.

While this is a valid and prevalent train of thought, it could
be that including the additional data—already at the authors’
disposal—on 16 additional parameters in the numerical analysis
would provide additional insight, compared to ignoring those data
summarily. For example, they could be used for subgroup analysis.
It is not clear why CMF avoidance was effective in the middle tertile
(21–36 ng/mL) but not the lower or the upper ones. Could it be
that some of the 16 known APCs had something to do with this
result? Is it possible that the subgroup for which the intervention
was effective would include a larger percentage of the participants
if the subgroup split was done differently? Such questions were
neither answered nor asked inUrashima et al. (2019).Wewill discuss
below why not, in our opinion, and how a clinical trial could benefit
if they were.

In a study of the effect of peanut avoidance on peanut allergy
in young children (Du Toit et al., 2015), two subgroups were
defined by the results of a skin-prick test (SPT) (no wheel or
1–4 mm wheel) at the beginning of the trial. In addition, 8 APCs
were recorded. Among them, the results of the trial grouped by
race showed that the effect of peanut avoidance was statistically
significant for all races but one. The race subgroup that was an
exception only had 8 participants, compared to 24 to 460 in
other race subgroups. The primary outcome was defined as the
proportion of participants with peanut allergy at 60 months of
age. This proportion turned out to be consistent yet somewhat
different across the race subgroups. While it is clear that the final
conclusions of the study are valid for all races (possibly barring one
for which there was not enough data), it would be interesting to
see if race had any effect on the numerical value of peanut allergy
occurrence. Averaged data for the remaining 7 additional participant
characteristics were provided but not used for analysis or discussion.

A more comprehensive analysis could have identified predictors of
treatment effectiveness.

In mathematical terms, subgroup analysis introduces a discrete
model parameter for each subgroup criterion. In Urashima et al.
(2019), it was the tertile ordinary number (1, 2, or 3) depending on
serum25(OH)D level, a single parameter (covariate). Bradshaw et al.
(2023) performed exploratory subgroup analysis according to
filaggrin (FLG) genotype in a study of emollient application’s effect
on preventing atopic dermatitis and other allergies. There were 3
subgroups (one, two, or no mutations) for a single parameter, the
FLG genotype. In Du Toit et al. (2015), one parameter was the SPT
result (negative or positive, i.e., a Boolean value) and the other was
race (a categorical variable with 5 possible values). In these studies, it
would be possible to create a 1- or 2-parameter model, respectively,
which would be a step up from a parameter-free model in the sense
of the model’s potential predictive power. In the research quoted
above, the covariateswere used to analyze the treatment effectiveness
across different parameter values. But they could also be used to
predict the probability of the primary outcome (PPO) depending on
those parameters, if such correlation turned out to exist. Moreover,
theAPCs thatwere numerical by nature, such as the serum25(OH)D
levels, did not have to be necessarily grouped into tertiles or other
range-based subgroups.There is a chance that PPO depended on the
numerical value of that parameter directly, not just on the subgroup
it falls into. Finally, all the APCs that were recorded but not used
in the analysis could become predictors in an ML model. Pending
numerical analysis, some of them might turn out to be significant
predictors of PPO.

2.2 Subgroup analysis in multiple
dimensions: parameter space
fragmentation issue

FDA guidelines (Guidance for Industry, 1998) recommend
diverse clinical trial populations tomirror real-world demographics.
Usually, the APCs, also referred to as Demographics and Baseline
Characteristics, are reported to demonstrate such diversity and,
therefore, a lack of selection bias. Each APC potentially could be
used as a parameter to stratify the study cohorts for further subgroup
analysis.Wewill call them subgroup stratificationparameters (SSPs).
Mathematically, each of them corresponds to an additional axis
on a graph in a visual presentation of data (at least when the
number of SSPs is 3 or fewer), or to an additional degree of
freedom (DoF) of a possible ML model. Often, multiple APCs are
listed yet only one of them is used as an SSP in subgroup analysis
(Urashima et al., 2019; Du Toit et al., 2015).

