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Purpose: Spinal X-ray image segmentation faces several challenges, such 
as complex anatomical structures, large variations in scale, and blurry or 
low-contrast boundaries between vertebrae and surrounding tissues. These 
factors make it difficult for traditional models to achieve accurate and robust 
segmentation. To address these issues, this study proposes MDWC-Net, a novel 
deep learning framework designed to improve the accuracy and efficiency of 
spinal structure identification in clinical settings.

Methods: MDWC-Net adopts an encoder–decoder architecture and introduces 
three modules—MSCAW, DFCB, and BIEB—to address key challenges in spinal 
X-ray image segmentation. The network is trained and evaluated on the Spine 
Dataset, which contains 280 X-ray images provided by Henan Provincial People’s 
Hospital and is randomly divided into training, validation, and test sets with a 
7:1:2 ratio. In addition, to evaluate the model’s generalizability, further validation 
was conducted on the Chest X-ray dataset for lung field segmentation and the 
ISIC2016 dataset for melanoma boundary delineation.

Results: MDWC-Net outperformed other mainstream models overall. On the 
Spine Dataset, it achieved a Dice score of 89.86% ± 0.356, MIoU of 90.53% ± 
0.315, GPA of 96.82% ± 0.289, and Sensitivity of 96.77% ± 0.212. A series of 
ablation experiments further confirmed the effectiveness of the MSCAW, DFCB, 
and BIEB modules.
Conclusion: MDWC-Net delivers accurate and efficient segmentation of spinal 
structures, showing strong potential for integration into clinical workflows. 
Its high performance and generalizability suggest broad applicability to other 
medical image segmentation tasks.

KEYWORDS

convolutional neural networks, spinal image segmentation, multi-scale convolutional 
adaptive weighting, dual feature complementary block, bottleneck information 
enhancement block 

 1 Introduction

The spine, as the structural support for the body and its organs, can develop deformities, 
cause back pain, or even lead to paralysis when affected by disease (Khalifeh et al., 
2024). Accurate spinal segmentation plays a crucial role in the diagnosis and treatment
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of spinal disorders. It not only enables clinicians to more precisely 
locate and identify spinal structures, but also provides the 
foundation for measuring key spinal parameters, spinal registration, 
and scoliosis classification (Liebmann et al., 2024; Azampour et al., 
2024; Sarwahi et al., 2021; Thibodeau-Antonacci et al., 2025; 
Kim et al., 2022). Such technology is essential for evaluating 
disease severity, monitoring progression, and planning surgical 
interventions. Among the various imaging modalities, X-ray 
technology has become a commonly used clinical tool for 
spinal disease diagnosis due to its advantages of low radiation 
exposure, rapid imaging, and cost-effectiveness (Zhang et al., 2020). 
Consequently, developing automatic segmentation algorithms 
tailored for spinal X-ray images holds substantial clinical 
value. In recent years, deep learning—an emerging branch of 
artificial intelligence—has achieved remarkable progress in image 
classification, semantic segmentation, and object detection, by 
learning high-level representations from data (Duan et al., 2025; 
J. Chen et al., 2025; Zhou et al., 2023; Gui et al., 2024). These 
advancements offer innovative solutions for accurate segmentation 
in spinal medical imaging. However, current deep learning-based 
methods for spinal X-ray image segmentation still face several 
limitations. First, spinal structures often exhibit complex multi-scale 
characteristics, and existing methods struggle to capture features at 
different scales effectively, resulting in suboptimal segmentation 
performance and loss of fine details. Additionally, many networks 
suffer from inadequate feature fusion mechanisms, which leads to 
redundancy and information loss. To address the above challenges, 
we propose a novel deep learning framework, the Multi-Scale 
Dynamic-Weighting Context Network (MDWC-Net), for spinal 
X-ray image segmentation. The network is designed to enhance the 
extraction of anatomical details across multiple scales, improve the 
fusion between low- and high-level features, and strengthen the 
modeling of global contextual information. The main contributions 
of this work are as follows: 

1. A specialized segmentation framework tailored for spinal X-
ray images is developed, aiming to provide a reliable and 
efficient tool to support automatic diagnosis and quantitative 
analysis in clinical settings.

2. Effective modules are designed to improve multi-scale 
representation, contextual awareness, and feature interaction 
within the encoder–decoder architecture.

3. Extensive experiments on spinal and cross-modality datasets 
demonstrate the superior performance, efficiency, and 
generalization ability of our proposed method.

2 Materials and methods

2.1 Application of deep learning techniques 
in medical image segmentation

In recent years, deep learning techniques have made 
significant progress in various fields. Deep learning automatically 
extracts features from data through multi-layer neural networks, 
eliminating the complex process of traditional feature engineering 
(Talaei Khoei et al., 2023). Medical image segmentation, as one 
of the key tasks in medical image processing, aims to separate 

the region of interest from the background in images, helping 
clinicians with disease diagnosis and treatment. Fully Convolutional 
Networks (FCNs) are among the earliest deep learning models to 
achieve significant progress in medical image segmentation tasks 
(Wang et al., 2022). By replacing the fully connected layers in 
traditional convolutional neural networks with convolutional layers, 
FCNs are capable of performing pixel-level classification on input 
images of any size. FCN-8s is a variant of FCN that fuses feature 
information from different layers to enhance segmentation accuracy. 
The DeepLab series is another classic segmentation network 
model, including DeepLabV1, DeepLabV2, and DeepLabV3 
(Yang et al., 2024; Jeong et al., 2024; L. C. Chen et al., 2018). 
DeepLabV1 extends the receptive field of convolutions through 
dilated convolutions, effectively improving the segmentation 
capability for medical images with complex backgrounds or 
unclear edges. DeepLabV2 builds upon this by incorporating 
Conditional Random Fields (CRFs) for post-processing, refining 
the segmentation results. DeepLabV3 further improves the 
dilated convolution and combines it with an encoder-decoder 
architecture, enabling it to handle more complex medical image
segmentation tasks.

