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Cardiovascular diseases (CVDs) are the world's leading cause of death, but
there's a gap between scientific research and real-world treatment. Exercise
is a safe and effective way to prevent and manage CVDs, yet putting
it into practice faces many challenges. This review shows how exercise
protects the heart by improving metabolism, reducing inflammation and cell
damage, and strengthening connections between heart cells and blood vessels.
Exercise establishes a multi-organ defense network involving remote organs
including the brain, skeletal muscle, adipose tissue, liver, and kidneys. To
bridge the gap between research and clinical use, future efforts should focus
on developing exercise-like drugs, personalized workout plans, and remote
rehabilitation programs.
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1 Introduction

Driven by global population aging and the widespread prevalence of risk
factors, cardiovascular diseases (CVD) continue to exhibit rising incidence and
mortality rates (Krishnan et al, 2025). Recent epidemiological studies reveal that
while age-standardized CVD mortality decreased by 18.6% compared to 1990, over
20.5 million CVD-related deaths occurred globally in 2021, with ischemic heart
disease (IHD) accounting for 48.3% of cases—a 72% absolute increase since 1990
(Martin et al, 2024). Data from the 2023 Report on Cardiovascular Health and
Diseases in China underscore CVD as the leading cause of death nationwide, with
coronary heart disease mortality demonstrating a persistent upward trajectory over the
past decade (Center For Cardiovascular Diseases The Writing Committee Of The Report
On Cardiovascular and Diseases In China, 2024). These findings highlight the urgent public
health challenge posed by CVD.

Exercise intervention stands as a cornerstone strategy for CVD prevention and
management. Clinical evidence confirms that regular, moderate physical activity
significantly reduces CVD morbidity and mortality (Tucker et al, 2022). Animal
experiments also shows that exercise improve the cardiac function of mice with myocardial
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infarction by inhibiting inflammation, oxidative stress and apoptosis
(Bo et al.,, 2024; Wang et al., 2024; Hou et al., 2019). However,
the 2023 WHO Global Report on Physical Activity indicates that
27.5% of adults fail to meet recommended exercise guidelines
(150-300 min of moderate or 75-150 min of vigorous activity
weekly) (Bull et al., 2020). This disparity between scientific evidence
and clinical implementation reflects systemic barriers to cardiac
exercise rehabilitation, including inadequate insurance coverage
for long-term exercise prescriptions (only 31% of U.S. insurance
plans include cardiac rehabilitation), patient misconceptions
regarding exercise safety, and a critical shortage of specialized
rehabilitation teams (Balady et al., 2011; Schopfer et al., 2020).
Addressing these challenges requires a deeper understanding of
the systemic biological mechanisms underlying exercise-induced
cardioprotection and the development of translational pathways
bridging basic research to clinical practice. This study, based on the
perspective of integrative physiology, systematically sorts out the
mechanism by which the heart benefits from exercise, promoting
the integration of basic research and clinical application, and has
significant theoretical and practical significance.

2 Molecular regulatory mechanisms of
exercise-induced cardiac functional
Improvement

2.1 Metabolic reprogramming

The heart, as a high-energy-demand organ, relies on metabolic
homeostasis to maintain functional integrity. Under physiological
conditions, 60%-90% of adenosine triphosphate (ATP) in adult
cardiomyocytes is derived from fatty acid p-oxidation, while glucose
metabolism contributes 10%-30%, with alternative substrates
such as ketones and lactate becoming critical under specific
physiological or pathological conditions (Lopaschuk et al., 2021;
Kolwicz et al., 2013). Mitochondria, the primary ATP producers
in cardiomyocytes, also serve as major sources of reactive
oxygen species (ROS). Dysregulated mitochondrial dynamics
contribute to myocardial injury and disease progression across
multiple pathological models (Forte et al., 2021). The heart
exhibits remarkable metabolic plasticity, dynamically adjusting
substrate preferences in response to physiological demands or
pathological states. Exercise-induced physiological remodeling is
often accompanied by enhanced mitochondrial function. Long-term
regular exercise can increase myocardial oxygen consumption by
3-10-fold, which elevates ADP concentration to enhance oxidative
phosphorylation efficiency, ultimately leading to adaptive alterations
characterized by enlarged mitochondrial volume and increased
cristae density (Ritterhoftf and Tian, 2023; Qiu et al., 2022; Abel
and Doenst, 2011). This metabolic remodeling is closely associated
with exercise modality and duration, with its molecular basis
involving AMPK-PGC-1a signaling axis-mediated regulation of
mitochondrial biogenesis (Qiu et al., 2022; Abel and Doenst, 2011;
Li et al,, 2018; White et al., 1987). Collectively, exercise training
not only promotes metabolic adaptation toward higher efficiency
in healthy hearts but also rehabilitates impaired myocardial
mitochondrial energy production capacity and efficiency, thereby
facilitating functional recovery in diseased hearts.
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2.2 Regulation of oxidative stress