If the entire group of study subjects is varied enough in respect
to each SSP (i.e., along each DoF) so as to be representative of the
target population, could the same be claimed for each subgroup?
The short answer is, not necessarily. That would only be true if
the subgroup counts do not have a strong correlation across SSPs,
if more than one of them is present. To illustrate this statement,
consider a hypothetical clinical trial with 1,000 subjects stratified
into subgroups by sex (male or female) and age (under 18 and 18
or above). Suppose the number of subjects in each cross-stratified
subgroup are as given in Table 1.
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TABLE 1 Cross-stratification by age and sex of participants in a
hypothetical clinical trial.

Age/Sex Male Female Total by age

Under 18 210 18 228 (22.8%)

18 and above 275 497 772 (77.2%)

Total by sex 485 (48.5%) 515 (51.5%)

Theoverall percentage of female subjects (51.5%) and the overall
percentage of subjects aged under 18 (22.8%) closely mirror the
US population. However, females are grossly underrepresented
in the cohort of subjects under 18 (18 of 228, or 7.9%). Also,
subjects under 18 are grossly underrepresented in the female cohort
(18 of 515, or 3.5%). This observation of a strong correlation
could be verified by a chi-square test (in this case, χ2 = 224.03,
which is much greater than the critical value of 3.84) or another
statistical metric appropriate for the data (Howell, 2013). If the
purpose of subgroup analysis was to “explore the uniformity
of any treatment effects found overall” (Guidance for Industry,
1998) and to verify that the conclusions of the trial for the
entire group of 1,000 subjects were valid across different
demographic groups (Statistical Guidance on Reporting Results,
2007), then it would not be satisfactory to only perform the
subgroup analysis for age alone and sex alone. Due to a strong
correlation between these parameters in the subject count, the
subgroup analysis should then be done for each of the 4 cross-
parameter subgroups (male children, female children, male adults,
female adults).

This would create a problem, however, because a subgroup
of 18 female children may be too small for meaningful statistical
analysis. In general, with each additional SSP and each additional
level (stratum) in the respective stratification, the selected trial
population becomes further fragmented. For example, in a study
of efficacy of Tezepelumab in asthma, Corren et al. (2023) use
biomarker subgroups based on FEIA (2 levels), ICS dose (2 levels),
FENO (4 levels), BEC (4 levels). Also, they report APCs (which
are not but could be used as SSPs) such as sex, allergy status,
number of exacerbations, history of nasal polyps, OCS use at
entry (2 levels each) and BMI (3 levels). If all of these identifiers
were used to create cross-parameter subgroups, then the parameter
space of the design would be fragmented into 27 × 3 × 42 =
6,144 subgroups. Given a total of 665 subjects in the intervention
group, this would mean that most of the 6,144 subgroups would
be assigned too few study subjects (or none at all) for statistical
analysis. This does not mean, however, that such low-populated
subgroups do not exist in the target population. Vital et al. (2022)
utilize 8 two-level subgroups as well as stratification based on race
(4 levels) and region (5 levels), for a total of 28 × 4 × 5 = 5,120
potential cross-parameter subgroups for a study population of 360
subjects in the intervention group. Necessarily, subgroup analysis
is performed for each subgroup taken alone, but not for cross-
parameter combinations of them. As shown above, this might lead
to misinterpretation of the trial’s results due to interactions between
subgroups.

2.3 Broader inclusion criteria mean smaller
average effect size

The study population in any clinical trial is limited by
practical considerations of subject availability, patient consent,
data acquisition, and overall per-subject costs. It would not be
reasonable nor possible to obtain enough subjects to populate
each and every cross-parameter subgroup for sound statistical
analysis. As recommended by FDA (Guidance for Industry, 1998),
the present covariates (APCs) are reported to show the study
population diversity or used as SSPs to define subgroups for
exploratory subgroup analysis. Once it has been established that
the population’s variation with respect to these covariates does not
compromise the overall uniformity of any treatment effects, the
APCs are no longer considered, and the trial endpoints (usually, the
treatment efficacy and safety) are normally not adjusted for any APC
variation.