Compared to the classic models mentioned above, U-Net, 
which is currently the most widely used model in the field 
of medical image segmentation, was first introduced in 2015 
(Falk et al., 2019). It adopts an encoder-decoder architecture and 
combines low-level features with high-level features through skip 
connections, preserving the spatial information of the image. Due 
to its superior segmentation performance, U-Net has also been 
introduced into industrial fields such as defect detection (Xia et al., 
2023; Tulbure et al., 2022) and remote sensing image segmentation 
(Bai et al., 2023; J. Li et al., 2022). With the deepening of research, 
more and more scholars have proposed various improvements 
to address the shortcomings of U-Net, resulting in numerous 
variant models (Das and Das, 2024; Zhou et al., 2024; Tang et al., 
2024; Jisna et al., 2024; Chen et al., 2024; Li et al., 2023) for 
different segmentation tasks. These network models are widely 
applied to segmentation tasks in medical images such as those 
of the heart, liver, blood vessels, and cells (Carneiro et al., 2012; 
Khan et al., 2022; Gegundez-Arias et al., 2021; Greenwald et al., 
2022; Le, 2023). Zhao et al. (2021) introduced a multi-scale up-
sampling attention block to enhance feature representation and 
adopted a nested skip-connection pyramid architecture for feature 
extraction, applying it to the retinal vessel segmentation task. 
Li et al. (2023) integrated an attention context encoding module and 
dual segmentation branches, improving liver segmentation accuracy 
while keeping the parameter count reasonable. Zhu et al. (2023) 
used the Swin Transformer framework to extract semantic features 
and introduced a shift-block labeling strategy during training 
to achieve more precise brain tumor segmentation. Zhao et al. 
(2022) focused on two main aspects—sequence encoding and 
variational information bottlenecks—and proposed an improved 
model based on different deep learning architectures for peptide 
toxicity prediction. Although transformer-based models like Swin 
Transformer have achieved success in brain tumor and peptide 
segmentation, their application to spinal X-ray segmentation 
remains limited due to the modality’s lower contrast and structural
complexity. 
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2.2 Application of deep learning 
techniques in spinal image segmentation 
tasks

The segmentation of spinal images aims to assist doctors in better 
understanding the patient’s condition. H. Li et al. (2021) improved 
model accuracy by embedding a dual-branch multi-scale attention 
module. This method achieves the segmentation of vertebrae, laminae, 
and the dural sac from lumbar MRI images, thereby providing 
assistance in diagnosing lumbar spinal stenosis. Shi et al. (2022) 
designed a novel dual-path network based on an attention gate 
(AGNet). This model consists of a context path and an edge path, 
aiming to extract semantic and boundary information from the 
spinal and vertebral regions. A multi-scale supervision mechanism is 
employed to explore comprehensive features, and an edge-aware fusion 
mechanism is used to combine the features extracted from both paths, 
enhancing segmentation performance. Chen et al. (2024) combined U-
Net and Mask R-CNN to achieve automatic segmentation and labeling 
of vertebrae in lateral cervical and lumbar X-ray images, with accuracy 
improved through rule-based strategies. Deng et al. (2024) proposed a 
complementary network that integrates the advantages of U-Net and 
BiseNet for spinal segmentation in MRI images. The network uses strip 
pooling (SP) blocks to replace the spatial extraction path in the BiseNet 
framework and employs an attention refinement module to fuse the 
extracted features, thereby improving segmentation accuracy. While 
multi-scale and attention-based methods have shown success in MRI 
and CT segmentation, their direct application to spinal X-rays is limited 
due to lower soft-tissue contrast, overlapping anatomical structures, 
and higher noise. Although a few studies have begun exploring such 
strategies in X-ray contexts, their effectiveness remains constrained. 
To address the challenges in spinal X-ray image segmentation, we 
propose MDWC-Net, which integrates task-specific feature weighting 
and structure-aware fusion strategies. The model enhances both local 
detail capture and global contextual understanding. 

2.3 Overall network architecture

The task of spinal image segmentation often faces numerous 
challenges, including the complexity of spinal structures, noise 
interference in images, and the inability to effectively fuse features 
of different scales. Due to the diverse presentation of the spine 
in X-ray images and the presence of similar backgrounds, the 
segmentation process struggles to accurately capture details and 
boundaries. Furthermore, the lack of effective utilization of features at 
different scales can lead to a decrease in segmentation accuracy.

To address these issues, Multi-Scale Dynamic-Weighting Context 
Network (MDWC-Net) is proposed. As shown in Figure 1, MDWC-
Net mainly consists of four parts: the encoder structure, decoder 
structure, skip connections, and bottleneck structure. MDWC-Net 
utilizes a multi-scale convolutional adaptive weighting block to 
perform feature extraction and target reconstruction. By jointly 
learning different channels of multi-scale feature maps, it dynamically 
adjusts the importance of different regions. The developed dual 
feature complementarity block enables effective fusion of high-level 
semantic information from the encoder structure and low-level spatial 
information from the decoder structure, enhancing the network’s 
ability to capture spinal detail information. Furthermore, a bottleneck 

information enhancement block is designed at the bottleneck layer 
of the network, allowing the network to more fully capture and 
utilize global contextual information, thereby strengthening the 
representation of key information. 