The core pathological mechanism underlying myocardial
oxidative injury stems from disrupted redox homeostasis of ROS.
Under physiological conditions, approximately 90% of ROS (e.g.,
superoxide anion O,e" and hydrogen peroxide H,0O,) derive
from the mitochondrial electron transport chain (ETC), with the
remainder originating from enzymatic systems such as NADPH
oxidase (NOX) and xanthine oxidase (Zhou and Tian, 2018). In
pathological states (e.g., ischemia-reperfusion injury, hypertensive
cardiac hypertrophy) or during aging, mitochondrial complex I/III
dysfunction amplifies electron leakage from the, ETC, coupled
with upregulated NOX2/4 activity. These synergistic effects drive
ROS production rates that substantially exceed the scavenging
capacity of endogenous antioxidant systems (e.g., superoxide
dismutase SOD and glutathione peroxidase GPx), culminating in
oxidative overload (Burgoyne et al., 2012). This redox imbalance
triggers (e.g.
MDA), protein carbonylation (e.g., 3-nitrotyrosine accumulation),

lipid peroxidation elevated malondialdehyde
and mitochondrial DNA oxidative damage (e.g., increased 8-
hydroxy-2'-deoxyguanosine 8-OHdG) via Fenton reactions,
ultimately promoting cardiomyocyte apoptosis and contractile
dysfunction (Tsutsui et al., 2011).

Distinct exercise modalities differentially regulate myocardial
antioxidant systems. Moderate-intensity continuous training
(MICT) significantly enhances SOD1/2 activity and the GSH/GSSG
(Glutathione and glutathione disulfide) ratio, mediated by
exercise-induced Sirt3 (Sirtuin 3) deacetyation (Sundaresan et al.,
2009). High-intensity interval training activates the HIF-1o/Nrf2
(Hypoxia-inducible factor la/Nuclear factor erythroid 2-like
2) synergistic pathway through transient hypoxia, substantially
improving Nrf2 nuclear translocation efficiency (Gliemann et al.,
2016). Resistance exercise promotes FoxO transcription factor
phosphorylation via IGF-1/Akt signaling, driving SOD2 and CAT
gene expression, though with minimal effects on GPx regulation
(Konopka and Harber, 2014). A randomized controlled trial in
coronary artery disease patients revealed that 12-week aerobic
exercise (150 min/week, it is the minimum recommended by
the ACSM in reference to exercise) increased Smydl (SET And
MYND Domain Containing 1) expression by 1.8-fold in myocardial
biopsy samples, accompanied by a 37% reduction in plasma
malondialdehyde (MDA) levels and a 4.2% improvement in left
ventricular ejection fraction (LVEF) (Hambrecht et al., 1993).

2.3 Regulation of programmed cell death

Programmed cell death (PCD) in cardiomyocytes—
encompassing apoptosis, ferroptosis, and pyroptosis—constitutes a
critical regulatory mechanism for maintaining cardiac homeostasis
through distinct molecular cascades. Apoptosis, a caspase-
dependent process, senescent or
damaged cardiomyocytes but is pathologically activated by
stimuli that elevate the Bax/Bcl-2 ratio, triggering mitochondrial

physiologically eliminates

permeability transition pore (mPTP) opening, cytochrome C
release, and caspase-3 activation, ultimately causing irreversible
contractile unit loss (Krijnen et al, 2002). Ferroptosis, an
iron-dependent,

lipid peroxidation-driven death modality,

frontiersin.org


https://doi.org/10.3389/fphys.2025.1651589
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

You et al.

involves glutathione peroxidase 4 (GPX4) inactivation and
mitochondrial cristae collapse (Stockwell et al., 2017). Disrupted
myocardial iron homeostasis (e.g., free iron overload) catalyzes
polyunsaturated fatty acid (PUFA) peroxidation via the Fenton
reaction, compromising plasma membrane integrity. Exercise
preconditioning suppresses ferroptosis in doxorubicin-induced
cardiotoxicity by activating mitochondrial superoxide-dependent
AMPKa2, which inhibits the p53-SLC7A11 axis and enhances
ROS scavenging, concurrently downregulating ferroptosis
markers (ACSL4, PTGS2) (Tadokoro et al, 2020). Chronic
exercise further bolsters antioxidant defenses via the Nrf2/GPX4
pathway (Wang et al., 2022a). Pyroptosis, a caspase-1-dependent
inflammatory death initiated by NLRP3 (NOD-like receptor
family, pyrin domain containing-3) inflaimmasome activation,
features gasdermin D (GSDMD)-mediated pore formation and
IL-1B release (Jankowska et al, 2008). The ROS-NLRP3-IL-
18 axis amplifies inflammation during myocardial ischemia-
reperfusion injury, impairing contractility (Gopalan et al., 2021).
Combined curcumin and exercise intervention in hyperlipidemic
rats downregulates pyroptosis genes (NLRP3, ASC (Apoptosis-
associated speck-like protein containing a CARD), caspase-1)
by inhibiting TLR4/MyD88/NF-kB (Toll-like receptor 4/Myeloid
differentiation factor 88/Nuclear factor kappa-B) signaling and
reducing serum IL-1f (Ramos et al, 2016). While exercise
alone partially mitigates pyroptosis (Yang et al., 2025), its direct
mechanisms (e.g., inflammasome regulation) require validation via
conditional knockout models.

