
 

TYPE Review
PUBLISHED 08 October 2025
DOI 10.3389/fphys.2025.1653387

OPEN ACCESS

EDITED BY

Erika E Nishi,
Federal Universtity of São Paulo, Brazil

REVIEWED BY

Zhi-Lin Luan,
Dalian Medical University, China
Marta Kuczeriszka,
Polish Academy of Sciences, Poland

*CORRESPONDENCE

Richard David Wainford,
 richard.david.wainford@emory.edu

RECEIVED 24 June 2025
ACCEPTED 28 August 2025
PUBLISHED 08 October 2025

CITATION

Cardoso LM and Wainford RD (2025) The 
immune-microbiome axis in salt-sensitive 
hypertension: a focus on renal and neural 
mechanisms.
Front. Physiol. 16:1653387.
doi: 10.3389/fphys.2025.1653387

COPYRIGHT

© 2025 Cardoso and Wainford. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with 
these terms.

The immune-microbiome axis in 
salt-sensitive hypertension: a 
focus on renal and neural 
mechanisms
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1Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of 
Ouro Preto, Ouro Preto, Brazil, 2Department of Cardiology, School of Medicine, Emory University, 
Atlanta, GA, United States

Systemic arterial hypertension (SAH) is a prevalent condition affecting humans 
and other mammals, with high salt intake recognized as a major risk factor 
for its development and progression. This review examines the intricate 
interplay between dietary salt, immune signaling, neural regulation and renal 
mechanisms in the pathophysiology of salt-sensitive hypertension (SSH). 
High salt consumption not only directly influences blood pressure but also 
induces low-grade inflammation by activating both innate and adaptive 
immune responses, particularly promoting pro-inflammatory T cell (TH17/IL-
17) and macrophage phenotypes. These immune alterations impact key 
organs involved in blood pressure regulation, including the kidneys and 
central nervous system (CNS). In the CNS, salt-induced immune activation, 
especially microglial activation and cytokine production in regions such as 
the paraventricular nucleus, enhances sympathetic outflow and contributes to 
neurogenic hypertension. Disruption of the blood-brain barrier further facilitates 
immune cell infiltration and perpetuates neuroinflammation. Additionally, recent 
evidence shows that high salt intake alters the gut microbiome, reducing its 
diversity and favoring pro-inflammatory bacterial populations, which further 
amplify immune dysregulation via the gut-grain axis. The role of the kidneys 
in sodium handling is modulated by immune cell infiltration and cytokine-
drive changes in sodium channel expression, reinforcing salt sensitivity. Aging 
and sex differences further modulate these pathways, increasing SSH risk in 
older individuals and postmenopausal women. Emerging therapeutic strategies 
targeting the gut microbiota, immune signaling, and neural pathways offer 
promise improvement for SAH management. However, further research is 
needed to clarify causal mechanisms and optimize interventions that address 
the neural-immune-microbiome axis in hypertension.
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hypertension, salt, inflammation, microbiome, short chain fatty acids, brain, kidney, salt 
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1 Introduction

Systemic arterial hypertension (SAH), characterized by 
a persistent elevation in blood pressure (BP), is a clinical 
condition that transcends the human species, affecting various 
mammalian species. Hypertension is the single largest risk factor 
for numerous diseases, including ischemic brain infarction, 
intracranial hemorrhage, myocardial infarction, renal diseases, 
and congestive heart failure (APA, 2020; WHO, 2012; Frame and 
Wainford, 2017). It has been widely documented that intrinsic 
factors like genetic background, sex and age (Nist et al., 2024; 
Kim et al., 2024; Demirci et al., 2025) as well as extrinsic factor 
like smoking (Groppelli et al., 1992), alcohol (Lima et al., 1999), 
sedentarism (Alvarez et al., 1999), and eating habits (Yamamoto-
Kimura et al., 1996) are associated with the development of 
SAH. Among eating habits, salt intake plays a key role in the 
development of SAH (Grillo et al., 2019) and will be further 
discussed here.

High salt intake can fulfill physiological and homeostatic 
functions, particularly when the individual sodium balance is 
low and body sodium content must be replenished. Under this 
condition, the high salt intake is driven by an increase in sodium 
appetite, which results in a behavioral state in which the individual 
seeks and consumes higher than normal salt amounts, also 
called need-induced sodium appetite (Geerling and Loewy, 2008). 
Curiously, mammals also exhibit high sodium intake behavior which 
is not driven by physiological needs for body sodium replenishment 
but for what is understood as a hedonic stimulus termed need-free
sodium appetite (Geerling and Loewy, 2008). For the purpose of this 
review, we will focus on the need-free sodium intake and its impact 
on the BP regulation and contributions to hypertension.

High salt intake has long been associated with “stiffen and 
harden pulse”, a condition first described by Chinese physician 
Huang Di´s Neijing Swen, about 2500 BCE (Bailey and Dhaun, 2024; 
Ha, 2014). However, it was only in the beginning of the 20th century 
that the association between high salt intake and hypertension 
was established by Ambard and Beaujard using modern scientific 
methodology and standards (Ambard and Beaujard, 1904). Since 
then, several experimental and trial studies have supported these 
observations and provided evidence for the impact that high salt 
intake has on the pathophysiology of hypertension. In the 1940´s 
and 1950´s, studies by Kempner showed that the BP in 2 of the 
6 patients under a strict rice fruit diet declined to normal levels 
and rose again after 20 g of sodium chloride was added daily 
(Grollman et al., 1945). In essence, this observation gave birth to 
the idea that would be later elaborated into the concept of the 
salt-sensitivity of BP (SSBP). The SSBP can be currently defined 
as a trait where the individual BP (animal or human) displays 
a change parallel to the changes in salt intake (Eli et al., 2016; 
Weinberger, 1996a; Weinberger, 1996b; Weinberger, 2006). The 
SSBP is a trait normally distributed in humans and is present in 
both the normotensive and hypertensive individuals. An important 
and influential American study showed that after salt depletion 
and following sodium load, 26% of the normotensive patients were 
ascribed as salt sensitive while 51% of the hypertensive patients 
were salt sensitive (Weinberger et al., 1986). Despite limitations 
(Bailey and Dhaun, 2024) this study established that hypertensive 
patients have higher probability of displaying a SSBP phenotype 

and launched the basis for the understanding that salt sensitivity 
is an important cardiovascular risk factor “independent of and as 
powerful as BP” by itself (Bailey and Dhaun, 2024; Eli et al., 2016).

Over the last 100 years scientific investigations have 
repeatedly demonstrated that renal pressure-natriuresis, hormonal 
hydroelectrolytic balance and neural sympathetic mediated events 
are key to the SSBP (Bie and Evans, 2017a; Bie and Evans, 2017b). 
These studies have revealed intricate interactions among different 
systems to sustain high BP and other detrimental outcomes of 
high salt intake. Of particular interest in this context is a growing 
body of evidence that has linked the immune cellular and signaling 
mechanisms not only to hypertension but also to the SSBP (Bailey 
and Dhaun, 2024; Mattson, 2014; Mattson, 2019; Rucker et al., 
2018; Maaliki et al., 2022) and experimental and clinical studies 
led to the idea that hypertension may be an “inflammatory” 
disease (Boos and Lip, 2006; Solak et al., 2016). Although the 
immune events that take place along hypertension development 
and maintenance hold some characteristics of an “inflammatory 
state” such as heightened immune-related signaling molecules in 
end-organs linked to BP control and hypertension, it is crucial to 
acknowledge that this concept may deviate from the conventional 
definition of inflammation. Classically, inflammation is defined as 
a protective process by which the body’s immune system responds 
to injury, infection, or harmful stimuli. The four typical signs of 
acute inflammation were first described by Celsus in ancient Rome 
(30–38 B.C.) (Chandrasoma and Taylor, 1998) and are defined 
as: Rubor (redness), Calor (heat), Tumor (swelling) and Dolor 
(pain). Those signs are not always present in end-organs associated 
with the development of hypertension and make one wonder 
whether “inflammation” truthy describes the role of the immune 
system in the development of hypertension. However, some authors 
have elaborated a new concept to describe a chronic, subclinical, 
sterile and systemic condition characterized by a persistent, mild 
elevation of inflammatory markers in the body (Minihane et al., 
2015; Ronnback and Hansson, 2019; van de Vyver, 2023) that would 
better represent the role of the immune system in hypertension. This 
concept is termed “low-grade inflammation” (LGI) or “metabolic 
inflammation” or “metainflammation” (van de Vyver, 2023) and has 
been implicated in the pathogenesis of many non-communicable 
chronic diseases, including salt-sensitive hypertension (SSH) (Boos 
and Lip, 2006; Al-Nimer and Alhusseiny, 2016).

Based on the currently available experimental evidence, 
this review will explore some aspects of the intricate interplay 
between the immune system and its pro-inflammatory signaling 
molecules (PIM), the central nervous system (CNS) and the renal 
system in SSH. 

2 The immune system and the 
salt-sensitivity of blood pressure: an 
overview

The role of the immune system in BP regulation and 
hypertension development became evident with pharmacological 
studies in rodents showing that, under certain conditions, the 
inhibition or lacking of cyclooxygenase-1, a key enzyme in the 
prostanoids synthesis pathway, can lower the BP of Ang II-salt 
hypertensive rats (Asirvatham-Jeyaraj et al., 2013; Athirakul et al., 
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2001). In addition, a 2007 study by Guzik and cols. Showed 
that activation of immune cells contributed to the hypertension 
induced by angiotensin II (Ang II) infusion and deoxycorticosterone 
acetate (DOCA) plus high-salt diet in Rag1−/− mutant mouse 
(Guzik et al., 2007). This particular study showed that the knockout 
mice for Rag1 lack mature T cells and B cells, which protected 
them from vascular dysfunction and remodeling in addition to 
reducing the hypertensive responses to Ang II and DOCA-salt 
(Guzik et al., 2007). Clinical studies also showed that patients 
with hypertension had a higher proportion of immunosenescent, 
proinflammatory, and cytotoxic CD8+ T cells in their blood. 
Furthermore, immunohistochemical assessment of renal biopsy 
specimens from patients with hypertensive nephrosclerosis revealed 
increased expression of the T-cell chemokine interferon (IFN)-
inducible T-cell α chemoattractant in the proximal and distal tubules 
suggesting that T-cell-driven inflammation may also play a role in 
human hypertension, especially in the kidney (Youn et al., 2013).