2.4 Multi-scale convolution adaptive 
weighting block

Figure 2 shows the structure of the multi-scale convolutional 
adaptive weighting block. Different scales of convolutional kernels 
are selected to extract multi-scale information from the input image, 
addressing the issue of insufficient multi-scale detail extraction 
capability in spinal image segmentation tasks. At the same time, 
an adaptive weighting block is constructed to dynamically adjust 
channel weights based on the feature information of different 
input images. Through the construction of multi-scale depthwise 
separable convolutions and the adaptive weighting block, the 
model is enabled to efficiently and thoroughly extract multi-scale 
features from the image while dynamically adjusting the weights of 
different features based on the input. This enables more accurate 
segmentation of the regions of interest in the spine.

Among them, the multi-scale convolution operation is the 
core method for achieving multi-scale feature extraction. To 
capture information at different spatial scales, we designed multiple 
convolution kernels of different sizes (1 × 1, 3 × 3, 5 × 5, 7 × 7) and 
performed the computations using depthwise separable convolutions. 
Unlike the fully connected convolutions in traditional convolutional 
neural networks, depthwise separable convolutions break down the 
convolution operation into two steps: first, performing a channel-
wise convolution on each individual channel, and then performing 
a pointwise convolution across channels. This strategy not only 
effectively reduces computational complexity but also enables the 
simultaneous capture of small-scale features at the fine detail level 
and large-scale features at the global level. It provides a rich feature 
foundation for subsequent feature fusion and dynamic weighting. 

To further optimize the utilization of features, this study designs 
an adaptive weighting block based on the extraction of multi-scale 
features. The block contains learnable weight parameters, which 
are optimized during the training process according to the specific 
feature requirements of the image. By dynamically adjusting the 
weights of features at different scales, MDWC-Net can more flexibly 
adapt to different input features, thus achieving higher accuracy in 
the spine region of interest segmentation task. The weighting process 
is shown in Figure 3, where the feature extraction with convolution 
kernels of sizes 1 × 1, 3 × 3, 5 × 5, and 7 × 7 corresponds to 
the dynamic weighted feature vectors M, N, R, and Q, respectively. 
Using a parallel approach, M, N, R, and Q are merged to form the 
multi-scale convolution adaptive weighting block.

For the adaptive weighting layer shown in Figure 3, the weight 
Wm in the parameter update is calculated as follows during the 
gradient computation (Equation 1):

∇WnL(Wn) =
∂L

∂Wn
= ∂L

∂Yn

∂Yn

∂Wn
=∑

j
Xnj

∂L
∂Yn

(1)

Where L represents the loss function, and Yn denotes the output 
result after feature weighting of the n-th row.
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FIGURE 1
The overall network structure of MDWC-Net.

The weight update can be expressed as (Equation 2):

Wl+1
n =Wl

n − η∇Wl
nL(Wl

n) (2)

Where l represents the number of parameter updates, η represents 
the learning rate, and Wl

n denotes the parameter values at the Wn
iteration.

The entire module computation process is as follows 
(Equations 3–6):

F1 = Relu[k1(X)];F2 = Relu[k3(X)] (3)

F3 = Relu[k5(X)];F4 = Relu[k7(X)] (4)

̃F1 = δ(F1); ̃F2 = δ(F2); ̃F3 = δ(F3); ̃F4 = δ(F4) (5)

Fout = Concat( ̃F1, ̃F2, ̃F3, ̃F4) (6)

Where ki(·) represents the convolution operation with a filter size 
of i× i, δ represents the adaptive weighting layer, and Concat(·)
represents the concatenation along the channel dimension. 

2.5 Dual feature complementary block

The traditional U-Net uses skip connections that directly 
concatenate the feature maps from the encoder and decoder 

parts to recover lost spatial details during the decoding process. 
However, this approach often leads to insufficient information 
fusion, especially when it comes to recovering fine details. To address 
this issue, an innovative dual feature complementary block has 
been designed, which optimizes the traditional skip connection 
method through a series of processing steps. This enables the 
network to more effectively complement and fuse the feature maps 
from the encoder and decoder. The structure of the dual feature 
complementary block is shown in Figure 4.

The core idea of the dual feature complementary block is to 
enhance the interaction and information transfer between feature 
maps by progressively optimizing the feature map fusion process. 
Specifically, the dual feature complementary block independently 
processes each feature map from the skip connections, including 
operations such as convolution for dimensionality reduction, 
batch normalization, and nonlinear activation. Then, pixel-wise 
multiplication is applied to enhance the mutual influence between 
feature maps. Finally, the results of both feature maps are fused and 
concatenated to form a more refined feature map representation. 
When processing the encoder feature map, the first step is to 
reduce the number of channels of feature map Fn from C to C//2 
using a 1 × 1 convolution. Next, batch normalization is introduced 
to stabilize the training process, preventing issues like gradient 
vanishing or explosion. The Relu activation function is then applied 
to introduce nonlinearity, enhancing the model’s expressive power, 
resulting in the feature map Fn−1. The specific computation process 
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FIGURE 2
The structure of the multi scale convolution adaptive weighting block.

FIGURE 3
The adaptive weighted feature map.
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FIGURE 4
The structure of the dual-feature complementary block.

FIGURE 5
The structure of the bottleneck information enhancement block.

is as follows (Equation 7):

Fn−1 = Relu[BN(Conv1×1(F1))] (7)

Where M, N, and P represent the 1 × 1 convolution operation, the 
Relu activation function, and the exponential function, respectively.