2.4 Epigenetic regulation

Epigenetic modifications—including dynamic alterations
DNA  methylation,
modifications—orchestrate exercise-induced cardioprotection by

in non-coding RNAs, and histone
remodeling myocardial gene expression in response to pathological
stress. Exercise modulates cardiac DNA methylation through
regulation of DNMTs and TET demethylases (Benito et al,
2021; Haeusler et al., 2013). In hypertensive cardiac hypertrophy,
hypomethylation of the ACE promoter elevates ACE mRNA
expression, augmenting angiotensin II (Ang II)-mediated fibrosis
(Benito et al, 2021); conversely, 12-week aerobic exercise
increases ACE promoter methylation and reduces plasma Ang II
(Haeusler et al., 2013). Furthermore, aerobic exercise ameliorates
myocardial ischemia-reperfusion injury by suppressing METTL3-
mediated m6A methylation, thereby stabilizing cell death-related
mRNAs (Zhang et al, 2025). MiRNA is currently regarded as a
potential therapeutic target and biomarker in the study of various
physiological and pathological processes in cardiovascular diseases
(van Rooij and Olson, 2007). Exercise also remodels myocardial
miRNA profiles (Soci et al., 2011). Aerobic training increases the
expression of miR-29, reduces the expression and concentration of
collagen genes in the heart, and promotes physiological myocardial
hypertrophy (Soci et al, 2011). Where in upregulated miR-
29b directly targets collagen genes (COL1A1/COL3A1/ELN) to
attenuate post-infarction fibrosis (Melo et al., 2014), while exercise-
induced HIF-la activates miR-126, promoting angiogenesis
via PI3K/AKT/eNOS and MAPK pathways in infarcted hearts
(Song et al., 2020). Intermittent aerobic exercise can inhibit the
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TGFpP pathway by up-regulating the expression of miR-101la,
ultimately leading to a reduction in cardiac tissue fibrosis and
scar formation (Xiao et al., 2017). Systemically, exercise-stimulated
skeletal muscle releases exosomal miR-126-3p that suppresses
VCAM-1 endothelial
inflammation (Bei et al., 2017). In addition, physical exercise is
increasingly recognized for its ability to regulate cardiac function by

cardiomyocyte expression, mitigating

regulating histone modifications (Zheng et al.,, 2025). Lehmann
etal. found that compared with healthy controls, failing hearts
showed reduced levels of HDAC4 N-terminal fragment (HDAC4-
NT), and exercise was proven to increase HDAC4-NT levels to
protect cardiac function (Lehmann et al., 2018). Meanwhile, during
exercise, AMPK in the myocardium is activated and phosphorylates
HDAC4. This phosphorylation reduces the inhibitory effect of
HDAC4 on MEF2a, and this change helps improve cardiac
function and glucose metabolism in mice with heart failure
(Jiang et al., 2020).

3 Cellular crosstalk
3.1 Cardiomyocyte-endothelial dialogue

Cardiomyocytes and cardiac microvascular endothelial cells
(CMECs) form dynamic functional units through paracrine
signaling, mechanical coupling, and metabolic interactions,
collectively maintaining cardiac homeostasis. This bidirectional
communication (cardiomyocyte-endothelial dialogue) critically
regulates energy metabolism, redox balance, and pathological
remodeling.

Nitric oxide (NO) suppresses excessive L-type calcium channel
activation in cardiomyocytes via the cGMP/PKG pathway, reducing
diastolic Ca®" concentration and alleviating calcium overload-
induced systolic dysfunction (Ramos et al., 2016). Pathological
conditions (e.g., hypertension) induce endothelial endothelin-
1 (ET-1) overexpression, which activates the cardiomyocyte
CaMKII/NFATc3 pathway through ETA receptors,
pathological hypertrophy (Al-Khatib et al., 2018).

Exercise enhances cardiomyocyte-endothelial communication

driving

by improving paracrine signaling. Exercise upregulates NRG-
1 expression in endothelial progenitor cells (EPCs). Post-
myocardial infarction exercise increases eNOS expression and
promotes angiogenesis through the NRG-1/ErbB4/PI3K/AKT
signaling pathway (Huang et al, 2025). Additionally, the
mechanisms by which exercise strengthens cardiomyocyte-
endothelial communication involve enhanced mechanical coupling.
Exercise-induced cyclic shear stress upregulates endothelial
Piezol expression and inhibits ET-1 production via AMPKa
activation (Clarkson et al., 1999). In conclusion, exercise improves
cardiac function by reinforcing cardiac-endothelial communication,
promoting  endothelial and

proliferation, enhancing

angiogenesis.

3.2 Immune cell regulation

Immune cells serve as pivotal regulators of cardiac homeostasis
and disease progression through dynamic orchestration of
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inflammatory responses and repair processes. During acute
myocardial injury, vascular endothelial upregulation of adhesion
molecules and resident macrophage-derived chemokines recruit
neutrophils and monocytes for necrotic clearance and inflammation
resolution. Subacutely, amplified pro-inflammatory signaling
induces mast cell release of pro-fibrotic factors, driving maladaptive
fibrosis and dysfunction. Exercise exerts potent immunomodulatory
effects by mobilizing circulatory lymphocytes/neutrophils and
reprogramming cardiac immunity: (1) Post-ischemic DAMP-
activated TLR4/MyD88/NF-«B signaling promotes M1 macrophage
polarization and pro-apoptotic cytokine secretion (IL-13, TNF-a)
(Nahrendorf and Swirski, 2016), which exercise counteracts via
PPARa-mediated inhibition of NF-kB nuclear translocation to
reduce M1 dominance (Santos et al., 2016); (2) Exercise-induced
IL-4/IL-13 activates STAT6 to drive M2 macrophage polarization,
enhancing TGF-B1/VEGF-A-dependent collagen remodeling
and angiogenesis (Lavine et al., 2014). Single-cell sequencing
confirms significant enrichment of pro-repair genes (Argl, Yml)
in cardiac macrophages of exercised subjects (Epelman et al.,
2014). Collectively, exercise mitigates pathological remodeling
by suppressing excessive immune activation while promoting
macrophage phenotypic toward

switching reparative = M2

polarization.