This approach stems from the goal of mass medicine to treat
as high a proportion of the target population as possible using
the same intervention. When the treatment effect can be measured
numerically, the widest coverage of the target population is achieved
when the treatment’s metric is permitted to have the lowest value
(assuming that a higher metric corresponds to a stronger positive
effect) above a certain threshold. For example, Chan et al. (2020)
use SCORAD and a Life Quality Index, while Maurer et al.
(2013) use an itch-severity score as numerical metrics of treatment
effect. Typically, Student’s t-test is used to verify the statistical
significance of the difference between the intervention and placebo
groups. When the difference is just enough to reject the null
hypothesis (e.g., with P value of 0.05 as a threshold), the t-test
proves the treatment efficacy irrespective of its effect size (e.g., the
numerical difference between the pre- and post-treatment metrics).
A greater average effect size could be achieved if a lower P value
is chosen as a threshold, but this would come at the cost of
fewer trial subjects meeting the stronger selection criteria. And
vice versa, broader uniform coverage of the target population
may reduce the average treatment effect size, though it can still
remain strong enough to demonstrate efficacy—i.e., statistical
significance.

2.4 Resolution of parameter space
fragmentation issue via transition from
subgroup analysis to ML modeling

When the goal is to optimize the treatment effect size, albeit
for a smaller group of patients or even a single patient, rather
than to treat a wider population with a uniform yet lower average
success rate, one enters the realm of personalized medicine. It
uses the same principles to collect clinical data, but it processes
them differently because of a different endpoint. Instead of proving
that covariates could be ignored and that data for subjects with
different APC values could be summarized to produce a variable
averaged (ideally) over the entire study population, personalized
medicine seeks to build a model in which every essential APC
is included, and its effect on the endpoint variable is modeled
to best fit the observed data distribution over the entire trial
population. ML models, though not the only type of AI methods
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TABLE 2 Participant Characteristics in a hypothetical clinical study of
treatment effect on FEV1 in asthma patients.

Subgroup Age (yr) FEV1 (SD) (%)

Overall (n = 500) 25.4–74.9 72.1 (16.1)

Subgroups stratified by age

Lower tertile (n = 165) 25.4–48.1 79.5 (18.5)

Middle tertile (n = 166) 48.2–61.8 72.1 (14.4)

Upper tertile (n = 169) 62.3–74.9 64.8 (11.0)

used in medicine, turn out to be especially well-suited for the
task (Sinha et al., 2021; Randhawa et al., 2023; Liu et al., 2019;
Randhawa and Marsteller, 2024).

The general idea behind a clinical trial for the purposes of
mass medicine is that, to prove the treatment efficacy for a target
population, one must prove it for a statistically representative
subset (randomized sample) of that population. A trial must
show that the subjects within the selected sample are similar
enough, despite the APC variations, to make conclusions about
the average expected outcome for the entire group. Since
individual APCs of the trial subjects are discarded, one cannot
predict the effectiveness of treatment for a particular individual
patient. One can only predict the mean effectiveness for a
population to which that patient belongs, according to the selection
criteria.