When processing the decoder feature map Fi, the operation 
is similar to that of the encoder feature map. The feature map 
is first reduced in dimensionality using a 1 × 1 convolution, 
decreasing the number of channels from 2C to C//2. It is worth 
noting that in the processing of the decoder feature map, the 
Sigmoid activation function is used instead of Relu. This design 
choice allows for smoother interaction between feature maps, 
avoiding information distortion caused by excessive activation. 

This is particularly effective in recovering fine details. The specific 
computation process is as follows (Equations 8 and 9):

Fi−1 = Conv1×1(Fi) (8)

Fi−2 = So ftmax(Fi−1) =
exp(Fi−1)

∑c
m=1

exp(Fi−1)
(9)

Where Conv and exp(·) represent the 1 × 1 convolution operation 
and the exponential function, respectively, while m represents the 
index of each channel in the feature map Fi−1.

After independently processing the feature maps, the dual 
feature complementary block performs a pixel-wise multiplication 
operation between the processed encoder feature map Fn−1 and the 
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decoder feature map Fi−2, allowing for tighter integration of detail 
recovery and contextual fusion, resulting in feature map Fn−m. At 
the same time, to enhance the information interaction between 
the feature maps, a pixel-wise multiplication is performed between 
feature map Fi−1 and Fi−2, resulting in feature map Fi−3. Finally, 
the feature map Fn−m and feature map Fi−3 are concatenated along 
the channel dimension to strengthen the network’s use of multi-
level information during the skip connection phase, resulting in 
feature map Fout. By organically combining these two types of feature 
information, the network is able to leverage both low-level and 
high-level features, while avoiding issues such as information loss 
and redundancy. The specific computation process is as follows 
(Equations 10–12):

Fn−m = Fn−1 ⊗ Fi−2 (10)

Fi−3 = Fi−1 ⊗ Fi−2 (11)

Fout = Concat[Fn−m;Fi−3] (12)

Where ⊗ and Concat(·) represent the pixel-wise multiplication and 
concatenation operations, respectively. 

2.6 Bottleneck information enhancement 
block

Convolutional neural networks often encounter issues such as 
feature information loss and insufficient global information capture 
when processing high-dimensional feature maps. To address this 
problem, this study designs a bottleneck information enhancement 
block, as shown in Figure 5. This block is constructed using parallel 
dual branches.

The upper branch first applies global average pooling and global 
max pooling operations to capture global average information and 
extract the maximum value from each local region. These operations 
provide a smooth representation of the entire image’s features and 
help capture prominent local features. The spatial dimensions of 
feature map F5 are compressed to 1 × 1, retaining the global 
statistical features of each channel. The resulting features are then 
fed into a shared multilayer perceptron (MLP), which compresses 
and expands the input feature map along the channel dimension 
to extract potential high-level feature representations. Next, the 
outputs from both average pooling and max pooling are added 
together, and the Sigmoid activation function is applied to generate 
the weight coefficients, resulting in a normalized channel weight 
map ζ. Finally, the original feature map F5 is element-wise multiplied 
by the channel weight map ζ, achieving weighted fusion of the 
feature maps to enhance their effectiveness during the decoding 
process. The entire operation of the upper branch is as follows 
(Equations 13 and 14):

ζ = Sigmoid[γ[Pavg(F5)] ⊕ γ[Pmax(F5)]] (13)

F5−1 = ζ⊗ F5 (14)

Where Pavg and Pmax represent the global average pooling and 
global max pooling operations, respectively. γ(·) denotes the MLP

operation, and ⊕ and ⊗ represent addition and element-wise 
multiplication, respectively.

The lower branch utilizes two consecutive 3 × 3 convolutional 
layers to extract feature information. The output fused after 
the first convolution is fed into the second convolutional layer. 
Through residual connections, more information is retained during 
feature propagation, which helps avoid information loss in deep 
networks and facilitates the stable transmission of information flow. 
Subsequently, an adaptive weighting mechanism is introduced to 
enhance the key information in the feature map, resulting in feature 
map ̃F5−2. The computation process of the lower branch is as follows 
(Equations 15–18):

̃F5 = Relu[BN(Conv3×3(F5))] (15)

̃F5−1 = ̃F5 + F5 (16)

F5−2 = Relu[BN(Conv3×3( ̃F5−1))] (17)

̃F5−2 = δ(F5−2 + ̃F5−1) (18)

where Conv3×3(·) and BN(·) represent 3 × 3 convolution operation 
and batch normalization respectively, and δ represents adaptive 
weighting layer.

Finally, the output results from the upper and lower branches 
are fused to obtain the final output feature map Foutput. This 
process integrates multi-level feature information and the weighting 
mechanism, effectively enhancing the network’s expressive 
capability (Equation 19).

Foutput = F5−1 ⊕ ̃F5−2 (19)

Where, ⊕ represents the pixel-wise addition operation. 

3 Experiment and results

3.1 Dataset

The spine X-ray dataset used in this study was provided by the 
Department of Spine Surgery at Henan Provincial People’s Hospital, 
consisting of 280 PNG-format images. Prior to the study, all images 
underwent de-identification processing to protect patient privacy 
and were named the “Spine Dataset.” The spine regions in the 
images were precisely annotated by two spine surgeons using the 
Labelme annotation tool. To ensure annotation consistency, two 
spine surgeons jointly defined annotation standards and performed 
quality cross-checks on randomly selected samples, confirming 
a high level of agreement. The annotated dataset was randomly 
divided into training, validation, and test sets in a 7:1:2 ratio. In 
addition, to validate the generalization ability of MDWC-Net across 
different segmentation tasks, experiments were conducted using the 
ISIC 2016 (Gutman et al., 2016) dataset for skin lesion segmentation 
and the Chest X-ray dataset (Jaeger et al., 2014; Candemir et al., 
2014) for lung field segmentation. Both datasets were randomly 
split into training, validation, and test sets using a 7:1:2 ratio. All 
images were uniformly resized to 256 × 256 pixels according to a 
proportional scaling principle.
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TABLE 1  Quantitative performance of different models on spine dataset (highest score indicated in bold font).