4 Exercise-mediated organ dialogue

Exercise has been substantiated as an effective approach for
primary prevention and adjunctive therapy of cardiovascular
diseases, with its clinical value strongly supported by evidence-
based medicine. Recent breakthroughs in molecular mechanism
studies further elucidate its therapeutic potential. From a
systems biology perspective, exercise intervention establishes
multidimensional regulatory networks that induce cascade adaptive
changes spanning subcellular structures to tissue and organ levels.
Importantly, these biological effects exhibit remarkable inter-organ
crosstalk. Mechanistic investigations reveal that exercise-mediated
cardioprotection operates through multiple organ axes, including
but not limited to the brain-heart axis, skeletal muscle-heart
axis, liver-heart axis, adipose-heart axis, kidney-heart axis, and
gut-heart axis (Figure 1).

4.1 Autonomic nerve remodeling

4.1.1 Autonomic balance regulation

Cardiac autonomic regulation—sympathetic and
parasympathetic balance—critically governs myocardial function,
with its dysfunction being a primary driver of cardiac injury
and heart failure (Floras, 2009). Pathological states (e.g.,
pressure overload) trigger hypothalamic paraventricular nucleus
(PVN)

chronic sympathetic overactivation characterized by excessive

glutamatergic neuron hyperexcitability, leading to
norepinephrine (NE) release and impaired reuptake (Florea
and Cohn, 2014). While acutely compensatory, sustained NE
excess exacerbates myocardial damage via p1-AR/cAMP/PKA-
induced calcium overload and mitochondrial oxidative stress,

accelerating ventricular remodeling (Floras, 2009). Exercise restores

Frontiers in Physiology

10.3389/fphys.2025.1651589

autonomic homeostasis through multi-tiered mechanisms: (1)
Downregulating PVN angiotensin II type 1 receptor (ATIR) to
suppress glutamatergic hyperactivity, improving ischemic cardiac
function (Patel and Zheng, 2012); (2) Enhancing baroreceptor
sensitivity while reducing (2-adrenergic receptor responsiveness
to catecholamines (Fraga et al., 2007); (3) Restoring the adrenal
GRK2-a2-AR-catecholamine axis to normalize sympathetic tone
(Rengo et al,, 2010). Conversely, impaired vagal activity reduces
heart rate variability (HRV)—a biomarker of cardiac autonomic
integrity (Billman et al., 2015)—which correlates with myocardial
infarction and heart failure risk (Sessa et al., 2018; Hillebrand et al.,
2013). Regular exercise elevates cardiac vagal tone, concurrently
attenuating sympathetic activity and P2-AR sensitivity, thereby
augmenting HRV and conferring cardioprotection in both healthy
and diseased hearts (Routledge et al., 2010; Fiuza-Luces et al.,
2018). In conclusion, exercise preserves and restores cardiac
autonomic homeostasis, modulates HRV, and thereby confers
cardioprotection.

4.1.2 Optimization of cardiovascular reflex
regulation

The neural regulation of cardiac activity involves three primary
reflex pathways: baroreflex, chemoreflex, and volume reflex. The
baroreceptor reflex monitors blood pressure changes through
the carotid sinus and aortic arch baroreceptors. When blood
pressure rises, it reduces heart rate and cardiac output by enhancing
vagal nerve activity, constituting an important mechanism for
maintaining blood pressure homeostasis. Hypertensive patients
generally have reduced baroreceptor sensitivity, and regular
exercise not only lowers blood pressure but also effectively
restores baroreflex sensitivity (Brum et al., 2000; Laterza et al.,
2007), which has significant clinical implications for improving
cardiac load. The chemoreceptor reflex is mainly activated by the
carotid body and aortic body chemoreceptors when blood oxygen
partial pressure drops, carbon dioxide partial pressure rises, and
pH decreases, enhancing sympathetic nerve activity to increase
heart rate and cardiac output. Notably, in chronic heart failure,
chemoreceptor reflex sensitivity abnormally increases, leading to
excessive sympathetic nerve activation and accelerating myocardial
remodeling (Sun et al., 1999). Animal experiments have confirmed
that exercise intervention can effectively inhibit the sensitivity
of peripheral chemoreceptors in heart failure models (Li et al.,
2008), providing a mechanistic explanation for the improvement
of cardiac function through exercise rehabilitation. The volume
receptor reflex monitors the circulatory volume status through
atrial stretch receptors and cardiopulmonary pressure receptors.
When blood volume increases, it reduces sympathetic nerve
tension and enhances vagal nerve activity by inhibiting the renin-
angiotensin-aldosterone system and increasing atrial natriuretic
peptide secretion, thereby reducing cardiac output. In pathological
conditions, weakened myocardial contractility leads to increased
residual blood volume in the ventricle, and abnormally activated
volume reflex may form a vicious cycle of “increased preload -
reflexive cardiac function inhibition.” Exercise effectively regulate
preload and afterload by promoting blood redistribution in skeletal
muscles and improving venous return, possibly interrupting this
pathological process. Existing evidence indicates that the multi-
target regulation of cardiovascular reflexes by exercise is an
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The multi-layered mechanisms by which exercise confers cardioprotection.

important mechanism for its cardioprotective effect. However, the
coordinated action mechanism of the three reflex pathways during
exercise intervention, their temporal regulatory characteristics, and
their dynamic balance relationship under pathological conditions
still require systematic research. In particular, the differences in
the effects of different exercise modes (intensity, duration) on each
reflex pathway and the central integration mechanism are worthy of
in-depth exploration.