One of the most important risk factors for hypertension, high 
salt intake, is found to alter the activation of inflammatory cells 
in both the innate and adaptive immune system (Afsar et al., 
2018; Miyauchi et al., 2024; Li et al., 2022). Murine macrophages 
and T cells exposed to high salt have been found to express a 
pro-inflammatory state both, in vitro and in vivo (Binger et al., 
2015; Jantsch et al., 2015; Kleinewietfeld et al., 2013; Wu et al., 
2013; Zhang WC. et al., 2015). Additionally, a modest increase in 
extracellular salt concentration induces the serum glucocorticoid 
kinase 1 (SGK1) expression, a serine/threonine kinase 4 that 
promotes IL-23R expression by deactivating the transcription factor 
Forkhead box protein O1 (FOXO1) in mice. FOXO1 is a direct 
repressor of IL-23R expression and enhances the IL-17-producing 
T helper lymphocyte cells (TH17) differentiation in vitro and in vivo
through IL-23 mechanisms (Wu et al., 2013). The TH17 polarization 
of naïve immune cells has been reported in both humans and mice 
(Miyauchi et al., 2024; Kleinewietfeld et al., 2013; Jorg et al., 2016; 
Wilck et al., 2017; Yakoub et al., 2024). Also, high salt concentrations 
in the medium can increase the production of PIM like TNF-
α, IL-2 and granulocyte-macrophage colony-stimulating factor by 
cultured TH17 cells (Kleinewietfeld et al., 2013). Moreover, the SGK1 
activation has also been shown to stimulate the mineralocorticoid-
mediated expression of epithelial sodium channels (ENaC) in 
the kidneys of mice (Wulff et al., 2002) what indicates that the 
SGK1 pathway is shared by inflammatory and sodium homeostasis 
mechanisms.

High salt also impacts macrophage core functions both in vitro
and in vivo, especially because macrophages exhibit chemotactic 
migration in response to salt gradients in vitro (Muller et al., 
2024). The incubation of bone marrow-derived macrophages 
with high concentrations of sodium chloride (NaCl) elicited a 
strong pro-inflammatory phenotype characterized by enhanced pro-
inflammatory cytokines (PIC) production, increased expression of 
immune-stimulatory molecules, and an antigen-independent boost 
of T cell proliferation through pathways that may involve the 
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-
κB) and the mitogen-activated protein kinase (MAPK) signaling 
(Hucke et al., 2016). Additional evidence shows a direct action of 
NaCl in inducing pro-inflammatory phenotypes. Zhang and cols. 
Showed that a roughly 33% increase in medium NaCl concentration 
significantly induced interleukin 6 (IL-6) and MCP-1 (or CCL2) 

production by retinal pigment epithelium (ARPE-19) cells in culture 
(Zhang D. et al., 2015). This effect was not mediated by osmolarity, 
as an equivalent osmotic mannitol addition to the medium had 
no effect on IL-6 or MCP-1 production (Zhang D. et al., 2015). In 
addition to the NF-κB and MAPK pathways, evidence from humans 
and experimental animal studies have shown that myeloid-specific 
janus kinase 2 (JAK2) also contributes to LGI and SSH. The JAK2 
signaling pathway plays crucial roles in many cellular processes 
and physiological functions such as cell growth and survival, 
hematopoiesis, immune regulation, inflammation, metabolism and 
gene transcription (Bader and Meyer, 2022). High salt upregulated 
gene expression of the JAK/STAT/SMAD pathway in human 
monocytes and the ablation of JAK2 signaling attenuated the SSH 
hypertension in mice (Saleem et al., 2024). The authors also found 
that JAK2 increased production of highly reactive isolevuglandins 
(IsoLG) and IL-6 by renal antigen presenting cells (APC). In 
addition, JAK2 also activates T cells and increases production of 
IL-6, interleukin 17A (IL-17A), and tumor necrosis factor-alpha 
(TNF-α) in mice (Saleem et al., 2024).

Although the evidence suggests that sodium can drive 
inflammation-related signaling pathways in immune cells, increased 
salt intake actually produces very small Cohen effect size in steady-
state plasma sodium concentrations of certain models of SSH, such 
as the Dahl-salt-sensitive model (DSS) (Stocker, 2023; Nakamura 
and Cowley, 1989) or the HS12W model (Gomes et al., 2017). This 
poses some limitation to the general idea that high salt intake can 
affect immune cell physiology. It also may suggest that the activation 
of the immune system by high salt intake may include an indirect 
result of increased sodium “traffic” throughout the body. Indeed, 
assessment of serum sodium concentrations in humans showed only 
a modest (∼1.4%) increase in systemic serum sodium concentration 
after a high salt meal, lasting at least 2 h, and without changes in 
hormones involved with body fluid homeostasis or endothelial 
function, such as endothelin-1 (ET-1), vasopressin (AVP), and atrial 
natriuretic peptide (ANP) (Dickinson et al., 2014). One important 
question here yet to be answered is whether this transient increase 
in sodium concentration of the extracellular fluid could be enough 
to unleash important changes in immune cells phenotype toward a 
pro-inflammatory state and contribute to the LGI over time? Since 
sodium absorption by the intestine doesn´t distribute throughout 
body volume at once, the great gradient of sodium through the 
intestine wall could make these local immune cells more susceptible 
to sodium-driven changes in phenotype and cytokines profile 
production as described in in vitro studies. On the other hand, 
recent evidence has shown that high salt intake can result in non-
osmotic sodium accumulation in the skin (Titze et al., 2003) and 
muscle tissue (Rossitto et al., 2020) pointing toward the possibility 
that immune cells in these regions could also be impacted by high 
sodium gradients and contribute to systemic LGI.

In addition to salt-induced immune cell differentiation 
and activation, sodium can enter into dendritic cells (DC) via 
the amiloride-sensitive epithelial sodium channel (ENaC) and 
activate the production of the PIM IL-1β and promote T cell 
production of IL-17A and IFN-γ (Barbaro et al., 2017). It has 
been proposed that higher sodium influx through ENaC in DC 
increases sodium/calcium exchange, thus activating phosphokinase 
C (PKC) and NADPH-oxidase (Barbaro et al., 2017). The increased 
reactive oxygen species production drives the production of IsoLG 
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and the NOD-like receptor family pyrin domain containing 3 
(NLRP3) inflammasome that activates caspase-1 and increases the 
production of IL-1β by the DC (Pitzer et al., 2022). Interesting, 
when such activated DC are adoptively transferred into naïve
mice, they prime hypertension in response to a sub-pressor dose 
of Ang II (Barbaro et al., 2017). These experimental findings are 
further supported by a study showing that amiloride exerts anti-
inflammatory effects by decreasing the PMI TNF and IL-6 plasma 
levels, but not IL-17A levels, in patients with resistant hypertension 
and type 2 diabetes (Thangaraj et al., 2024).

From a vascular perspective, transient high salt intake promotes 
T-cell-mediated hypertensive vascular injury in a mice model of 
high-salt intake drinking 1% NaCl solution (Yakoub et al., 2024). 
The authors showed that in transient high salt-treated hypertensive 
mice, the aortic injury was associated with increased inflammation, 
accumulation of neutrophils, monocytes, CD69+CD4+ T cells, 
as well as CD4+ and CD8+ memory T cells. Moreover, high 
salt intake sensitized the animals for angiotensin II-induced 
vascular lesions by increasing the expression of aortic RORγt 
as well as splenic CD4+TH17 and CD8+TC1 T cells in Ang II-
treated mice (Yakoub et al., 2024). The authors suggested that 
transient high salt intake induces a subclinical T-cell-mediated 
aortic immune response, which is enhanced by Ang II and 
contributes to the vascular lesion in these animals.

Collectively, these data strongly indicate that sodium can 
deeply affect the physiology of immune cells toward a LGI 
state, which strongly correlates with SSH. Certain pieces of 
evidence suggest that sodium-induced modifications of immune 
cells physiology have a causal relationship with hypertension 
and further studies are needed to fully understand the role 
of the immune signaling system in the pathophysiology of
hypertension. 

2.1 Key points

1. The immune system influences BP regulation and the 
development of hypertension.

2. High salt intake triggers a pro-inflammatory state in both 
innate and adaptive immune systems affecting macrophages 
and T cells and promoting the production of pro-inflammatory 
mediators.

3. Sodium can modify macrophage physiology leading to pro-
inflammatory phenotypes, increased production of PIM 
(like IL-6 and MCP-1), immune-stimulatory molecules, and 
activation of NF-κB and MAPK signaling pathways.

4. Sodium influx through ENaC in dendritic cells can induce 
production of IL-1β through inflammasome activation and 
promote the IL-17A and INF-γ production by T cells.

3 Salt-sensitive hypertension and the 
central nervous system immune 
system

The central nervous system (CNS) plays a pivotal role in the 
BP regulation, both in normotension and hypertension (Guyenet, 
2006) and this concept has been grounded on several findings in the 

literature showing that neurogenic mechanisms are important for 
heightened BP and, especially, for SSH (Eli et al., 2016; Maaliki et al., 
2022; Adams et al., 2008). The major findings in this section are 
summarized in Table 1.

The reflex control of BP regulation has been widely recognized 
for its ability to short-term buffer large BP fluctuations and 
prevent potentially harmful sudden increases or decreases in 
systemic BP (Guyenet, 2006; Wehrwein and Joyner, 2013). In 
SSH, salt-dependent increases in BP are usually accompanied by 
reduced baroreflex sensitivity (Ozaykan et al., 2017; Rosa et al., 
2020; Wang et al., 2005). In addition to salt-related baroreflex 
impairments, excessive salt intake also leads to impairment in 
the reflex response to cardiopulmonary reflex activation. These 
reflexes are volume/chemical sensing mechanisms that regulate 
sympathetic and parasympathetic outflow to the cardiovascular 
system in response to volume expansion and/or chemical activation 
with metabolic byproducts and neurochemicals (Vasquez et al., 
1997; Vasquez, 1994). In Dahl salt rats, a high salt diet sensitized 
the cardiopulmonary reflex-driven sympathetic response to 
hypervolemia in Dahl salt resistant rats but not in Dahl salt sensitive 
rats (Victor et al., 1986). Interestingly, Dahl salt sensitive rats had 
a smaller sympathetic inhibition response when challenged with 
volume expansion compared to Dahl salt resistant rats, even under 
low-salt diet (Ferrari A. et al., 1984; Ferrari AU. et al., 1984). These 
findings suggest that the salt-sensitivity trait by itself includes a 
reduced sensitivity of the cardiopulmonary reflex in Dahl salt 
sensitive rats regardless of high salt intake. Since these studies were 
conducted in urethane-anesthetized rats, the full understanding of 
the cardiopulmonary reflex role in SSH regulation remains limited. 
However, it provides important evidence of changes in short-term 
BP regulation due to the salt-sensitive trait. The plasticity of the 
cardiopulmonary reflex has also been investigated in hypertensive 
humans and, consistent with experimental findings, the results 
revealed that high salt intake potentiates the cardiopulmonary 
reflex gain and atrial natriuretic factor response only in salt resistant 
hypertensive patients (Trimarco et al., 1991). Interestingly, the reflex 
response to carotid baroreceptor unloading was unaffected by salt 
loading in none of the groups (Trimarco et al., 1991) suggesting that 
cardiopulmonary reflexes are more sensitive than baroreflex to high 
salt intake in salt resistant hypertensive patients.