Method GPA/% Dice/% MIoU/% Sensitivity/% Params FLOPs/G Train_time (s/epoch)

FCN-8S [13] 94.51 ± 0.363 82.28 ± 0.232 81.35 ± 0.717 93.26 ± 0.662 70.31M 97.86 10.29

DeeplabV3+[44] 95.22 ± 0.451 85.52 ± 0.332 86.26 ± 0.262 94.66 ± 0.956 59.72M 175.48 13.36

PSPNet [45] 95.43 ± 0.277 85.73 ± 0.316 86.13 ± 0.365 94.21 ± 0.763 40.78M 120.06 10.88

U-Net [17] 95.82 ± 0.356 86.28 ± 0.419 86.96 ± 0.256 94.75 ± 0.462 28.95M 133.19 8.26

ResU-Net [24] 95.63 ± 0.825 86.89 ± 0.515 87.25 ± 0.523 95.02 ± 0.611 33.61M 189.81 8.85

Attention U-Net [22] 96.24 ± 0.763 87.63 ± 0.434 87.82 ± 0.305 95.31 ± 0.573 7.49M 108.85 7.74

TransU-Net [46] 96.35 ± 0.476 87.86 ± 0.543 87.56 ± 0.676 95.57 ± 0.218 46.74M 56.29 10.18

PLU-Net [47] 96.13 ± 0.203 88.21 ± 0.523 87.14 ± 0.439 95.33 ± 0.371 7.98M 120.76 9.56

MDWC-Net 96.82 ± 0.289 89.86 ± 0.356 90.53 ± 0.315 96.77 ± 0.212 3.58M 23.18 4.82

Note: GPA, global pixel accuracy; MIoU, mean intersection over union; Params, Parameters; FLOPs, Floating Point Operations.

FIGURE 6
Results of different models on the spine dataset.

3.2 Experiment setup and evaluation 
metrics

3.2.1 Experiment setup
All models in this study were implemented using the PyTorch 

deep learning framework and Python 3.7, with computations 
performed on an NVIDIA RTX 2080Ti GPU. The batch size was 
set to 8, and the cross-entropy loss function was adopted. Random 
horizontal flipping was applied as a data augmentation technique to 
the training dataset. The SGD optimizer was used for model training, 
with an initial learning rate of 0.001. The total number of training 
epochs was set to 100, and the learning rate was reduced by a factor 
of 10 every 20 epochs. 

3.2.2 Evaluation metrics
To better assess the network performance, this study employs 

four commonly used image segmentation evaluation metrics: Global 
Pixel Accuracy (GPA), Dice Coefficient (Dice), Mean Intersection 
over Union (MIoU), and Sensitivity. Global Pixel Accuracy measures 
the proportion of correctly classified pixels overall. The Dice 
Similarity Coefficient provides a comprehensive evaluation of the 
overlap between the segmentation results and the ground truth 
labels. Mean Intersection over Union considers the degree of overlap 
between the predicted and ground truth labels for each class, 
while Sensitivity reflects the model’s ability to recognize positive 
class regions. In addition, this study also reports the number 
of parameters (Params), floating-point operations (FLOPs), and 
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FIGURE 7
The loss curve of MDWC-Net on the spine dataset.

Training_time for each model to evaluate their computational 
efficiency. The specific expressions for these metrics are as follows 
(Equations 20–23):

Global Pixel Accuracy = TP+TN
TP+ FP+ FN+TN

(20)

MIoU = 1
m

m

∑
i=0

TPi

FNi + FPi +TPi
(21)

Dice = 2TP
2TP+ FP+ FN

(22)

Sensitivity = TP
TP+ FN

(23)

Where TP refers to true positives, FP represents false positives, TN 
denotes true negatives, FN refers to false negatives, and m stands for 
the total number of different classes. 

3.3 Experimental results

In this study, MDWC-Net was compared with other deep 
learning-based segmentation algorithms, including FCN-8S, 
DeeplabV3+ (Baban and Chaari, 2023), PSPNet (H. S. Zhao et al., 
2017), U-Net, ResU-Net (Tang et al., 2024), Attention U-Net 
(Falk et al., 2019), TransU-Net (Chen et al., 2024), and PLU-
Net (Song et al., 2024), through extensive experiments on the Spine 
Dataset. The experimental results were thoroughly analyzed, and 
a series of ablation experiments were conducted on the proposed 
blocks to validate their effectiveness. 

3.3.1 Experimental results on the spine dataset
The performance of MDWC-Net on the Spine Dataset is shown 

in Table 1. From the experimental results in Table 1, it can be 
observed that MDWC-Net demonstrates superior performance 
across multiple evaluation metrics. Specifically, the Dice and MIoU 
scores of MDWC-Net reach 89.86% and 90.53%, respectively. 
The Dice score is 7.58, 4.34, and 3.58 percentage points higher 

than those of FCN-8S, DeeplabV3+, and U-Net, indicating that 
MDWC-Net exhibits a stronger capability in distinguishing between 
classes. Furthermore, compared to the second-best model in Table 1, 
MDWC-Net also demonstrates its superiority, achieving a 1.65% 
and 2.71% increase in Dice and MIoU, respectively. In terms of two 
key metrics, GPA and Sensitivity, MDWC-Net also demonstrates 
remarkable performance, achieving excellent scores of 96.82% and 
96.77%, respectively. Moreover, MDWC-Net achieves these results 
with fewer Params, lower FLOPs, and shorter Training_time. This 
fully demonstrates the efficiency and accuracy of MDWC-Net in 
segmentation tasks. The experimental data indicate that MDWC-
Net not only identifies target regions more accurately in the spine 
segmentation task but also delineates the edges of the targets more 
precisely, effectively reducing instances of missed and incorrect 
segmentations.