4.1.3 Central neural remodeling mechanisms

The cardiac neural regulatory network exhibits multi-
level characteristics, involving not only autonomic nerves and
cardiovascular reflexes but also the “brain-heart” regulatory axis
formed by the higher cortical-hypothalamic-brainstem pathways.
Functional magnetic resonance imaging (fMRI) studies confirm
that limbic systems (e.g., lateral prefrontal cortex, insular cortex,
amygdala) form neural circuit connections with the heart via
the hypothalamic PVN (Hu et al, 2023). Notably, the primary
motor cortex (M1 region), traditionally associated with motor
execution and cognitive functions (Levy et al., 2020; Shenoy et al.,
2013; Bhattacharjee et al, 2021), has recently been found
to exhibit anatomical connectivity with the heart (Li et al,
2021), Optogenetic experiments demonstrate that activating M1
glutamatergic neurons bidirectionally modulates heart rate and
contractile function in both healthy and myocardial infarction
(MI) mice (Bo et al., 2024).

Myocardial infarction-induced neural remodeling involves
dual central and peripheral pathological alterations. MI enhances
sympathetic excitatory input from the PVN to the rostral
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ventrolateral medulla (RVLM),
RVLM-sympathetic nerve” axis that directly causes abnormal

forming a hyperactive “PVN-

B-adrenergic receptor density elevation and myocardial fibrosis
(Koba et al, 2020; Wang et al., 2022b). Exercise intervention
effectively suppresses sympathetic sprouting and catecholamine
secretion by downregulating NADPH oxidase activity and inhibiting
oxidative stress in the RVLM, demonstrating clear cardioprotective
effects in MI animal models (Koba et al., 2014; Chen et al,
2014). Current evidence reveals that exercise improves cardiac
autonomic balance by modulating multi-level central nodes
in the “cortex-hypothalamus-brainstem” axis. However, critical
1

relationships among distinct brain regions in exercise-mediated

questions remain unresolved: hierarchical regulatory
cardioprotection; (2) temporal window characteristics of neural
plasticity; (3)

intensity and neural remodeling effects. Particularly, the regulatory

dose-response relationships between exercise

roles of non-motor cortical regions (e.g., insula, anterior
cingulate cortex) in the “brain-heart” axis warrant further
investigation.

4.2 Skeletal muscle-cardiac crosstalk

As the largest metabolic organ, skeletal muscle exerts its
endocrine function as a pivotal mediator in exercise-induced
cardioprotection. During exercise, skeletal muscle secretes over
650 bioactive myokines (Bay and Pedersen, 2020), which establish
bidirectional communication with multiple organs (e.g., brain,
cardiovascular system) via endocrine pathways, forming the
systemic biological basis of exercise benefits (Severinsen and
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Pedersen, 2020). Notably, clinical experiment have shown that
skeletal muscle-derived IL-6 exhibits unique anti-inflammatory
properties in exercise physiology: while circulating IL-6 levels
rise markedly during exercise, it induces monocytes to produce
anti-inflammatory mediators (e.g., IL-1 receptor antagonist, IL-10)
while suppressing the bioactivity of pro-inflammatory cytokines
like TNF-q, creating a systemic anti-inflammatory milieu (Fiuza-
Luces et al., 2018; Steensberg et al., 2003; Starkie et al., 2003). Animal
experiments revealed that exercise-induced follistatin-like protein
1 (FSTL1) improve cardiac function after myocardial infarction
through a comprehensive protective effect of inhibiting apoptosis,
reducing fibrosis and promoting angiogenesis (Ouchi et al,
2008; Xi et al, 2021). Myokines such as irisin and insulin-like
growth factor 1 (IGF-1) show significant cardioprotective effects in
animal models of cardiac ischemia-reperfusion injury and pressure
overload by regulating myocardial energy metabolism, enhancing
antioxidant capacity and improving mitochondrial function
(Ma et al., 2021; Li et al., 2024; Tan et al., 2023). Current evidence
confirms that exercise regulates multiple pathophysiological
processes (cardiac inflammatory microenvironment, angiogenesis,
cell survival) through myokine cascades along the skeletal muscle-
heart axis. However, critical gaps remain: (1) spatiotemporal
secretion patterns of distinct myokines; (2) tissue-specific receptor
distribution; (3) crosstalk between signaling pathways; and
particularly; (4) dose-response relationships between exercise
intensity and myokine secretion profiles require systematic
investigation.