The paraventricular nucleus of the hypothalamus (PVN) is 
a hypothalamic nucleus that orchestrates neural and hormonal 
responses to changes in blood sodium concentration, osmolality and 
BP through two distinct cell subtypes: the parvocellular neurons, 
which comprise autonomic regulatory neurons (Ferguson et al., 
2008; Osborn et al., 2007), and the magnocellular neurons, 
which include oxytocin and vasopressin producing/containing 
neurons (Antunes-Rodrigues et al., 2004). Therefore, the PVN is 
a key forebrain region that plays important roles in neurogenic 
hypertension (Osborn et al., 2007). While the majority of 
descending sympathetic-related projections originating from PVN 
parvocellular neurons connect to the rostral ventral lateral medulla 
(RVLM) in the brainstem or to the intermedial lateral column in 
the spinal cord (Guyenet, 2006; Dampney et al., 2018), the majority 
of the projections from magnocellular PVN neurons project to 
the neurohypophysis and release vasopressin and oxytocin to the 
pituitary portal system when activated (Antunes-Rodrigues et al., 
2004). The outcome is a multifaceted role of the PVN in regulating 
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BP levels and sodium excretion by the kidney which contributes to 
the pathophysiology of SSH.

The immune signaling mechanisms in hypothalamic and 
brainstem regions controlling BP have received considerable 
attention in the recent years and the evidence gathered so far 
point toward important immune influence on the functional 
role of these regions in the SSH. The blockade of microglia 
activation with minocycline, a selective CNS-acting non-steroidal 
anti-inflammatory drug, in Dahl salt-sensitive rats can inhibit the 
augmented local production of IL-1β, IL-6, TNF-α and the oxidative 
stress in the PVN. Likewise, minocycline infusion in the PVN also 
attenuated the high BP, the ratio between resting RSNA/MaxRSNA, 
central prostaglandin E2 and plasm norepinephrine levels (Yu et al., 
2022). The infusion of the IL-1β receptor inhibitor gevokizumab into 
the PVN of Dahl salt-sensitive rats also attenuated the BP, heart rate, 
and plasma norepinephrine levels (Qi et al., 2016) suggesting that 
this specific cytokine plays a role in the PVN-driven neurogenic 
pressor response. The authors also reported increased levels of NOX-
2, NOX-4, IL-1β, NLRP3, Fra-LI and lower levels of IL-10 in Dahl 
salt-sensitive rats fed high salt diet and that gevokizumab restored 
the balance in the PVN (Qi et al., 2016). In addition, Jiang and 
cols. (2018) reported that Dahl salt-sensitive rats under high salt 
diet exhibited higher expression of PIC like TNF-α, IL-6, IL-1β and 
Fra1in the PVN and that intracerebroventricular infusion of highs 
sodium solution produced a marked increase in the expression of 
TNF-α, IL-6, IL-1β in Sprague-Dawley rats (Jiang et al., 2018). These 
studies highlight the role of high sodium concentrations in the PVN 
and its correlation to increased PIC production as well as the effect of 
the local anti-inflammatory agent minocycline or the IL-1β receptor 
inhibitor gevokizumab on SSH.

Although extensive research has advanced our understanding 
of immune signaling in the PVN regarding SSH, the role of 
immune signaling in the brainstem and its relationship to SSH 
is less advanced. It is known, however, that physiological reflex 
activation of the sympathetic circuit by bilateral carotid occlusion 
decreases the plasma levels of TNF and IL-1β, and increased 
the levels of IL-10 in endotoxemia induced by lipopolysaccharide 
in rats (Brognara et al., 2021a). Likewise, the activation of 
the Bezold-Jarisch reflex (the chemosensitive cardiopulmonary 
reflex) in endotoxemic rats reduced plasma levels of TNF and 
spleen levels of IL-6 (Brognara et al., 2021b). Although this 
evidence suggests that the autonomic activation of descending 
vagal pathways may influence peripheral PIM production, it does 
not provide further insights on how PIM can influence reflex 
regulation of the BP in the brainstem. On the other hand, toll-
like receptor 4 and angiotensin II receptor 1 inhibition reduces 
BP as well as IL-6 and TNF-α protein density in the RVLM 
and nucleus tractus solitarius (NTS) of spontaneous hypertensive 
rats corroborating the idea that immune signaling in neuronal 
circuitries controlling BP is important for the hypertension 
development (Mowry et al., 2021). 

3.1 Peripheral immune cell infiltration in 
the CNS and hypertension

Peripheral immune cell infiltration in the CNS has been 
associated with enhanced sympathetic drive, resulting in BP 
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increase, whereas inhibition of this immune signaling in the CNS 
ameliorates hypertension (Nist et al., 2024; Moreira et al., 2019; 
Xue et al., 2016; Yu et al., 2010). This has been demonstrated by 
a study in which chimeric spontaneously hypertensive rats (SHR) 
reconstituted with Wistar-Kyoto (WKY) bone marrow resulted 
in significant BP reduction associated with attenuation of both 
central and peripheral immune activation (Santisteban et al., 2015). 
The authors also reported elevated BP and increased central and 
peripheral “inflammation” in chimeric WKY rats reconstituted 
with SHR bone marrow (Santisteban et al., 2015). When microglia 
activation was pharmacologically inhibited with minocycline, 
hypertension was attenuated in SHR (Santisteban et al., 2015). 
These findings strongly suggest that extravasation of bone-marrow-
derived cells into the CNS, particularly into the PVN, is an important 
event in hypertension.

The infiltration of circulating immune cells into the CNS 
is believed to be associated with increased permeability of the 
blood-brain barrier (BBB) (Dinh et al., 2025). Hypertension has 
been shown to be linked to increased BBB permeability in the 
PVN, NTS and RVLM regions (Nist et al., 2024; Biancardi et al., 
2014; Ueno et al., 2004). However, a causal relation between 
increased BBB permeability and hypertension is yet to be 
determined. Such an increase in the BBB permeability has 
been shown to allow systemic Ang II to enter into the nervous 
tissue parenchyma thus activating AT1 receptor on perivascular 
macrophages (PVM) within the brain (Biancardi et al., 2014; 
Faraco et al., 2016). The activation of PVM promotes pathogenic 
actions in key cardiovascular controlling regions of the brain to 
set neurovascular dysfunction through reactive oxygen species 
(ROS) production via the superoxide producing enzyme NOX2
during chronic hypertension (Faraco et al., 2016). Interestingly, the 
autonomic nervous system (SNA) also innervates bone marrow 
(Katayama et al., 2006) and spleen (Carnevale et al., 2016), and 
increased sympathetic outflow can stimulate mobilization and 
release of hematopoietic stem cells into blood stream through 
adrenergic neurotransmission stimulation (Hanoun et al., 2015; 
Sant et al., 2016). Sympathetic stimulation of bone marrow has 
been shown to favor enhanced proinflammatory responses in a 
mature innate immune system (Harwani et al., 2012). Selective 
ablation of splenic nerve prevents T cell egression from spleen 
and infiltration into renal and aorta tissue and protects against 
hypertension (Carnevale et al., 2016). This interplay between 
sympathetic drive and peripheral immune cell stimulation has 
the potential to contribute to a positive feedback loop in which 
more peripheral cells can infiltrate the CNS and stimulate local 
immune signaling allowing further sympathetic stimulation and, 
ultimately, aggravates the hypertension over time. However, 
increased sympathetic drive is a common finding in individuals with 
hypertension already established and raises the question of whether 
hypertension-related LGI is cause or consequence of high BP. For 
instance, unilateral renal sympathetic denervation, an approach 
which reduces BP, diminishes inflammatory cells activation in 
experimental models of hypertension (Xiao et al., 2015) and in 
human hypertensive patients (Zaldivia et al., 2017). One limitation 
here is that clinical studies could not discriminate between direct 
and indirect outcomes from renal denervation regarding direct 
nerve ablation effects on BP versus indirect effect resulting from 
attenuation of innate immunity on BP. 

3.2 Microglia and salt-sensitive 
hypertension

The local production of pro- and anti-inflammatory molecules 
by microglia has also been reported as an important source of 
immune regulation of BP in SSH (Moreira et al., 2019; Shen et al., 
2015; Shi et al., 2010). Increased activation of microglial has been 
implicated in cardiovascular disease and hypertension development. 
Microglial, characterized by their branched morphology, are tissue-
resident macrophages of the CNS, and play pivotal role in 
monitoring the presence of pathogens in the CNS tissue and 
modulating synaptic and neuronal activities (Wang et al., 2022). 
Microglia activation states are based on the peripheral macrophages 
classification and include the M1 and M2 states in addition 
to the resting state M0 (Wang et al., 2022; Dubbelaar et al., 
2018). Microglia activation is accompanied by morphological 
shifting from a small soma cell with ramified protrusions to an 
amoeboid-like morphology that enables microglia motility and 
phagocytic function (Dubbelaar et al., 2018; Kettenmann et al., 
2011). This transition involves a complex interplay of different 
molecular and cellular mechanisms that include NF-κB signaling 
(Singh et al., 2022). Current literature on the molecular mechanisms 
leading to microglia activation in SSH primarily focuses on 
hypertension in a general manner and lacks specific aspects 
pertaining to the SSBP. In addition to the pattern recognition 
receptors expressed by microglial cells like the Toll-like receptors 
(TLR2, TLR3 TLR4 and TLR9) that can activate microglial cells 
(Olson and Miller, 2004), pro-inflammatory cytokines like IL-
1β (Swaroop et al., 2016), IL-6 (Recasens et al., 2021), TNF-
α (Bras et al., 2020), and INF-γ (Olson and Miller, 2004) 
can also activate microglial cells. Given the involvement of 
IL-1β, the factors that also activate NLRP3 inflammasome, as 
discussed above (Pitzer et al., 2022; Menu and Vince, 2011), may 
significantly contribute to microglia activation in response to high 
salt exposure. Interesting, the levels of specific immune signaling 
molecules can polarize resting microglia to the M1 or M2 states 
and, therefore, drive transition toward pro or anti-inflammatory 
phenotypes of active microglia. For instance, the signaling by 
LPS and INF-γ drive the microglia polarization toward the M1 
phenotype which increases the expression of pro-inflammatory 
modulators like TNF-α, INF-γ, iNOS IL-1β, IL-2, IL-6, COX-
2 CXCL9 and CXCL10 by microglia (Li et al., 2021). On the 
other hand, the signaling by IL-4 and IL-13 or LPS, IL-1β and 
TNF-α or IL-10 and TGF-β drive the polarization toward the M2 
phenotype and increase the expression of mostly anti-inflammatory 
regulators (Li et al., 2021).

The role of microglia in hypertension has been demonstrated by 
a study in which selective pharmacological ablation of microglia in 
transgenic CD11b-DTR mice with either Ang II or L-NG-nitro-L-
arginine methyl ester (L-NAME) induced hypertension reduced 
BP, attenuated the expression of TNF-α, IL-1β, and glutamate 
receptors in the PVN as well as the plasma levels of vasopressin, 
and kidney norepinephrine concentrations (Shen et al., 2015). 
These findings indicate that neuronal excitation of hypothalamic 
pathways involved with sympathetic (parvocellular cells in PVN) 
and hydric (vasopressin secretion) control is under influence of 
microglial cells and the local action of cytokines. Yet, the fact 
that kidney norepinephrine concentrations are also diminished 
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in microglia-depleted animals indicate that sympathetic-mediated 
changes in renal function are also affected by local immune signaling 
within the PVN.