As shown in Figure 6, a comparison of the training loss 
convergence and Dice scores on the test set for each model 
is presented. After 100 training epochs, the MDWC-Net 
model demonstrates a more stable and efficient convergence 
speed. Moreover, as the number of iterations increases, the 
efficient convergence of MDWC-Net further proves that effective 
parameter optimization can be achieved even without pre-training. 
This achievement is attributed to its network design, which 
integrates multi-scale and information-complementary feature 
representations. Figure 7 shows the detailed training and validation 
curves of MDWC-Net. The training loss decreases steadily from 
approximately 0.2667 to 0.096, while the validation loss follows 
a similar trend, stabilizing around 0.112 after 61 epochs. The 
close alignment between training and validation curves indicates 
that MDWC-Net achieves good generalization without significant 
overfitting issues.

Additionally, to visually assess the accuracy of spine region 
segmentation, Figure 8 presents a comparative visualization of the 
segmentation results from different algorithms on the Spine Dataset. 
As shown in Figure 8, more accurate segmentation results are 
achieved by MDWC-Net. Specifically, other algorithms generally 
exhibit significant loss of the spine region in the segmentation 
output, particularly at the edges and finer structures of the spine. 
This issue is primarily attributed to the limitations of these 
algorithms in capturing spine location information beyond the 
receptive field and in handling finer details within the images.

In contrast, the MDWC-Net algorithm effectively alleviates this 
problem by integrating complementary high-level semantic features 
and low-level texture features, resulting in more refined and accurate 
spine region segmentation. In Figure 8, compared to MDWC-Net, 
other algorithms demonstrate more pronounced over-segmentation 
and under-segmentation issues during the segmentation process. 
Over-segmentation occurs when unnecessary details are incorrectly 
labeled as part of the spine region, while under-segmentation leads 
to the omission of key spinal structures. The network’s ability 
to focus on relevant features and utilize global information is 
enhanced by MDWC-Net through the innovative introduction 
of a multi-scale adaptive weighting block, a dual-feature 
complementary block, and a bottleneck information enhancement 
block. As a result, MDWC-Net outperforms other algorithms 
in terms of both segmentation accuracy and completeness, 
demonstrating exceptional performance in the spine X-ray image 
segmentation task. 
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FIGURE 8
Comparison of segmentation results. The rectangular boxes highlight significant segmentation differences among models. (a) Original image; (b)
Ground Truth (GT); (c–j) Segmentation results of FCN-8s, DeepLabV3+, PSPNet, U-Net, ResU-Net, Attention U-Net, TransU-Net, PLU-Net, and 
MDWC-Net, respectively, on the Spine dataset.

TABLE 2  Paired t-test results between MDWC-Net and other models.

Compared model Dataset Metric P-value Significant (α = 0.05)

Deeplabv3+ Spine dataset MIoU 0.006 Yes

PSPNet Spine dataset MIoU 0.003 Yes

U-Net Spine dataset Dice 0.007 Yes

Attention U-Net Spine dataset MIoU 0.005 Yes

TransU-Net Spine dataset Dice 0.008 Yes

PLU-Net Spine dataset Dice 0.004 Yes

3.3.2 Significance testing of segmentation 
performance

To verify whether the performance improvement of the 
proposed MDWC-Net over other models (such as DeeplabV3+, 
PSPNet, U-Net, Attention U-Net, TransU-Net, and PLU-Net) is 

statistically significant, we conducted paired t-tests on the Dice 
and MIoU metrics across these models on the Spine dataset. The 
significance level was set to α = 0.05. As shown in Table 2, all p-
values are much smaller than 0.01, indicating that the improvements 
of MDWC-Net in both Dice and MIoU are statistically significant. 
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TABLE 3  Ablation experiments of each component block (highest score indicated in bold font).

Methods MSCAW BIEB DFCB Spine dataset

GPA/% Dice/% MIoU/% Sensitivity/%

Baseline (U-Net) ✕ ✕ ✕ 95.82 ± 0.156 86.28 ± 0.219 86.96 ± 0.256 94.75 ± 0.162

+Multi-scale Conv only ✓ ✕ ✕ 96.21 ± 0.265 87.81 ± 0.163 87.69 ± 0.374 95.02 ± 0.149

+MSCAW only ✓ ✕ ✕ 96.46 ± 0.117 88.65 ± 0.124 88.28 ± 0.097 95.43 ± 0.218

+MSCAW+BIEB (upper) ✓ ✓ ✕ 96.63 ± 0.156 89.03 ± 0.091 88.73 ± 0.182 95.86 ± 0.145

MSCAW+BIEB (lower) ✓ ✓ ✕ 96.57 ± 0.036 88.97 ± 0.083 89.16 ± 0.045 95.79 ± 0.095

+MSCAW+BIEB (full) ✓ ✓ ✕ 96.71 ± 0.063 89.43 ± 0.041 89.56 ± 0.109 96.28 ± 0.197

+MSCAW+DFCB ✓ ✕ ✓ 96.65 ± 0.153 89.55 ± 0.057 89.68 ± 0.036 96.31 ± 0.103

MDWC-Net ✓ ✓ ✓ 96.82 ± 0.289 89.86 ± 0.356 90.53 ± 0.315 96.77 ± 0.212

w/ASPP ✕ ✓ ✓ 95.96 ± 0.126 88.97 ± 0.415 89.22 ± 0.312 95.12 ± 0.217

w/CBAM ✓ ✕ ✓ 96.27 ± 0.332 89.35 ± 0.253 89.85 ± 0.221 96.02 ± 0.366

Note: MSCAW, Multi-scale Convolution Adaptive Weighting; BIEB, bottleneck information enhancement block; DFCB, dual feature complementary block; ASPP, atrous spatial pyramid pooling; 
CBAM, convolutional block attention module.