4.3 Kidney-heart crosstalk

The
cardiovascular

cardiorenal interaction plays a pivotal role in

pathophysiology, classically exemplified by
cardiorenal syndrome (CRS), where dysfunction of either the
heart or kidneys triggers secondary injury in the other organ
through neurohumoral regulation, hemodynamic alterations, and
inflammatory responses (Ronco et al., 2010). Epidemiological
studies reveal a significantly elevated cardiovascular mortality
rate in chronic kidney disease (CKD) patients, with global
CKD-related cardiovascular deaths reaching 1.8 million in
2021 (Martin et al.,, 2024). Pathologically, CKD-induced cardiac
injury arises from a triad of mechanisms: (1) increased left
ventricular end-diastolic pressure due to volume overload; (2)
enhanced oxidative stress from wuremic toxin accumulation;
and (3) overactivation of the renin-angiotensin-aldosterone
system (RAAS) 2012).

ameliorates cardiorenal interactions through multiple pathways.

(Chuasuwan and Kellum, Exercise
Regular exercise reduces intraglomerular pressure and suppresses
tubulointerstitial fibrosis progression, thereby decelerating CKD
advancement (Shlipak et al, 2022; Yamakoshi et al, 2022).
Exercise-induced enhanced sodium excretion and modified
antidiuretic hormone sensitivity alleviate volume overload
(Beetham et al., 2022). Studies demonstrate that exercise stimulates
renal synthesis of ELABELA (ELA), a dual-organ protective
peptide hormone. ELA activates the YAP-Akt-mTOR-P70S6K
signaling network in cardiomyocytes, enhancing contractile reserve,
promoting microvascular angiogenesis, and suppressing Ang II-
induced pathological remodeling to preserve cardiac function
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(Zheng et al., 2021; Xi et al., 2023). Current evidence confirms
that exercise intervention establishes a multi-target protective
network against CRS by: (1) maintaining glomerular filtration
function; (2) modulating RAAS activity; and (3) augmenting
renoprotective factor secretion. However, critical gaps persist
regarding: (1) temporal effects of exercise on cardiorenal crosstalk;
(2) differential cardiorenal benefits across exercise modalities
(endurance/resistance/high-intensity interval training); and (3)
roles of other renally derived cytokines beyond ELA in exercise-
mediated cardioprotection.

4.4 Gut-heart cross-talk

The gut microbiota, as the largest exogenous metabolic organ,
dynamically regulates systemic homeostasis through microbiota-
host co-metabolic networks. Microbial metabolites serve as
chemical mediators of gut-organ axis communication and play
vital roles in maintaining cardiovascular health (Nicholson et al.,
2005; Dai et al., 2023). Gut dysbiosis impairs cardiac function
via: (1) systemic inflammation triggered by pathogen-associated
molecular pattern (PAMP) translocation; (2) pro-atherogenic
metabolite production (e.g., trimethylamine N-oxide, TMAO);
and (3) cholesterol homeostasis disruption caused by bile acid
metabolism dysregulation. Exercise exerts significant regulatory
effects on gut microbiota. It optimizes microbial composition (Kim
and Kang, 2019) and enhances microbiome richness/diversity
(Clarke et al., 2014). Notably, myocardial ischemia itself alters
gut microbiota diversity. Both human and animal studies
shifts
(Tang et al, 2019; Liu et al, 2017), while exercise increases

demonstrate post-myocardial infarction microbiome
Butyricimonas and Akkermansia abundance, improving cardiac
function in infarcted hearts (Liu et al., 2017). Mechanistically,
exercise-induced microbial metabolic reprogramming generates
cardioprotective molecules: 3-hydroxypyridinecarboxylic acid
(3-HPA) and 4-hydroxybenzoic acid (4-HBA) activate the
Nrf2-ARE pathway, reducing cardiomyocyte apoptosis by 42%
and suppressing TGF-B/Smad3-mediated collagen deposition,
ultimately limiting infarct size (Zhou et al., 2022). These
findings suggest exercise protects ischemic hearts through
dual
functional metabolite production. However, critical gaps remain
(1)
gradients; (2) causal contributions of specific bacterial strains;
(3) tissue-specific delivery mechanisms
metabolites.

mechanisms—microbiota structural optimization and

regarding: exercise intensity-metabolite concentration

and of microbial

4.5 Liver-heart crosstalk

Hepato-cardiac interactions play significant roles in interorgan
pathophysiological communication. Common liver diseases may
induce cardiac dysfunction (Correale et al, 2018). Exercise
this
alleviates

intervention disrupts vicious cycle through multiple

mechanisms. Exercise cirrhosis-associated cardiac
remodeling and diastolic dysfunction (de Souza et al., 2021). At
the molecular mechanism level, the core mediators of heart-liver