The mechanism by which high salt intake induces the activation 
of microglia in Sprague-Dawley rats may involve a Gαi2 signal 
transduction pathway. The downregulation of brain Gαi2 proteins by 
continuous i. c.v. Infusion of a phosphodiesterase ODN probe that 
selectively and specifically targets Gαi2 proteins not only produced 
a minocycline sensitive hypertension due to high salt intake but 
also increase the number of active microglia cells in the PVN of 
Sprague-Dawley rats (Moreira et al., 2019).

The activation of PVN-specific microglial cells in Sprague 
Dawley rats due to high salt intake (Moreira et al., 2019; Liu et al., 
2022) is commonly associated with increased sympathetic-vascular 
coupling drive of the vascular tonus (Liu et al., 2022) and plasma 
noradrenaline (Moreira et al., 2019; Liu et al., 2022). In addition, 
high salt intake resulted in a more than double activation of 
microglia in the PVN of Dahl-salt-sensitive rats (DSS) and was 
also associated with elevated renal sympathetic nerve activity 
and production of central prostaglandin E2 as well as increased 
oxidative stress in the same region (Yu et al., 2022). In addition 
to rat models of SSH, mice under high salt diet also exhibited 
increased microglia activation and increased production of TNF-
α in the PVN (Gilman et al., 2019). Most of these studies were 
associated with salt-related hypertension and indicate an important 
contribution of the microglia activation in the PVN to the SSH. 

3.3 Central-acting interleukins/cytokines 
and salt sensitive hypertension

From a molecular perspective, several CNS-acting cytokines 
and interleukins, both peripherally and centrally generated, are 
involved with hypertension and include IL-1β, IL-6, IL-17, TNF-
α and INF-γ while the major anti-inflammatory cytokine related 
with CNS immune signaling in hypertension is IL-10 (Yu et al., 
2022; Moreira et al., 2019; Liu et al., 2022; Gilman et al., 2019; 
Yang et al., 2022; Konsman, 2022). The challenges imposed by 
high salt exposure have been shown to stimulate the production 
of IL-1β, IL-6, TNF-α (Afsar et al., 2018; Deng et al., 2017), 
IL-17 and differentiation of TH17 cells (Afsar et al., 2018; 
Balan et al., 2022), upregulation of MCP-1 and MIP-2 chemokines 
(Afsar et al., 2018; Yang et al., 2022), activation of microglia 
(Deng et al., 2017), activation of JAK2/STAT3 pathway in astrocytes 
(Deng et al., 2017) and reduce noninflammatory innate immune 
cell activation through reduction of IL-4 and IL-13-stimulated 
macrophage (Binger et al., 2015). The prevailing hypothesis 
suggests that higher production/action of immune signaling 
molecules in the CNS contributes to the heightened activity of 
neuronal pathways regulating BP through sympathetic activity 
and, therefore, contributes to hypertension. The immune signaling 
molecule production that is influenced by high salt consumption 
alters the immune balance within the CNS, favoring a pro-
inflammatory profile. This shift in immune balance contributes 
to the development of sodium-induced neurogenic hypertension 
through brain-peripheral organs axis mechanisms, especially the 
gut-brain axis. 

3.3.1 IL-17
A recent concept has linked the immune related change that 

occurs in the gut as a consequence of high salt intake with immune 
related events that occur in the brain to produce hypertension. 
This concept has been referred to as the gut-brain axis and 
has TH17 cells and IL-17 as their major focus of investigation 
(Carabotti et al., 2015; Dai et al., 2023; Palmu et al., 2021). As 
reported by Wang and cols. (2012), clinical findings support the 
idea that TH17/IL-17 play a role in the development of essential 
hypertension in humans as a positive correlation was found between 
hypertensive and non-hypertensive groups and TH17 cells count in 
the peripheral blood (Wang et al., 2012). Other findings indicate that 
IL-17 may be associated with hypertension development because 
knockout mice for IL-17 do not sustain hypertension produced 
by chronic infusion of Ang II (Madhur et al., 2010). The authors 
suggest that endothelial dysfunction driven by oxidative stress is 
the most likely molecular mechanism involved in this process and 
may be triggered by IL-17 (Madhur et al., 2010). On the other 
hand, clinical evidence indicates that neither IL-17-producing cells 
(Youn et al., 2013) nor circulating IL-17 levels (Al-Nimer and 
Alhusseiny, 2016) are positively correlated with increased levels 
of BP. However, one caveat must be considered here: most of 
the clinical studies searching for a correlation between circulating 
levels of IL-17 and hypertension were carried out in patients with 
stablished hypertension, many under pharmacological treatment for 
hypertension and no assessment of salt intake. assessment.

IL-17 is a PIM produced by the TH17 subset of CD4+ T 
cells and is an important signaling molecule in both acute and 
chronic inflammatory processes (Iwakura et al., 2011). It has been 
recently implicated in SSH (Wilck et al., 2017; Aguiar et al., 2017; 
Wenzel et al., 2019) and, since then, it has been ascribed as 
an important immune-derived player in the SSH. Experimental 
data have shown that high-salt intake increase the intestinal gut 
population of TH17 lymphocytes (Jorg et al., 2016; Wilck et al., 
2017; Wenzel et al., 2019) and, consequently, augmented IL-17-
mediated signaling throughout the body, especially when occurring 
in a pro-inflammatory environment (Matthias et al., 2020). Among 
the effects of IL-17 in the brain, it has been shown to disrupt 
the blood-brain-barrier (Kebir et al., 2007), drive local activation 
of glial cells as well as local production of IL-17 by glial cells 
(Deng et al., 2017; Waisman et al., 2015), and activate its 
receptor (IL17RA/RC) on microglia and astrocyte in the CNS 
(Zimmermann et al., 2013). In addition to the action on glial 
cells, IL-17 can directly modulate neuronal synaptic transmission by 
enhancing excitatory postsynaptic currents and suppress inhibitory 
postsynaptic synaptic currents and γ-aminobutyric acid (GABA) 
induced currents in lamina IIo somatostatin-expressing neurons in 
mouse spinal cord slices (Luo et al., 2019).

TH17 lymphocytes are shown to promote BBB disruption and 
favor a pro-inflammatory state of the CNS (Kebir et al., 2007). 
The mechanisms seem to involve the activation of IL-17 and 
IL-22 receptors on brain endothelial cells, and their activation 
permeabilizes the BBB (Kebir et al., 2007). This contributes to the 
migration of other immune cells into the brain parenchyma as 
well as the translocation of larger molecules (immune molecules 
included) from the blood to the brain tissue. In the CNS, IL-17 
can activate microglia and further cause microvascular dysfunctions 
(Zimmermann et al., 2013). The authors state that their data argues 
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against a direct role of IL-17A in producing neuronal tissue damage 
but acts as a modulating factor in a network of locally produced 
cytokines (Zimmermann et al., 2013). This interpretation is shared 
by other authors showing that IL-17 recruits other inflammatory 
cells to the CNS in hypertension (Harrison et al., 2012). Importantly, 
experimental evidence that direct microinjection of IL-17 into the 
lateral ventricle or PVN can elicit increases in BP, heart rate and 
renal sympathetic nerve activity strongly indicates that IL-17 can 
influence neuronal pathways controlling BP (Cao et al., 2021).

Although many studies imply that high polarization of TH17 
cells is linked to a high production of IL-17, much of the evidence is, 
indeed, provided by in vitro experiments (Kleinewietfeld et al., 2013; 
Wu et al., 2013; Wenzel et al., 2019) and evidence of the interplay 
between high IL-17 production and neurogenic mechanisms leading 
to SSH are still fledgling. To the best of our knowledge, literature 
lack solid evidence that high salt intake increases the circulating 
levels of IL-17, what may suggest that infiltration of IL-17-producing 
cells may be the major source of this interleukin in end-organs like 
the brain and kidney. In this scenario, the potent pro-inflammatory 
properties of the IL-17 as well as its direct action on the central 
nervous system suggest it as an activator of neurogenic mechanisms 
that contribute to SSH. 

3.3.2 IL-1β
IL-1β is a potent pro-inflammatory cytokine identified 

in 1984 (Auron et al., 1984) and primarily produced by 
activated macrophages. It mediates inflammatory responses, 
fever, and immune system activation. IL-1β is synthesized as 
an inactive precursor and is activated by caspase 1-mediated 
proteolytic cleavage, after what it can act on IL-1 receptors 
(Boraschi, 2022). Experimental findings have implicated IL-
1β signaling with neurogenic mechanisms of the hypertension. 
Intracerebroventricular and PVN microinjections of IL-1β produce 
an increase in BP in normotensive Sprague-Dawley rats (Shi et al., 
2011), indicating that pathways activated by IL-1β can play a 
role in hypertension. This signaling seems to include activation 
of perivascular macrophages in the brain tissue and increased 
expression/activation of type 2 cyclooxygenase (COX-2) thus 
leading to increased production of prostaglandin E2 (PGE2) 
(Yu et al., 2010). Heightened secretion of PGE2 by perivascular 
macrophages is believed to act in the PVN to increase the 
sympathetic drive to cardiovascular organs like the heart and 
vasculature (Yu et al., 2010). In a study carried out by Qi and 
cols., high salt diet (8% NaCl) increased BP, the biomarkers of 
inflammation within the PVN (including IL-1β expression) and 
norepinephrine plasma levels of DSS rats. Further, the bilateral 
microinjection of gevokizumab, an IL-1β inhibitor, in the PVN 
decreased the BP, the norepinephrine plasma levels, attenuated 
the levels of oxidative stress and restored the balance of cytokines 
within the PVN of DSS rats under high-salt diet (Qi et al., 2016). 
Corroborating these findings, both knockout of the IL-1 receptors 
(IL-1R) and pharmacological antagonism of IL-1R with anakinra 
(i.p.) reduced neurogenic pressor activity in deoxycorticosterone 
acetate (DOCA)-salt treated mice (Baumann et al., 2024). 
These findings indicate that central actions of IL-1β may be 
activating neuronal pathways controlling sympathetic drive to 
the cardiovascular system, thereby contributing to the neurogenic 
component of SSH. 