On the other hand, an ML model is designed to make a
prediction for an individual out-of-sample (new) patient using the
values of all essential APC parameters (predictors), not just based
on the fact that this patient meets the same selection criteria as
the members of the clinical trial’s final analyzed population. The
predictive power of anMLmodel is due to its utilization, at the stages
of model design, training, validation, and testing, of the data set for
the entire trial population, including subjects with dissimilar APC
values. Outliers and inessential parameters can be automatically
detected and removed. Values of continuous variables no longer
need to be grouped into finite intervals for subgroup analysis
but can be used as continuous predictors in a regression model.
This resolves the issue of parameter space fragmentation. Possible
correlations between the predictors are automatically handled when
the model is trained, redundant predictors are removed, and the
contributions of remaining predictors are estimated along with
their P-values and CI bounds. As such, a regression ML model
amounts to the classical statistics treatment of data inmore than one
dimension. Any additional patient parameters become ameaningful
data source that helps to elucidate the effect of those APCs on
the treatment outcome and predict it more accurately for each
individual patient. It is worth emphasizing that the data required for
such analysis are already routinely collected in traditional clinical
trials (Urashima et al., 2019; Du Toit et al., 2015; Bradshaw et al.,
2023; Corren et al., 2023; Vital et al., 2022; Chan et al., 2020;
Maurer et al., 2013; Liu et al., 2019).

Subgroup analysis uses established statistical tools to prove
that the treatment efficacy is uniform across certain subgroups

and to find those subgroups where this is not the case. In other
words, it establishes the selection criteria for the treatment. ML
algorithms also possess proven mathematical tools to determine
which study subjects should not be part of the final analyzed
population (i.e., to find outliers), to select parameters that are
essential for explaining the outcome variability, and to evaluate the
expected prediction error (Kuhn and Johnson, 2019). Therefore, it is
not only technically possible but advisable to consider all available
APCs as candidate predictors for an ML model.

For example, in a study of peanut anaphylaxis risk in children
and young adults (Randhawa et al., 2023), an automatic selection
algorithm picked 10 essential predictors out of 243 available
demographic and biochemical parameters. The resulting ML model
predicted the severity of possible anaphylactic reaction to peanut for
individual patients with a recall of 95.2% and area under the curve
(AUROC) > 0.99.

In a study of 214 children with cow’s milk
anaphylaxis (Randhawa and Marsteller, 2024), 8 variables proved to
be essential (P < 0.05). It may be useful as a demonstration on how
large-scale data can build ML platforms to actually drive individual
outcomes toward diagnosis and remission of dairy allergy.

Paper (Sinha et al., 2021) is another example of a case
study that demonstrates how ML can be utilized to uncover
clinically meaningful subgroups, improve treatment targeting,
and explain heterogeneity of treatment effects. This study
applied unsupervised ML clustering to patient data from
three randomized controlled trials on Acute Respiratory
Distress Syndrome (ARDS)—FACTT, ALVEOLI, and ARMA—to
identify distinct biological subphenotypes (hyperinflammatory
vs. hypoinflammatory). The ML-derived subgroups showed
significantly different responses to interventions—e.g., fluid
management strategies had divergent effects depending on the
ARDS subtype. These insights were not apparent in the original
average-effect analyses.

2.5 Mathematical concept of probability
and its clinical interpretation

Consider amedical professionalweighing a certain treatment for
a patient. For simplicity, let us assume that the primary outcome
is qualitative (positive or negative). A proof of treatment efficacy
by simple, time-proven statistical tools, based on a clinical trial
of a large enough number of similar patients, tells the doctor
that the treatment should have a positive effect for that particular
patient with a certain published probability. But a more accurate
statement should be as follows: given a large enough number
of patients like one the doctor is considering, provided that all
of them meet the selection criteria of the trial’s final analyzed
population, the treatment should have a positive effect for a certain
percentage of them.

This percentage is a fixed number that is the same for all
members of the respective population, and as such, it should not
be necessarily interpreted as the probability of a positive effect
for an individual patient. A train of thought saying, for example,
“if the treatment had positive outcome for 70% of a responder
subgroup, then there is a 70% probability it would work for a new
patient meeting the same criteria” exemplifies a misinterpretation
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FIGURE 1
Source data (FEV1 vs. Age, dots) of a hypothetical clinical study of treatment effect on FEV1 in asthma patients and the results of data analysis via a
parameter-free statistical model. Vertical dashed lines show stratification into tertiles by age. The overall study population-mean FEV1 is shown as a
bold horizontal line, with the shaded area representing one standard deviation (SD = 16.1) above and below it.