These results further demonstrate the effectiveness and robustness 
of the proposed method. 

3.3.3 Ablation experiment
To further explore the contribution of each block in this 

study, we conducted a series of ablation experiments using 
the Spine Dataset. First, the U-Net model was used as the 
baseline. Then, the multi-scale convolution block with the adaptive 
weighting mechanism removed was integrated into the baseline, 
referred to as “+Multi-scale Conv only.” The complete Multi-
scale Convolution Adaptive Weighting (MSCAW) block was then 
integrated into the baseline, named “+MSCAW only.” Next, to verify 
the effectiveness of different branches in the Bottleneck Information 
Enhancement Block (BIEB), we tested configurations with 
“+MSCAW+BIEB (upper)” using only the upper branch of BIEB, 
and “+MSCAW+BIEB (lower)” using only the lower branch. The 
“+MSCAW+BIEB (full)” configuration integrates both the MSCAW 
block and the complete BIEB. Finally, “+MSCAW+DFCB” combines 
the MSCAW block with the Dual Feature Complementary Block. 
In addition, to further validate the effectiveness and advantages 
of the proposed modules, we designed replacement experiments: 
“w/ASPP” replaces the MSCAW module with the classical ASPP 
module, and “w/CBAM” replaces the BIEB module with the CBAM 
module. The relevant experimental results are shown in Table 3.

From the experimental results in Table 3, it can be observed that 
after integrating the multi-scale convolution adaptive weighting 
block, the model’s performance was significantly improved, 
with Dice and MIoU rising to 88.65% and 88.28%, respectively. 
This improvement is attributed to the key role of this block in 
feature weighting and decision-making. The block fuses features 
from different scales and dynamically adjusts the scale weights 
of each channel based on the regional characteristics of the 
input image, enabling the model to more accurately capture 

multi-scale detail information. In addition, the combination of 
different branches of the Bottleneck Information Enhancement 
Block with the multi-scale convolution adaptive weighting 
block led to improvements in the network’s performance across 
all evaluation metrics. This enhancement is attributed to the 
bottleneck block’s ability to extract and utilize global contextual
feature information.

Furthermore, the integration of the Dual Feature 
Complementary Block also contributed to the improvement in 
network performance. Specifically, the embedding of the DFCB 
resulted in the model’s GPA, Dice, MIoU, and Sensitivity increasing 
to 96.65%, 89.55%, 89.68%, and 96.31%, respectively. The results 
show that this block effectively utilizes high-level features to 
guide low-level features in selecting key information, reducing the 
loss of important information and interference from irrelevant 
data. And the proposed modules also outperformed classical 
counterparts in segmentation performance, further supporting 
their design rationality and task-specific effectiveness. Finally, 
through the integration of all blocks, MDWC-Net achieved optimal 
segmentation performance, and the experimental results strongly 
validate the effectiveness and practicality of the designed blocks. 

4 Discussion

To further evaluate the generalization capability of the proposed 
MDWC-Net beyond spinal X-ray segmentation, we conducted 
additional experiments on two publicly available datasets: Chest 
X-ray dataset for lung field segmentation and ISIC2016 dataset 
for skin lesion segmentation. These datasets represent two distinct 
directions of generalization: Chest X-rays are anatomically and 
radiologically similar to spinal X-rays, while ISIC2016 features 
highly heterogeneous textures and modalities. 
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TABLE 4  Quantitative performance of each model on the chest X-ray dataset (highest score indicated in bold font, GPA represents Global Pixel 
Accuracy).

Method GPA/% Dice/% MIoU/% Sensitivity/% Params FLOPs/G Train_time (s/epoch)

FCN-8S [13] 87.51 ± 0.963 79.22 ± 0.623 77.56 ± 0.434 88.28 ± 0.391 70.31M 97.86 22.17

DeeplabV3+[44] 89.26 ± 0.726 83.08 ± 0.986 82.88 ± 0.262 90.06 ± 0.586 59.72M 175.48 24.63

PSPNet [45] 88.58 ± 0.745 78.21 ± 0.652 78.65 ± 0.668 87.36 ± 0.197 40.78M 120.06 21.56

U-Net [17] 89.09 ± 0.187 80.15 ± 0.224 78.82 ± 0.128 90.17 ± 0.362 28.95M 133.19 17.33

ResU-Net [24] 89.95 ± 0.721 81.27 ± 0.366 82.02 ± 0.127 90.13 ± 0.523 33.61M 189.81 17.69

Attention U-Net [22] 90.12 ± 0.878 82.65 ± 0.772 81.72 ± 0.553 89.38 ± 0.963 7.49M 108.85 16.74

TransU-Net [46] 92.02 ± 0.721 81.92 ± 0.886 80.85 ± 0.262 90.63 ± 0.928 46.74M 56.29 20.16

PLU-Net [47] 91.93 ± 0.218 81.86 ± 0.672 80.77 ± 0.521 89.96 ± 0.631 7.98M 120.76 18.13

MDWC-Net 92.75 ± 0.162 85.32 ± 0.183 86.09 ± 0.235 92.08 ± 0.126 3.58M 23.18 14.26

Note: GPA, global pixel accuracy; MIoU, mean intersection over union; Params, parameters; FLOPs, floating point operations.