3.3.3 TNF-α
In addition to these findings, high salt intake has been shown 

to drive central action/production of tumor necrosis factor alpha 
(TNF-α) in animals with SSBP, particularly in the PVN. A study 
by Gao and cols. (2022) showed that TNF-α injection into the PVN 
trigged a dose and time-dependent increase in mRNA expression of 
PIM including IL-1β and IL-6, chemokines (C–C Motif Chemokine 
Ligand 5 (CCL5) and C–C Motif Chemokine Ligand 12 (CCL12)) 
as well as inducible nitric oxide synthase (iNOS), and NF-kB in 
cultured brain neurons from neonatal SD rats (Gao et al., 2022). 
The authors also assessed and compared mRNA expression of 
these genes at a basal level as well as in response to TNF-α 
challenge between SD rats and Dahl salt-sensitive rats. They found 
that cultured neurons presented higher baseline levels and greater 
response to TNF-α challenge in mRNA expression of CCL5, iNOS 
and IL-1β (Gao et al., 2022). The central administration of TNF-α 
caused higher mRNA expression response for CCL12 in the PVN 
of Dahl-S rats compared to SD rats (Gao et al., 2022), strongly 
suggesting high sensitivity of specific downstream TNF-α-activated 
PIM signaling pathways in the PVN of Dahl-salt rats. In addition, 
TNF-α mRNA expression in the PVN has been shown to increase in 
Dahl-salt sensitive rats under high salt diet (4% NaCl) and chronic 
intracerebroventricular infusions of oligodeoxynucleotide (ODN), 
an inhibitor of the inhibitory G protein family alpha subunit (Gαi2), 
indicating that Gαi2 proteins mediate endogenous production of 
TNF-α in the PVN (Moreira et al., 2019), what may contribute 
to the development of SSH. The pieced evidence indicates that 
TNF-α signaling in the PVN of different hypertension models, 
including SSH models, is contributing to increased sympathetic 
drive (Moreira et al., 2019; Winklewski et al., 2015; Xiao and 
Harrison, 2020; Yu et al., 2019; Zera et al., 2009) further supporting 
the link between PIM signaling and neurogenic hypertension. 

3.3.4 IL-6
Heightened IL-6 levels are reported as one of the most consistent 

PIM changes associated with human hypertension (Afsar et al., 
2018; Sesso et al., 2007). For instance, hypertensive patients have 
higher baseline IL-6 levels when compared to normotensives 
regardless of the salt intake (Chamarthi et al., 2011). Officially 
named in 1988 (Sehgal et al., 1989), IL-6 is an interleukin 
encoded by a pleiotropic gene and is involved with immune 
regulation, B cell maturation, T cell differentiation (especially 
TH17), inflammation, hematopoiesis, BBB permeability, and acute 
phase response (Grebenciucova and VanHaerents, 2023). IL-6 is 
produced by a wide array of cell types and is rapidly synthesized 
in response to infections, tissue injuries, and other inflammatory 
stimuli (Grebenciucova and VanHaerents, 2023). Interesting, IL-6 
can produce effects reminiscent of a hormone, which include the 
normal homeostatic control of vascular function, lipid metabolism, 
insulin resistance, iron transport, mitochondrial activities. IL-6 acts 
as a neurotrophic factor, supporting differentiation, maturation and 
survival of neuronal subtypes like dopaminergic and cholinergic 
neurons (Bader and Meyer, 2022). In addition, IL-6 can affect 
neuronal excitability by regulating the expression and function of 
ion channels such as voltage-gated sodium and calcium channels, 
receptor/ligand-gated ion channels, and synaptic function and 
plasticity by influencing neurotransmitter release and synaptic 
strength (Grebenciucova and VanHaerents, 2023; Gruol, 2015). It is 
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noteworthy that neuronal activity itself can stimulate the production 
of IL-6 in neurons (Sallmann et al., 2000). Further, IL-6 also acts 
as a mediator in neuroimmune interactions between neurons and 
glial cells, allowing communication during inflammatory states or 
infection (Grebenciucova and VanHaerents, 2023).

High salt intake is a stimulator of IL-6 production in PVN 
of Dahl salt-sensitive rats, and its increase has been correlated 
with hypertension development in this model (Du et al., 2020). 
In Sprague-Dawley rats under high salt intake, the upstream 
mechanism that stimulates not only IL-6, but IL-1β and TNF-α 
as well, in the PVN involves the suppression of the activation of 
the alpha subunit of the inhibitory G protein family (Gαi2). Since 
PVN is an important forebrain region involved with sympathetic 
drive to the cardiovascular system, the authors proposed that 
increased inflammatory state in the PVN, indexed by the increased 
expression of pro-inflammatory cytokines, is associated with 
increased sympathetic drive thus contributing to the hypertension in 
Dahl salt-sensitive rats. Two different studies showed that knockout 
mice for IL-6 were protected from the Ang II-induced hypertension 
(Huang et al., 2006; Hat et al., 2024) and one study showed that 
IL-6 knockout mice were protected from Ang II plus salt induced 
hypertension as well (Hat et al., 2024). Although some advances 
have been made for the understanding of the IL-6 role in the 
BP regulatory brain pathways, the underlying mechanisms remain 
largely unknown and require further investigation.

From the current knowledge in the field, high salt intake has 
been shown to increase the expression of important PIM like TNF-
α, IL-1β and IL-6 in the PVN of Dahl-salt sensitive rats but not of 
Sprague Dawley rats (Jiang et al., 2018). This finding may indicate 
that a) the genetic background of Dahl salt sensitive rats prompt 
higher PIM production in key regions of the brain controlling BP 
and b) Dahl salt sensitive rats are more susceptible to diet-sodium 
driven PIM production in the central nervous system. However, 
another study showed that direct injection of high-sodium solution 
into the lateral ventricle of Sprague Dawley rats stimulated increased 
expression of TNF-α, IL-1β and IL-6 in the PVN and the exposure 
of cultured hypothalamic neurons to high extracellular levels of 
NaCl also increased TNF-α and IL-6 production (Jiang et al., 2018). 
Interesting, Deng and cols. also showed that high salt treatment 
caused activation of astrocytes both in vivo and in vitro in Sprague 
Dawley rats (Deng et al., 2017). Together, the findings seem to lead 
to the conclusion that, indeed, Dahl salt sensitive rats may develop 
an inflammatory state in brain that is more intense than the one 
found in Sprague-Dawley rats. Additionally, TNF-α, IL-1β and IL-
6 expressions by astrocytes were increased in cell culture assays and 
the authors suggest that JAK/STAT3 plays an important role in this 
process (Deng et al., 2017). Further studies confirmed those findings 
and suggested that the TNF-α, IL-1β and IL-6 increase in the PVN is 
associated with significant microglia activation and oxidative stress 
in Dahl salt sensitive rats (Yu et al., 2022).

Many aspects and details of such mechanisms remain unclear, 
mostly because some effects of the cytokines in key sites of 
the brain are not fully understood. Taking together, the pieced 
evidence indicates that high salt intake stimulates pro-inflammatory 
cytokines in cardioregulatory centers of the brain to produce a 
neurogenic-mediated increase in BP suggesting that brain LGI may 
be an important factor leading to hypertension. However, studies 
have not addressed the question whether brain cytokines increase 

before or after hypertension develop in experimental models and 
in hypertensive patients, what might establish (or not) the causal 
relationship between LGI and SSH. 

3.4 Blood-brain barrier disruption, 
low-grade inflammation and salt-sensitive 
hypertension

The BBB is a highly selective semi-permeable barrier that 
separates the brain from the bloodstream. It is composed of 
endothelial cells, astrocyte end-feet, and pericytes embedded in 
the capillary basement membrane (Abbott et al., 2010). The 
BBB regulates the transfer of solutes and chemicals between 
the circulatory system and the CNS, protecting the brain from 
harmful substances and preserving the tight ionic composition of 
the extracellular fluid while allowing essential nutrients to pass 
through (Abbott et al., 2010). Disruptions in the BBB have been 
linked to the development of autonomic and cognitive impairments 
(Katsi et al., 2020), which could contribute to hypertension. On 
the other hand, hypertension itself might also contribute to BBB 
disruption and to cognitive impairments development (Katsi et al., 
2020; Faraco, 2024; Pelisch et al., 2011), which raises some questions 
about cause-consequence relationship between BBB disruption and 
hypertension development.

High salt intake has been shown to disrupt the BBB through 
different mechanisms which involve changes in the tight junction 
proteins, inflammatory responses, activation of sodium-sensitive 
signaling pathways in brain microvascular endothelial cells, 
and the renin-angiotensin system. In a model of permanent 
cerebral ischemia, mice under high salt intake displayed significant 
enhanced ischemic brain damage which was associated with 
enhanced BBB disruption, increased leukocytes infiltration and 
loss of tight junction (TJ) proteins (Zhang T. et al., 2015). The 
authors also found that high sodium concentrations downregulated 
tight-junction proteins expression by endothelial cells through 
a p38/MAPK/SGK1 pathway in immortalized murine brain 
microvascular endothelial cell line bEnd.3 (Zhang T. et al., 2015). 
These findings suggest that exposure of brain endothelial cells to 
high sodium chloride concentrations increase BBB permeability 
through such mechanisms. Interestingly, high salt intake has been 
shown to specifically increase sodium concentration in the CSF 
of the HS12W model (Gomes et al., 2017), Dahl salt sensitive 
rats (Nakamura and Cowley, 1989; Huang et al., 2004), and one-
kidney, one-wrap renal hypertension model (Haywood et al., 1984; 
Leenen et al., 2002), without parallel changes in plasma sodium 
concentration. That would indicate that high sodium concentration 
in the brain can be achieved in vivo. Whether that level of sodium 
concentration is sufficient to drive the p38/MAPK/SGK1 pathway 
activation is still to be determined. In addition, Zhang and cols. 
(2015) also reported a positive correlation between urinary sodium 
levels and ischemic lesion size in stroke patients (Zhang T. et al., 
2015), suggesting that BBB disruption by high-sodium intake may 
occur in humans as well.

The disruption of the BBB also involves a complex interplay 
between peripheral and central-generated PIM. One of the key 
players in this process is the high salt intake-related cytokine 
IL-17, which has been demonstrated to be involved with BBB 
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disruption in an experimental autoimmune encephalomyelitis 
(EAE) model induced in C57BL/6 mice. In this model, IL‐17A 
induced the production of reactive oxygen species (ROS), which 
activated the endothelial contractile machinery. This activation 
was accompanied by a downregulation of the tight junction 
molecule occludin (Huppert et al., 2010), an important tight-
junction protein in endothelial cells. Blocking either ROS formation 
or myosin light chain phosphorylation or sequestering IL-17 
with IL‐17A‐neutralizing antibodies prevented IL‐17A‐induced 
BBB disruption (Huppert et al., 2010). A study by Kleinewietfeld 
also reported that high infiltration of TH17 cells into the CNS 
is present in a mouse model of experimental autoimmune 
encephalomyelitis (EAE) under high salt diet with co-involvement 
of the pro-inflammatory cytokines GM-CSF, TNF-α and IL-2 
(Kleinewietfeld et al., 2013). In addition, cytokines like IL-1β, IL-
6, IL-9, IL-17, INF-γ, TNF-α and CCL2 can impact tight-junction 
production and allocation, damage endothelial cells integrity, 
activate astrocytes and microglial cells and induce the penetration of 
peripheral immune cells into the CNS (Huang et al., 2021) through 
the disrupted BBB.