TABLE 3 Parameters of the ML linear regression model trained on the source data of the hypothetical clinical study of treatment effect on FEV1 in
asthma patients.

coef std err t P>|t| [0.025 0.975]

Intercept 101.2049 2.646 38.245 0.000 96.006 106.404

Age −0.5388 0.047 −11.344 0.000 −0.632 −0.445

of the mathematical concept of probability. The trial subjects have
different values of their covariates, or APCs. Some of these APCs
may correlate with the primary outcome. It is possible that the APC
variations within the sample lead to a systematic bias for individual
patients, but positive and negative biases of different patients cancel
each other on average. If the APC data are discarded as irrelevant
(which is correct in the statistical but not individual sense), and their
possible correlation with the outcome is not analyzed and reported,
then one cannot predict whether the APCs of a new patient would
result in a bias compared to the reported average value for the
group, let alone evaluate such bias. Even if the doctor knows from
experience that some of the patient’s APCs, for example, age, BMI,
blood panel data, etc., indicate that the patient might be more or less
susceptible to treatment than average, there is no tool at the doctor’s
disposal to adjust the average success expectancy numerically if
those APCs are not part of a predictive model. If they are, then some
of the outcome’s variability in the clinical trial can be explained by
the APC variation, and that information could be derived from the

group data and then used to improve the accuracy of prediction for
a new patient.

Using more formal terms, a statistical model obtained by testing
a group of objects and retaining only the average value of the
endpoint variable and its standard deviation (SD) is parameter-free.
Classical statistical science deals with objects such as coins or dice,
and it is (correctly) assumed that all objects are practically identical.
Therefore, when tested, they exhibit different outcomes randomly,
without a bias. Subjects of medical trials are never identical; on the
contrary, it is required that the trial population has a distribution of
APCs that is representative of the target population. However, since
the outcomes are averaged over all subjects, any existing bias due
to APC variability cancels out. This creates a parameter-free model
that is valid for a group with the same distribution of APCs, but
that may not be accurate for a subgroup with a narrow distribution
of APCs (e.g., females of the same age), or for a single patient. If
the APCs do not correlate with the outcomes of the trial, then the
outcome variability is truly random, and the parameter-free model
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FIGURE 2
Source data (FEV1 vs. Age, dots) of a hypothetical clinical study of treatment effect on FEV1 in asthma patients and the results of data analysis via a
single-parameter linear regression model. The prediction of FEV1 depending on age is shown as a bold sloped line, with the shaded area representing
one standard deviation (SD = 14.3) above and below it.

is correct. Note that this would not be a typical situation, and then
the absence of correlation should be proven statistically, just as the
statistical significance of efficacy is routinely proven. However, if
such a correlation exists but it is ignored, then a systematic bias is,
in effect, misinterpreted as random variation. In that case, not only
a single patient but also any subgroup with different distribution of
APCs may demonstrate an uncompensated bias.

As a simple example, imagine a large set of asymmetric dice
with a broad distribution of randomly distorted shapes. If you throw
all dice together and count the outcomes 1 to 6, you may find that
they have equal probabilities, just like in a set of perfectly shaped
dice. However, every single asymmetric die, when thrown alone,
would show a systematic bias toward some outcomes. This behavior
is only hidden in a group with a specific distribution of shapes. A
group-based frequency of an outcome can only be interpreted as
the probability of a random event if all objects in the group are
identical.

2.6 Clinical trial data interpretation via
parameter-free vs. multivariable models

Consider a hypothetical clinical study that recorded forced
expiratory volume in one second (FEV1) in 500 asthma patients aged
25–75. Suppose that the only recorded APC was age, and that the
efficacy is demonstrated for all age groups.Wewill compare possible

reports of the study results analyzedwithin two paradigms discussed
above. The data were randomly generated for the purpose of this
demonstration to be normally distributed around the mean, which
is a linear function of age.