TABLE 5  Quantitative performance of each model on the ISIC2016 dataset (highest score indicated in bold font, GPA represents Global Pixel Accuracy).

Method GPA/% Dice/% MIoU/% Sensitivity/% Params FLOPs/G Train_time (s/epoch)

FCN-8S [13] 91.13 ± 0.213 82.32 ± 0.416 81.86 ± 0.658 89.33 ± 0.446 70.31M 97.86 28.89

DeeplabV3+[44] 92.56 ± 0.317 82.16 ± 0.596 80.37 ± 0.662 88.16 ± 0.263 59.72M 175.48 32.16

PSPNet [45] 91.78 ± 0.426 81.52 ± 0.776 80.96 ± 0.635 87.75 ± 0.747 40.78M 120.06 28.68

U-Net [17] 92.95 ± 0.367 83.97 ± 0.348 83.42 ± 0.514 91.28 ± 0.612 28.95M 133.19 23.42

ResU-Net [24] 93.76 ± 0.537 84.51 ± 0.526 84.28 ± 0.564 92.06 ± 0.346 33.61M 189.81 24.08

Attention U-Net [22] 93.42 ± 0.621 84.77 ± 0.597 82.15 ± 0.757 91.93 ± 0.808 7.49M 108.85 22.15

TransU-Net [46] 94.38 ± 0.812 85.13 ± 0.903 84.06 ± 0.795 90.27 ± 0.615 46.74M 56.29 27.53

PLU-Net [47] 94.12 ± 0.253 85.33 ± 0.434 84.88 ± 0.652 91.63 ± 0.389 7.98M 120.76 25.86

MDWC-Net 95.96 ± 0.319 87.25 ± 0.463 86.75 ± 0.577 94.61 ± 0.362 3.58M 23.18 18.16

Note: GPA, global pixel accuracy; MIoU, mean intersection over union; Params, parameters; FLOPs, floating point operations.

4.1 Experimental results on the chest X-ray 
dataset

The Chest X-ray dataset provides pixel-level annotations of lung 
fields. Chest radiographs share similar grayscale distribution and 
imaging characteristics with spinal X-rays. As shown in Table 4, 
it can be observed that MDWC-Net achieved a Dice coefficient 
of 85.32% and MIoU of 86.09%, surpassing baseline methods 
including U-Net and DeepLabV3+. These results demonstrate 
that the proposed architecture generalizes effectively not only 
within the spinal domain but also to other thoracic structures 
captured by similar imaging modalities. Such findings highlight 
the potential of MDWC-Net for broader applications in skeletal 
and soft-tissue segmentation tasks within the domain of
radiography. 

4.2 Experimental results on the ISIC2016 
dataset

The ISIC2016 dataset contains various types of skin lesions, 
including melanoma and basal cell carcinoma, with high-quality 
pixel-level annotations. Unlike spinal X-rays, skin lesion images 
exhibit irregular shapes, blurry boundaries, and strong variability 
in texture and contrast, posing distinct challenges to segmentation 
models. Applying MDWC-Net to this domain allows us to 
evaluate its robustness across structurally unrelated medical tasks. 
As shown in Table 5, MDWC-Net achieved excellent results on the 
ISIC2016 dataset, with a GPA of 95.96%, Dice coefficient of 87.25%, 
MIoU of 86.75%, and Sensitivity of 94.61%, outperforming several 
state-of-the-art models—including a 4.83% and 5.28% improvement 
in GPA and Sensitivity over FCN-8s, and a 3.28% and 3.33% 
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FIGURE 9
Distribution of scores for different models.

gain in Dice and MIoU over U-Net. Moreover, compared with the 
Transformer-based TransUNet, MDWC-Net achieved consistent 
improvements of 1.58%, 2.12%, and 2.69% in GPA, Dice, and MIoU, 
respectively.

These findings demonstrate that the multi-scale feature 
modeling and dynamic information fusion mechanisms in MDWC-
Net are effective not only for structured anatomical regions like the 
spine but also for unstructured lesion segmentation tasks. To better 
visualize model performance, Figure 9 shows that MDWC-Net 
consistently appears in the top-right region of the GPA–Sensitivity 
and Dice–MIoU scatter plots, indicating a strong trade-off between 
accuracy and robustness, and confirming its generalizability across 
diverse medical image modalities. 

5 Conclusion

This study proposes MDWC-Net, an efficient deep network 
designed for spinal X-ray image segmentation. By incorporating 
multi-scale convolution adaptive weighting, dual feature 
complementary block, and bottleneck information enhancement 
block, the model demonstrates outstanding segmentation 
performance with strong generalization capability and deployment 
potential. Although this work primarily focuses on improving 
segmentation accuracy, its high-quality structural boundary 
extraction also provides a reliable basis for downstream clinical 
tasks such as spinal parameter measurement and preoperative path 
planning. In addition, the lightweight design and low computational 
cost make it suitable for integration into radiology-assisted 
reading systems or surgical planning platforms. While MDWC-
Net demonstrates robust performance across diverse imaging 
conditions, further optimization could enhance its effectiveness in 
extremely challenging scenarios such as very low-contrast or heavily 
degraded X-ray images. Future work will incorporate clinical user 
feedback for prospective validation, optimize model deployment 
through techniques such as model pruning and knowledge 

distillation, and focus on enhancing robustness under challenging 
imaging conditions to meet diverse clinical requirements.
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