In addition to the role of immune-mediated mechanisms, 
disruption of the BBB has also been associated with high BP by 
itself (González-Marrero et al., 2012; Mueller and Heistad, 1980) 
and in some cases like the Ang II-induced high BP, BBB disruptions 
are reported to precede hypertension development in experimental 
models (Capone et al., 2011). Conversely, the majority of studies 
demonstrate disruption of the BBB after hypertension has been 
established, making it challenging to establish a causal relationship 
between BBB disruption, inflammation, and hypertension based 
on the current available knowledge. For instance, it has been 
demonstrated that capillary permeability of brain regions classically 
associated with sympathetic drive and BP control like PVN, NTS 
and RVLM are increased in hypertensive SHR but normal in pre-
hypertensive SHR (Buttler et al., 2017). The injury process in 
vascular tissue stimulates the infiltration of inflammatory cells into 
the brain, especially in the perivascular tissue (Yu et al., 2010), 
reinforcing the LGI process. Once in the brain tissue, those cells are 
responsible for secreting other PIM such as IL-6, IL-1β and TNF-α 
locally (Hashmat et al., 2016; Winklewski et al., 2015) thus affecting 
local neurotransmission and neuronal activity of cardioregulatory 
centers in the brain. Consequently, it is plausible to speculate that 
salt-driven lesions in the BBB at critical sites for BP regulation can 
trigger the production of PIM within the brain in a positive feedback 
loop, thereby further activating neurogenic mechanisms associated 
with the development of SSH. 

3.4.1 Key points

1. CNS is important for BP regulation in both normotension 
and SSH, with neurogenic mechanisms contributing to 
elevating BP.

2. Cardiovascular reflexes like baroreflex and cardiopulmonary 
reflex are impaired or altered in SSH, with Dahl salt-
sensitive rats showing reduced reflex sensitivity even under low 
salt intake.

3. The hypothalamic paraventricular nucleus (PVN) plays 
a key role in SSH and the immune signaling within the 
PVN, including microglial activation and proinflammatory 

cytokine production, are shown to largely contribute
to high BP.

4. Though less studied, immune signaling in brainstem areas like 
RVLM and NTS also contribute to hypertension, although its 
role in SSH is still to be further explored.

5. High salt intake can disrupt the BBB and allow immune cells 
to infiltrate CNS. Higher immune cell infiltration in the CNS 
is associated with high BP, especially in the SSH.

4 The gut microbiome and the 
gut-brain axis in salt-sensitive 
hypertension

4.1 Gut microbiome

Over the past decade, a growing number of studies have 
allocated substantial resources to comprehending the impact of 
alterations in the gut microbiome on BP regulation (Palmu et al., 
2021; Calderon-Perez et al., 2020; Canale et al., 2021; Cardoso, 2024; 
Marques et al., 2018; Pluznick, 2016). A portion of these studies 
have specifically focused on the effects of excessive salt consumption 
on the changes in gut microbiome and its subsequent influence 
on BP regulatory mechanisms (Palmu et al., 2021; Canale et al., 
2021; Abais-Battad et al., 2021; Chrysant, 2024; Elijovich et al., 
2020; Mu et al., 2024). A prevailing consensus among various 
authors is that excessive salt consumption adversely affects the host’s 
health by diminishing the α and β diversity of the gut microbiome 
and leverage the balance toward the predominance of bacterial 
species that promote an inflammatory state and the production of 
detrimental metabolites (Wilck et al., 2017; Calderon-Perez et al., 
2020; Elijovich et al., 2020; Mu et al., 2024; Mell et al., 2015; Xu et al., 
2022; Yin et al., 2024). The imbalance between health-promoting 
and disease-causing gut bacteria, known as dysbiosis, is theorized 
to have a substantial impact on BP regulation through the gut-
brain axis signaling system thus contributing to SSH in experimental 
models and humans (Elijovich et al., 2020; Nagase et al., 2020).

The gut microbiome produces several metabolites with bioactive 
properties that influence brain chemistry, stress response, cognitive 
and autonomic functions of the host. In this context, gut microbiome 
dysbiosis has been associated with pathophysiological mechanisms 
that may cause cardiovascular diseases. Indeed, high salt intake 
results in dysbiosis in the gut microbiome. This has been shown to 
cause the host’s differentiation of naïve T cells into pro-inflammatory 
TH17 cells, shifting the immune system towards a pro-inflammatory 
state, and promote the production of pro-hypertensive short-chain 
fatty acids (SCFA) by specific groups of gut bacteria (Wilck et al., 
2017; Wang et al., 2022; Abais-Battad et al., 2021; Elijovich et al., 
2020; Xu et al., 2022; Yin et al., 2024; Chakraborty et al., 2018; 
Chen et al., 2020). Such events in the gut affect the inflammatory 
signaling mechanisms within different organs controlling BP, which 
include the brain and the kidneys. These mechanisms have been 
actively discussed within the concept of signaling axis that involve 
mostly the gut, brain and kidneys. The gut-brain axis has received 
considerable attention recently due to its ability to influencing BP 
control, especially in SSH. By the current definition, the gut-brain 
axis refers to the bidirectional communication network between 
the gastrointestinal tract (GI tract) and the CNS. This complex 
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system involves multiple key pathways, including neural, endocrine, 
immune, and humoral links which influence each other’s functions 
and BP levels (Carabotti et al., 2015; Mell et al., 2015). Evidence has 
shown that the gut-brain axis affects neural mechanisms controlling 
BP. Although much has been investigated on the correlation between 
hypertension and gut microbiome dysbiosis, the pathophysiological 
mechanism through which it occurs remains mostly unknown. 
Whether high salt intake can cause neurogenic hypertension 
through increased sympathetic outflow due to gut microbiome 
dysbiosis is yet to be further investigated. However, evidence shows 
that IL-17, a product of TH17 cells that proliferate under gut 
microbiome dysbiosis (Wilck et al., 2017), can act in the PVN to 
increase sympathetic outflow (Cao et al., 2021), and corroborates the 
theory that dysbiosis may be causally related to neurogenic SSH.

The study by Wilck et al. (2017) has shown that a 4% NaCl 
diet for 14 days caused a reduction in the L. murinus population 
of mice intestinal microbiota (Wilck et al., 2017). Such change 
was accompanied by increased BP and increased population 
of CD4 TH17 pro-inflammatory cells in the intestinal mucosa 
(Wilck et al., 2017). When high-salt-fed mice were switched back to 
a regular salt diet, the intestinal population of L. murinus as well as 
BP returned to normal, strongly suggesting that the impact of high 
salt intake on Lactobacillus murinus population: a) is correlated with 
hypertension in these animals and b) are reversible (Wilck et al., 
2017). A study conducted by Bier and colleagues (2018) also showed 
that excessive salt consumption elevated the relative abundance of 
the taxa belonging to the Erwinia genus, Christensenellaceae, and 
Corynebacteriaceae families in Dahl salt-sensitive rats (Bier et al., 
2018) suggesting the existence of “halophilic” bacteria in the gut 
microbiome. Conversely, it also reduced the abundance of the 
Anaerostipes genus in this model (Bier et al., 2018). These findings 
suggest that, beyond the Lactobacillus genus, the abundancy of 
other genera and even entire families of the gut microbiome can 
be impacted by high salt intake. In addition, previous (Linz et al., 
2012; Pacha, 1998) and recent (de Assis Braga et al., 2025) studies 
also showed that high salt intake can, indeed, increase the content of 
sodium in the feces in vivo further supporting the hypothesis that, 
despite the vast majority of sodium intake is absorbed by the small 
intestine, a significant amount of sodium reaches the large intestine 
and function as selective pressure mechanism of the environment 
on gut microbiome. Such changes appear to be correlated with 
a shift in the relative abundance of specific families and genera 
that favor specific pro-hypertensive bacterial groups over rather 
than a general and unspecific impact on the gut microbiome of 
SSH models (de Assis Braga et al., 2025).

Corroborating experimental data, a recent study has described 
dysbiosis of the intestinal microbiota in hypertensive patients. 
This dysbiosis was characterized by reduced biodiversity and 
distinct bacterial signatures compared to the normotensive 
counterpart (Silveira-Nunes et al., 2020). Along with a reduction 
in Bacteroidetes members, hypertensive individuals displayed 
increased proportions of Lactobacillus and Akkermansia and 
decreased relative abundances Roseburia and Faecalibacterium
within the Lachnospiraceae and Ruminococcaceae families (Silveira-
Nunes et al., 2020). The increased proportion of Lactobacillus
genera in hypertensive patients may indicate that, different of 
experimental findings in mice, the reduction in abundance of the 
genus Lactobacillus is not essential for the hypertension in humans. 

This study also reported a pro-inflammatory immune profile in 
hypertensive individuals with an increase in TNF/IFN-γ ratio, and 
in TNF and IL-6 production in peripheral blood when compared 
to normotensive subjects (Silveira-Nunes et al., 2020). Despite 
lending support for experimental data, this study did not address 
important questions like whether the changes in gut microbiota 
are, indeed, a cause for the hypertension in humans or if dietary 
salt consumption was correlated with the reported changes in 
microbiota. This question was addressed in a paper by Nagase et al. 
(2020) which concluded that consumption of low-salt diet was 
ineffective in regulating hypertension in individuals with a specific 
gut microbiome composition (Nagase et al., 2020). Therefore, the 
authors defend the idea that restoration of the gut microbiome 
should be considered a new better approach for controlling BP and 
preventing hypertension in humans (Nagase et al., 2020). 

4.2 Short-chain fatty acids

Short-chain fatty acids (SCFA) have been recognized as 
important molecules from gut microbiome metabolism that play a 
significant role in the gut-brain axis signaling system. By definition, 
SCFA are a group of saturated aliphatic organic acids with a 
chain length of one to six carbon atoms. The most common 
SCFA produced by gut microbiome are acetate (C2), propionate 
(C3), and butyrate (C4), which are produced primarily through 
the anaerobic fermentation of indigestible polysaccharides, such as 
dietary fiber and resistant starch (Silva et al., 2020). The ratio of 
acetate:propionate:butyrate in the colon has been estimated in 3:1:1, 
meaning that acetate is the most abundant SCFA produced (He et al., 
2020; Liu et al., 2021). The SCFA, produced by luminal large intestine 
bacteria, can enter the body through monocarboxylate transporters 
(Coady et al., 2004) or through simple diffusion (Charney et al., 
1998). The SCFA plasma concentration in the host is, however, 
considerably smaller than colonic concentration. For instance, 
acetate has a typical plasma concentration about 1,000 to 2,000 times 
smaller (50–100 μmol/L) than colonic concentration (100 mmol/L), 
albeit it is still substantial (Xu et al., 2022). Acetate (produced by 
most of the Enterococcus species) and propionate (produced by 
Bacteroidetes, Acidaminococcus and Salmonella) are easily absorbed 
and transported to the liver. In the liver, propionate is known 
to promote the intrahepatic gluconeogenesis (Xu et al., 2022). In 
addition, bacteria from the genera Clostridium, Eubacterium and 
Roseburia are known as the major sources of butyrate (Liu et al., 
2021; Wong et al., 2006; Nicholson et al., 2012; Louis and 
Flint, 2017; Sasaki et al., 2020).