interaction include: (1) Inflammatory signal cascade (Correale et al.,
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2018):Myocardial infarction induces inflammatory responses in the
liver and leads to liver injury, while exercise-induced myogenic
factor Irisin inhibits liver inflammatory responses and improves
liver injury caused by myocardial infarction (Wang et al., 2023a).
(2) Hepatogenic inducible factor: Hepatogenic Protein coagulation
Factor XI (FXI) can activate the Bone Morphogenetic Protein
(BMP)-Smadl/5 pathway in the heart, thereby inhibiting the
genes involved in inflammation and fibrosis and protecting the
cardiac function in heart failure (Cao et al., 2022). FGF21 is
a cytokine mainly expressed by the liver and also an exercise-
inducing factor. Exercise can maintain mitochondrial integrity
through the FGF21-Sirtuin3 axis to protect cardiac function under
pathological conditions (Jin et al., 2022). Exercise bidirectionally
regulates hepato-cardiac crosstalk, attenuating cardiac injury
through interorgan anti-inflammatory effects and direct myocardial
protection via hepatokines. In heart failure, the ratio of
phosphocreatine to ATP in the myocardium significantly decreases,
leading to insufficient energy supply to the heart (Jullig et al., 2008).
Exercise can induce the expression of myocardial FGF21 coreceptor
B-klotho, promote the phosphorylation of FOXO3 through AMPK
signaling, induce the expression of mitochondrial deacetylase Sirt3,
promote the deacetylation of myocardial mitochondrial enzyme
clusters to maintain mitochondrial integrity and function, and
improve the efficiency of mitochondrial oxidative phosphorylation
(Jin et al, 2022). Restore myocardial ATP levels and improve
impaired cardiac function. During the rational remodeling process
of heart disease, the preference for energy metabolism substrates
shifts from fatty acid oxidation to glucose oxidation, resulting in a
decrease in energy productivity (Gibb and Hill, 2018). Exercise can
promote the expression of medium-chain acyl-coA dehydrogenase
and 2, 4-dienyl-CoA reductase one in mitochondria, enhance
the P -oxidation capacity of myocardial fatty acids, and improve
the energy supply efficiency of the heart (Risikesan et al., 2023).
However, unresolved questions include: (1) tissue-specific FGF21
regulation (liver vs. adipose) in response to exercise; (2) time-dose
relationships between exercise intensity and FGF21 effects; and
(3) roles of exercise-induced hepatic metabolites (e.g., bile acid
derivatives) in the liver-heart axis.

4.6 Adipose-heart crosstalk

Obesity and metabolic syndrome are major cardiovascular risk
factors, with adipose tissue playing a central role. Obesity induces
systemic inflammation (Ghigliotti etal., 2014; Berg and Scherer, 2005),
which paradoxically drives adipogenesis as an adaptive mechanism
to prevent ectopic fatty acid deposition (Wernstedt Asterholm et al.,
2014). Epicardial adipose tissue exhibits heightened adipogenic
sensitivity compared to other visceral fat depots (Marchington and
Pond, 1990). In obesity, epicardial fat acts as a sensor, mediating
systemic inflammatory effects on myocardium akin to its adverse
coronary impacts (Packer, 2018). Exercise reduces epicardial fat
accumulation, mitigates oxidative stress/inflammation, and confers
cardioprotection (Nyawo et al., 2021). Adipokines exhibit context-
dependent cardiac effects: Leptin protects against cardiomyocyte
hypertrophy/apoptosis under physiological conditions (Unger, 2005),
but promotes adverse cardiovascular outcomes in obesity-related
hyperleptinemia (Zhao et al., 2021). Exercise lowers hyperleptinemia
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and restores leptins cardioprotective effects (Lowndes et al., 2014).
In summary, exercise combats adipose-mediated cardiac injury
by: (1) reducing systemic and peri-cardiac fat accumulation; and
(2) modulating adipokine profiles. However, mechanistic details
of exercise-regulated leptin signaling and tissue-specific adipokine
interactions require further elucidation.

5 Clinical translation opportunities
and challenges

5.1 Exercise mimetics

Recent years have witnessed growing interest in bioactive
oral compounds that mimic or amplify exercise benefits, termed
“exercise mimetics” or “exercise pills” These compounds aim to
stimulate muscle adaptations akin to exercise, yet their capacity
to fully replicate exercise effects remains contentious. Scholars
argue that exercise-induced responses involve multifactorial, often
redundant interactions among signaling kinases, downstream
pathways, and spatiotemporal coordination, generating integrated
adaptations to physiological challenges (Hsieh et al., 2025).
Consequently, single-target interventions are unlikely to recapitulate
the full regulatory
nodes retain therapeutic potential. Over 100 myokines have
been identified (Chow et al, 2022), though most remain
functionally uncharacterized. Beyond myokines, muscle-derived

exercise phenotype. Nevertheless, key

metabolites during contraction also contribute to metabolic
regulation, suggesting “exercise mimetics” may partially mimic
metabolic benefits while neglecting multisystem adaptations
(Hsieh et al., 2025; Hoffmann and Weigert, 2017). Future
research should employ multi-omics technologies to delineate
cardioprotective exercise factors, establish drug screening platforms
based on exercise factor interactions, and develop targeted delivery
systems for exercise-limited patients. Breakthroughs in these areas
may bridge basic discoveries to clinical translation, advancing
exercise mimetics from concept to application.

5.2 Personalized exercise prescription

the FITT-
VP framework (Frequency, Intensity, Time, Type, Volume,

Scientific exercise prescription adheres to
Progression), which synergistically modulates energy metabolism,

hemodynamics, and molecular signaling to determine
pathophysiological outcomes. Given the stringent safety and
efficacy requirements for cardiac exercise rehabilitation, careful
consideration must be given to differential cardiac impacts
associated with varying exercise parameters. Pandey et al. believe
that there is a clear dose-response relationship between exercise
and cardiovascular health benefits (Pandey et al., 2015). Zheng
et al. demonstrated that individuals engaging in moderate and large
exercise volumes exhibited superior cardiac structural parameters
compared to those performing high-intensity exercise (Zheng et al.,
2024). Zhang etal. found that the greatest benefits were gained
when exercise was initiated in the acute phase after myocardial
infarction, while the later the exercise intervention after myocardial

infarction, the worse the exercise effect (Zhang et al, 2016).

frontiersin.org


https://doi.org/10.3389/fphys.2025.1651589
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

You et al.