Using the traditional approach, the participants are divided
into 3 tertile subgroups stratified by age, with the mean FEV1 and
standard deviation (SD) shown in Table 2. Figure 1 presents the
source data points, the position of the overall mean FEV1, and
the band that is offset from the mean by 1 SD in each direction.
Clearly, the data suggest that a typical FEV1 decreases with age,
but a parameter-free model has no means of incorporating this
interaction, even if it is discovered and noted. As a result, the overall
mean FEV1 better represents the results for the middle tertile than
the lower and upper tertiles.This leads to the overall SD (16.1) being
greater than the SD for the middle and upper tertiles (14.4 and 11.0,
respectively).

If the same raw data are analyzed using an ML linear regression
model with age as a predictor, the result is not a fixed number but a
formula [FEV1] = A + B × [Age], where intercept A and slope B are
shown in Table 3, each along with its own error and CI. Using this
formula or the trained ML model, the expected FEV1 and its error
margin can be predicted individually for a new patient using their
age, as opposed to using the overall mean FEV1 and error obtained
for all age groups. The regression has a root-mean square error
(RMSE) of 14.3 (compare it to SDs in Table 2) and it approximates
the true data more closely and uniformly across all ages (Figure 2).
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3 Conclusion

Traditional statistical methods remain widely used in clinical
trials due to their simplicity and established regulatory acceptance.
Estimates of treatment effectiveness obtained using such simple
parameter-free models, however, may fail to account for patient
variability, in which case they may be biased when applied to
out-of-sample groups of patients or individual patients. Analysis
of correlation between the primary endpoint’s variation and the
patient variability can be performed using multivariable models and
employing AI and, in particular, machine learning (ML) modeling.
This approach is still mostly limited to personalized medicine, but
in fact, it can be easily applied to data analysis in traditional clinical
trials. Such synthesis of the personalized medicine methodology
with the mass medicine clinical data may provide tangible benefits
at virtually no cost: (i) unexplained variation (1 – R2) of the primary
endpoint can be reduced; (ii) the effect size can be estimated with a
smaller RMSE and narrower CI; (iii) predictions of patient outcome
could be made more accurately for individual new patients.

Currently, there are extensive FDA documentation and
recommendations (Guidance for Industry, 1998; Howell, 2013)
related to the utilization of traditional statistical models in
clinical trials. ML modeling, though it is in fact an extension and
development of the classical statistical methods via more advanced
mathematical means, are not regulated by FDA as clearly, though
recent publication (U.S. Food and Drug Administration, 2025)
made a considerable step in the right direction. In particular,
subgroup analysis, which is central to many published clinical trials
and thoroughly discussed in FDA documents, may be replaced or
complemented by regression analysis or another method of analysis
of continuous variables inMLmodeling.While FDAdocumentation
mentions possible presence of covariates that correlate with the
primary endpoint, insufficient regulatory guidance may impede
the FDA approval of clinical trial results that incorporate machine
learning in data analysis.

To facilitate the integration of personalized medicine into
regulatory practice, the FDA could expand its guidance to include
multivariable modeling and AI-based analysis in clinical trials.
This includes standardizing the use of ML tools for individualized
outcome prediction, requiring reporting on covariate-outcome
relationships, and allowing hybrid trialmodels that incorporate both
traditional and AI-driven analyses. Additionally, the FDA should
establish performance and validation standards for predictive
models, encourage the use of real-world and historical data
for training, and support adaptive trial designs guided by AI.

Clarifying regulatory definitions for terms like “personalized”
and “precision” medicine would further promote consistency and
transparency.These steps would ensure a more organized, equitable,
and scientifically robust regulatory pathway for personalized
medicine. Expanding the guidelines of FDA, EMA, and similar
agencies to include ML-based trial designs in a more detailed
and explicit fashion would facilitate the integration of personalized
medicine into clinical practice, improving treatment efficiency and
patient outcomes.
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