The role of SCFA and mechanisms in the SSH is yet to be 
further explored. However, different studies have pointed out some 
beneficial functions for SCFA in the host´s health. For instance, 
Wu and cols. (2021) showed that oral administration of the SCFA 
sodium butyrate attenuated the hypertension and renal damage in 
DOCA/salt rats by a mechanism that involves inhibition of the 
MR/SGK1 pathway (Wu et al., 2021). Additionally, dietary sodium 
reduction has been shown to increase circulating SCFA which are 
associated with decreased BP and improved arterial compliance 
(Chen et al., 2020). On the other hand, high salt intake has been 
shown to reduce the concentrations of SCFA such as acetate, 
propionate, and butyrate in fecal samples of mice fed 8% salt diet, 
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what was associated with cognitive dysfunction and gut dysbiosis 
(Hu et al., 2020). However, Dahl salt sensitive rats displayed 
increased levels of fecal acetate, propionic acid and isobutyrate, but 
not butyrate, when fed a 4% salt diet (Bier et al., 2018), contrasting 
with the high-salt intake findings in mice. A study by Bruning and 
cols. (2020) also raised some issues regarding the benefits of SCFA 
on BP regulation. The authors reported that microinjection of the 
acetate into the PVN of anesthetized rats produced an increase 
in splanchnic sympathetic nerve activity and BP (Bruning et al., 
2020). Also, the pre-injection of kynurenic acid, an ionotropic 
EAA receptor antagonist, attenuated the sympathoexcitation and 
BP increase produced by acetate (Bruning et al., 2020), strongly 
suggesting that the acetate-induced excitation in the PVN could 
involve EAA neurotransmission.

SCFA produce their biological effects in the host by activating 
specific G protein-coupled receptors expressed throughout the 
body such as GPR41 and Olfr78, which are expressed in blood 
vessels and other tissues. Evidence from whole body knockout 
mice showed that the lack of GPR41 receptors led to hypertension 
in these animals while Olfr78 knockout mice are normotensive 
(Xu et al., 2022). Also, the SCFA GPR109A receptor in the rostral 
ventrolateral medulla (RVLM) plays a role in central BP control, 
where activation by nicotinic acid leads to L-glutamate release, 
subsequently increasing sympathetic activity and BP (Rezq and 
Abdel-Rahman, 2016). In addition, the EC50 values for acetate, 
propionate and butyrate are largely different for the GRP41, 
GRP43 and Olfr78 receptors (Xu et al., 2022; Lu et al., 2022; 
Pluznick, 2014). For instance, acetate has the lower affinity 
while propionate and butyrate have higher affinity for SCFA 
receptors (Table 2). This pharmacological aspect of the SCFA may 
also, at least in part, contribute to different and, sometimes, 
conflicting effects of SCFA on BP. Together, these findings picture a 
complex interaction between SCFA production and host’s response 
to it, especially concerning SSH. However, studies in humans 
have shown that dietary sodium reduction increases circulating 
levels of 2-methylbutyrate, butyrate, hexanoate, isobutyrate, and 
valerate SCFA and that such an increase in circulating SCFA 
was associated with BP reduction and improvement of arterial 
compliance (Chen et al., 2020; Ríos-Covian et al., 2016). Further 
studies are needed to establish whether SCFA effects on autonomic 
control of BP are specific to each individual molecule, the 
combination of them or if it is dependent on the major action 
site in the brain. A summary of the major findings is shown
in Table 2.

4.2.1 Key points

1. High salt intake can influence gut microbiome composition.
2. Composition of the gut microbiome can affect BP regulation 

by mechanisms involving inflammatory signaling and 
detrimental metabolite production.

3. The gut-brain axis, a bidirectional signaling network between 
the gut and the CNS, plays a role in BP control.

4. Dysbiosis in the gut microbiome can lead to increased 
sympathetic outflow and neurogenic hypertension.

5. Experimental data shows that high salt intake can cause 
dysbiosis shifting the Firmicutes/Bacteroidetes ration which is 
correlated with high BP and pro-inflammatory state.

6. In humans, dysbiosis in hypertensive patients is characterized 
by reduced biodiversity and distinct microbiome composition 
signature compared to normotensive individuals.

7. Short-chain fatty acids (SCFA), produced by gut microbiome, 
play a role in BP regulation. While some studies show 
beneficial effect of SCFA on BP, others indicate potential 
adverse effects, highlighting the complexity of their role in
hypertension.

5 Kidney, salt-sensitive hypertension 
and inflammation

Sodium balance is tightly regulated by kidneys under a 
wide range of sodium intake (Bagordo et al., 2024). Although 
recent evidence indicates that both human and rodents display 
nonosmolar sodium retention in skin and skeletal muscle under 
high salt intake (Thowsen et al., 2022; Titze, 2014), the kidneys 
still have a dominant role in the sodium handling by the 
body. The traditional view that high salt intake can lead to 
hypertension because of increased water intake followed by plasma 
volume expansion, increased cardiac output and autoregulatory 
vasoconstriction has been challenged by current evidence showing 
that plasma volume does not increase under high salt intake 
that mimics the human setting in a rodent model of SSH 
(Gomes et al., 2017; de Souza et al., 2021). The results of these 
studies suggest that hypertension is initially driven by neurogenic 
mechanisms with renal histological and functional disfunctions after 
the establishment of the hypertension (de Souza et al., 2021).

The accumulation of sodium in tissues has been demonstrated 
to contribute to systemic LGI (Sahinoz et al., 2021) which can 
impact renal functions through a variety of mechanisms (Frame 
and Wainford, 2017). For instance, the infiltration of immune 
cells in the kidneys has been shown to play an important role 
in the renal mechanisms that contribute to SSH in experimental 
models (Mattson, 2014). The genetic deletion of the recombination-
activating gen 1 (Rag1) in Dahl-salt sensitive rats resulted in a 
significant reduction in T and B cells in the blood and spleen 
under normal salt diet (Mattson et al., 2013). Also, the exposure 
of these animals to high salt diet produced a blunted infiltration 
of T cells into the kidney that is typically found in wild type 
Dahl salt sensitive rats following high salt intake (Mattson et al., 
2013). The reduction of T cells infiltration into the kidneys of 
Rag1-null Dahl salt sensitive rats was accompanied by a significant 
reduction in the SSH of these animals (Mattson et al., 2013). 
Furthermore, the infiltration of immune cells into the kidneys of 
Wistar rats under high salt diet following L-NAME administration 
was described as responsible for the impaired pressure natriuresis 
that contributes to SSH (Franco et al., 2013). The progression 
of renal injury in obese Dahl salt sensitive leptin mutant rats 
was associated with increased expression of the macrophage 
inflammatory protein 3-α (MIP3α) and, consequently, increased 
immune cell recruitment and infiltration in the renal tissue, thus 
producing renal low-grade inflammation (Ekperikpe et al., 2023). 
Interestingly, high salt, but not high BP, induces immune cell 
activation, renal infiltration, high expression of Na+/K+-ATPase and 
SSH in ovariectomized rats (Vlachovsky et al., 2024) showing that 
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FIGURE 1
Summary of the major findings and working hypothesis for some of the mechanisms underlying the SSH. Gut microbiome dysbiosis can influence TH

cell differentiation and the chemical diversity/quantity of the short chain fatty acids produced by bacterial metabolisms. These changes can promote 
immune responses in the central nervous system (particularly in the paraventricular nucleus of the hypothalamus–PVN) that shift the autonomic 
control of the BP toward a more active sympathetic drive. In addition, high salt intake and gut dysbiosis can induce immune signaling and immune cell 
infiltration in the kidney, affecting sodium handling and renal function. Together, those changes can favor an increase in total peripheral resistance and 
sodium/volume retention over time, largely contributing the hypertension development. It is noteworthy that age and sex differences can influence the 
ways such changes take place and aggravate hypertension under these low-grade inflammation state, further leading the higher levels of BP. SCFA, 
short chain fatty acids; PIM, pro-inflammatory cytokines; ARN, afferent renal nerve; ERN, efferent renal nerve; IL-1β, interleukine 1β; IL-6, interleukine 6; 
IL-17A, interleukine 17A; TNF-α, tumor necrosis factor α.

high salt intake has a more prominent effect on immune kidney 
system than high BP alone.

As immune cells infiltrate the kidneys, PIM drive important 
changes in the expression and activity of sodium channels in 
the nephron affecting sodium handling by kidney. This was be 
demonstrated in an AngII-driven hypertension mouse model in 
which i) RAS-mediated hypertension was accompanied by elevated 
levels of the macrophage cytokine IL-1 in the kidney (Crowley et al., 
2010) and ii) the IL-1R deficiency or blockade limits BP elevation 
in this model by mitigating sodium reabsorption via the NKCC2 
co-transporter in the nephron through a mechanism dependent on 
nitric oxide production by intra-renal macrophages (Zhang et al., 
2016). The authors also showed that sodium balance in the IL-
1R knockout mice became negative under Ang-II infusion while 
sodium balance in wild type mice increased, and that pre-treatment 
with furosemide abrogated the difference. Given that sodium 
balance is a reliable indicator of natriuresis relative to sodium 
intake, the findings indicate that IL-1R may contribute to the 

Ang-II-induced sodium retention, as proposed by the authors 
(Crowley et al., 2010). However, plasma sodium concentrations 
were not addressed in this work, leaving questions on whether IL-
1 cytokine is actually influencing extracellular fluid concentration 
of sodium and/or affecting sodium retention in the skin and 
muscle (Titze, 2014), extra or intracellularly (Thowsen et al., 2022) 
following high sodium intake. Further evidence indicates that IL-
1β plays a direct role in SSH and this is supported by findings 
that inflammasome components NLRP3, ASC, and caspase-1 were 
not only present in distal tubules and collecting ducts of Dahl-salt 
sensitive rats but also increased under high salt intake (Zhu et al., 
2016). Additionally, the infusion of the caspase-1 inhibitor Ac-
YVAD-cmk as well as the transplantation of mesenchymal stem 
cells into the renal medulla of Dahl-salt sensitive rats reduced the 
NLRP3 inflammasome activation and the salt-induced hypertension 
(Zhu et al., 2016), linking the inflammasome-derived mature
IL-1β signaling system in the kidney to the SSH. Further supporting 
the role of IL-1β on renal sodium handling, diabetic db/db 
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mice harboring an IL-1 receptor type 1 knockout bone marrow 
(db/dbIL1RKO) phenotype displayed lower expression and activity of 
epithelial sodium channel (ENaC) expression and activity compared 
with db/db transplanted with a wild-type bone marrow (Veiras et al., 
2022). The db/db mice features high levels of kidney cortical IL-1β 
expression and, alongside with diabetes, have progressive increase in 
BP levels when exposed to high salt diet which involves an impaired 
downregulation of ENaC in the kidney epithelial cells in response 
to high sodium (Veiras et al., 2021). When exposed to high salt 
intake, the db/dbIL1RKO displayed a salt resistant BP as well as lower 
renal inflammation with reduced IL-1β-induced production of IL-6 
by macrophages in the kidneys (Veiras et al., 2022). These findings 
indicate that kidney cortical IL-1β overproduction increases renal 
ENaC expression and activity through a mechanism that involves 
macrophages polarization toward a proinflammatory phenotype 
and renal IL-6 accumulation, with concurrent salt sensitivity 
of the BP (Veiras et al., 2022).