It is noteworthy that High-Intensity Interval Training (HIIT)
demonstrates superior efficacy in suppressing pathological cardiac
remodeling in patients with heart failure compared to aerobic
exercise, resistance training, and combined training modalities
(Wang et al.,, 2023b; Cornelis et al., 2016). Meanwhile, a higher
training frequency (for example, more than twice a week) can
better improve the endothelial function of patients with heart
failure than a lower training frequency (for example, twice a
week) (Fuertes-Kenneally et al., 2023). Pandey et al. observed that
when the PA (Physical Activity) levels were 250 and 500 MET-
min/wk, the risk of HF decreased by only 5% and 10%, respectively.
However, individuals who engaged in physical activity at 1000
MET-min/wk and 4 times 2000 MET-min/wk had a 19% and 35%
reduced risk of heart failure (Pandey et al., 2015). From this, it
can be seen that exercise parameters are of vital importance to
the effect of cardiac exercise rehabilitation. Although some basic
research has compared the differences in the protective effects
of different exercise parameters on the heart, in clinical practice,
patients’ conditions, disease courses, and physical constitutions
all vary. Therefore, the setting of exercise parameters needs to be
considered appropriately based on the actual situation (Pei et al.,
2023; Pei et al,, 2021; Zhang et al.,, 2024; Sylviana et al., 2022).
Future work should establish multidimensional parameter matrices
encompassing exercise modalities and intervention windows,
integrated with single-cell sequencing and metabolomics to map
exercise parameter-molecular network-clinical outcome pathways.
This paradigm may transcend empirical prescription, enabling
precision cardiac rehabilitation.

Although exercise is regarded as a safe and effective remedy
for preventing and treating cardiovascular diseases, its potential
risks, contraindications and scientific avoidance strategies must be
taken seriously. Patients with coronary heart disease who have not
been evaluated may experience plaque rupture, acute myocardial
infarction or malignant arrhythmias (such as ventricular fibrillation)
during intense exercise. Long-term overexertion can lead to an
increase in myocardial fibrosis markers, promote pathological

10.3389/fphys.2025.1651589

myocardial hypertrophy, and at the same time, high-intensity
endurance exercise increases the risk of atrial fibrillation (Patel and
Link, 2025; Gerardin et al., 2021; Pandey et al., 2015). For patients
with absolute contraindications such as unstable angina pectoris,
severe aortic stenosis, acute myocarditis/pericarditis, etc., exercise
should be strictly restricted. Patients with relative contraindications
such as hypertension and severe arrhythmia need to undergo
medical assessment before engaging in exercise. When experiencing
chest pain/a feeling of oppression, dizziness, arrhythmia or shortness
of breath during exercise, one must stop exercising immediately. In
conclusion, only through scientific exercise can one maximize the
benefits for the heart while avoiding risks.

5.3 Telemedicine-enabled cardiac
rehabilitation

Digital transformation is driving a fourth medical revolution
in cardiac rehabilitation, featuring wearable biosensors (e.g.,
Einthoven-style patch ECG), 5G telemedicine platforms, and deep
learning-based early warning systems. Studies confirm that Internet
of Things (IoT)-enabled home-based cardiac rehabilitation (HBCR)
matches center-based programs in reducing major cardiovascular
events and improving 6-min walk distance (Anderson et al.,
2017; McDonagh et al,, 2023). Multimodal data fusion enables
real-time monitoring of exercise intensity, myocardial oxygen
consumption, and arrhythmias, allowing dynamic prescription
optimization. However, safety concerns persist for high-risk
populations (Thomas et al., 2019), necessitating biomarker-based
pre-event warning systems. Future efforts should integrate three
tiers: (1) foundational research on predictive biomarkers; (2)
technological innovation in remote monitoring; and (3) clinical
implementation strategies. This “trinity” framework may shift
cardiac rehabilitation from facility-dependent to intelligent,
personalized paradigms (Figure 2).
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A diagram outlining the translational pipeline from basic exercise physiology to clinical implementation.
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6 Conclusion

Exercise serves as a cornerstone intervention strategy
for cardiovascular disease prevention and treatment, with
its cardioprotective effects arising from the integration of
multidimensional molecular regulatory networks and interorgan
synergistic interactions. Although challenges persist in developing
exercise mimetics due to target selectivity limitations and systemic
complexity, multi-omics analysis of exercise factor networks
provides new directions for precision drug design. Concurrently,
intelligent upgrades in tele-rehabilitation technologies—particularly
the integration of wearable devices with Al-based early warning
systems-are facilitating the transition from empirical interventions
to data-driven decision-making in cardiac care management.
Current research limitations primarily involve: (1) Insufficient
quantitative characterization of dose-effect relationships between
exercise parameters and molecular responses; (2) Unclear temporal
window characteristics of interorgan communication signals and their
interaction mechanisms within pathological microenvironments;
(3) Incomplete understanding of maintenance and resolution
mechanisms underlying exercise-induced epigenetic memory. Future
studies should integrate single-cell spatiotemporal omics, optogenetic
modulation, and organoid models to systematically elucidate the
hierarchical architecture of exercise-activated cardioprotective
networks, thereby foundations  for

personalized cardiac rehabilitation strategies. Although the benefits

establishing  theoretical

of chronic exercise on physiology and molecular pathways have

been established, there is still much to be discovered to establish
better-designed clinical protocols and approaches (Figure 3).
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