Chronic infusion of Ang II is well known for its ability to increase 
BP levels and significantly decrease natriuresis when experimental 
animals are challenged with saline solutions. Also, Ang II regulates 
the synthesis of pro-inflammatory cytokines and chemokines in the 
kidneys of female Wistar rats (Ruiz-Ortega et al., 2002) and can 
increase abundance of the phosphorylated forms of the Na-K-2Cl 
cotransporter (NKCC), Na-Cl cotransporter, Ste20/SPS-1-related 
proline-alanine-rich kinase in the distal tubule as well as ENaC 
expression in the collecting duct in mice (Kamat et al., 2015). Parallel 
to its direct effects on renal expression of sodium handling ion 
channels, Ang II, DOCA-salt and norepinephrine cause T cells and 
monocytes/macrophages to accumulate in the kidney and increase 
the local production of pro-inflammatory cytokines like INF-γ 
and IL-17 (Itani and Harrison, 2015). In this context, knockout 
mice for INF-γ (IFN-γ(−/−)) or IL-17A (IL-17A (−/−)) displayed 
a blunted response to Ang II-induced hypertension (Kamat et al., 
2015) indicating that Ang II-driven hypertensin also involves 
downstream pathways activated by INF-γ and IL-17 cytokines. 
However, INF-γ(−/−) and IL-17 (−/−) did not affected the Ang II-
induced increase in abundance of the phosphorylated forms of the 
Na-K-2Cl cotransporter, Na-Cl cotransporter, Ste20/SPS-1-related 
proline-alanine-rich kinase in the distal tubule but significantly 
decreased the abundance of Na/H-exchanger isoform 3, sodium 
phosphate transporter isoform 2 (NaPi2) and the motor myosin 
VI in the proximal tubule (Kamat et al., 2015). These findings 
suggest that both INF-γ and IL-17 can interfere with the renal 
sodium handling by altering the expression of sodium transporters 
within the initial portion of the nephron. Given the total amount 
of filtered sodium reabsorbed in the portion of the nephron, even 
small changes in ENaC expression could have a significant impact 
on sodium retention and its impact on BP.

The exposure of ENaC in M-1 cortical collecting duct cells to 
IL-6 increased the protein expression of α-ENaC, β-ENaC, γ-ENaC 
and prostasin as well as the amiloride-sensitive sodium current 
in a study by Li and cols. (2010) (Li et al., 2010). The SSBP is 
also strongly correlated with the T-lymphocytes levels of mRNA 
for IL-6 isolated from kidneys when compared to circulating T-
lymphocytes in Dahl salt sensitive rats (Rudemiller et al., 2014). By 
treating these animals with an IL-6 neutralizing antibody, Hashmat 
and cols. (2016) showed that a decreased renal cortical level of IL-
6 was correlated with reduced glomerular and tubular damaged 

as well as with BP levels in Dahl salt sensitive rats under high 
salt intake (Hashmat et al., 2016) suggesting the IL-6 may exacerbate 
may be involved in the salt sensitivity of Dahl salt sensitive rats.

The role of TNF-α in the renal changes that occur in response 
to high salt intake challenge are particularly interesting, especially 
because of the poor understanding of the exact mechanisms 
underlying the role of TNF-α in the SSH. While TNF-α antagonism 
has attenuates the hypertensive responses in many hypertensive 
animal models, contrasting findings demonstrate that the direct 
systemic administration of TNF-α usually induces hypotensive as 
well as natriuretic responses (Mehaffey and Majid, 2017) indicating 
that the solo increase in the circulating TNF-α levels may oppose 
the SSH. Such contrasting outcomes are speculated to result, at least 
in part, from differential activities of the two TNF-α cell surface 
receptors expressed in the kidney tissue. The TNFR1 is usually found 
in the proximal tubule, collecting duct, vascular endothelium and 
vascular smooth muscle while TNFR2 are usually found in the 
proximal tubule, collecting duct, vascular endothelium but not in the 
vascular smooth muscle (Mehaffey and Majid, 2017; Castillo et al., 
2012). Studies conducted in TNFR1 knockout (TNFR1KO) and 
TNFR2 knockout (TNFR2KO) mice have elucidated the differential 
effects of both receptors on renal sodium handling and renal injury 
induced by TNF-α. The TNF-α infusion in mice triggers a surge in 
urinary volume output and fractional excretion of sodium, while the 
absence of TNFR1 attenuates this response (Castillo et al., 2012). 
Also, the TNF-α natriuretic activity is amiloride-sensitive suggesting 
that such effect may be mediated by ENaC activity (Majid, 2011; 
Shahid et al., 2008). Corroborating the role of TNFR1 role in renal 
sodium handling, recent findings showed that TNFR1 activity is 
downregulated in eNOSKO mice, which facilitates salt retention 
and contribute to SSH under high salt intake (Majid et al., 2024). 
On the other hand, mice lacking TNFR2 displayed less Ang II-
induced fibrotic changes and macrophage extravasation indicating 
that TNF-α action on TNFR2 promotes renal tissue damage through 
proinflammatory pathway (Mehaffey and Majid, 2017; Singh et al., 
2013). In summary, the actions of TNF-α in the kidney strongly 
depend on the receptor type it acts on and may oppose the sodium 
retention in mice under high-salt intake, probably counteracting its 
pro-hypertensive effects. That would strongly indicate that the role 
of TNF-α may depend on the production of other cytokines and 
chemokines in SSH.

The immune events that originate in the kidneys not only 
affect local renal functions but also influence immune events 
that occur in the brain. The renal and central nervous system 
signal each other through afferent (sensory) and efferent (motor) 
sympathetic autonomic nerves and recent findings suggest that 
signaling system has an important role in the SSH. Using the 
rat DOCA-salt model, Banek and cols. Showed that afferent renal 
nerve activity is augmented and that both, total and selective 
afferent renal nerves ablation, attenuated the DOCA-salt induced 
hypertension by about 50% (Banek et al., 2016). In addition, 
the authors also found that total, but not selective, afferent renal 
denervation attenuated the DOCA-salt induced renal inflammation 
assessed by CD3+, CD4+ and CD8+ cell counting and inflammatory 
markers (GRO/KC, MCP-1, IL-1β, IL-2, IL-6, IL-17a, and TNF-
α) in the kidney (Banek et al., 2016). The findings suggest that 
while afferent renal nerves contribute to hypertension in the rat 
DOCA-salt model, the efferent renal nerves contribute to renal 
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inflammation. The authors also proposed that renal inflammation 
may drive afferent renal activity to the central nervous system thus 
contribute to a positive feedback loop to the renal inflammation 
and to hypertension. Further studies on DOCA-salt model showed 
that the IL-1R activation is partially responsible for the increased 
afferents renal nerve activity and that IL-1β is increased in the 
kidneys and urine of DOCA-salt mice (Baumann et al., 2024). As in 
the DOCA-salt model of hypertension, both total renal denervation 
and afferent renal denervation attenuated the hypertension in the 
2 kidneys, one clip (2K1C) model (Lauar et al., 2023). In addition 
to increased pro-inflammatory cytokines (TNF-α and IL-1β) in the 
clipped kidney and urine, the authors found increased expression of 
these cytokines in the hypothalamus of 2K1C rats. Curiously, both, 
total and afferent renal denervation decreased the levels of TNF-α, 
but only afferent renal denervation decreased the levels of IL-1β in 
the hypothalamus of 2K1C rats (Lauar et al., 2023), suggesting that 
renal inflammation can trigger an immune response in the central 
nervous system of this hypertension model. Together, the findings 
indicate a complex reinforcing interplay between the kidneys and the 
central nervous system to sustain SSH through immune-mediated 
mechanisms. 

5.1 Key points

1. The kidneys play a dominant role in regulating sodium balance 
in the body, even under high salt intake. Recent evidence 
challenges the traditional view that high salt intake led to 
hypertension through increased plasma volume and suggests 
that hypertension due to high salt intake is initiated by 
neurogenic mechanisms.

2. Sodium accumulation in tissues contribute to systemic low-
grade inflammation which may impact renal function. Genetic 
studies implicate increased immune cell infiltration in the 
kidney as a mechanism that contribute to SSH specially 
because hypertension is reduced when immune cell infiltration 
is blunted.

3. IL-1 influences sodium retention and hypertension since IL-1R 
deficiency or blockade limits BP elevation by reducing sodium 
reabsorption in the nephron.

4. Ang II regulates pro-inflammatory cytokines production in 
the kidneys leading to renal damage and altering sodium 
transporters expression.

5. Renal and central nervous systems communicate to each 
other through afferent and efferent sympathetic renal nerves 
contributing to SSH. Inflammatory signaling in the kidneys 
trigger immune responses in the brain that further contribute 
to sympathetic stimulation, creating a positive feedback loop 
that contributes to SSH.

6 Age and low-grade inflammation in 
the salt-sensitive hypertension

Aging is an inevitable ongoing process that is part of life and is 
also an important risk factor for cardiovascular disease (North and 
Sinclair, 2012). Despite its importance for cardiovascular diseases, 
the underlying mechanisms behind the processes that build up 

age-related impairments to the cardiovascular system are not fully 
understood. However, it is important to point out that the SSBP is a 
trait that becomes more pronounced as individuals age (Osanai et al., 
1993) and, therefore, can be regarded as an additional risk factor for 
those carrying this trait. The association between age and SSBP has 
been documented and has been linked to vascular dysfunction and 
diminished kidney function. Factors as epigenetic modifications, 
diet, gut microbiome abundancy and diversity, intrinsic immune 
system setting, mitochondrial dysfunctions, increased levels of 
cortisol, immunosenescence and, regarding women, menopause 
are the prevailing elements that largely contribute to age-related 
cardiovascular disease (Demirci et al., 2025).

Recent experimental studies have shown that the aging process 
in Sprague-Dawley (SD) rats from 3 to 16 months is accompanied by 
increased BP, enhanced neurogenic pressor activity, BBB disruption, 
increased PIM (IL-6 and TNF-α) production, and microglia 
activation in the PVN of male Sprague-Dawley rats (Nist et al., 
2024). These findings indicate that aging is associated with increased 
brain production of pro-inflammatory molecules in the PVN, a 
key brain region controlling sympathetic nerve activity and BP of 
male rats. The authors also found that treatment with losartan, 
an AT1R antagonist used as first-line treatment of hypertension, 
improved BP levels as well as reduced microglia activation and IL-
6 and TNF-α production in the PVN of 16 months old male rats 
(Nist et al., 2024). Interestingly, females SD rats lack the increased 
BP and increased PIM production in the PVN during the same 
aging period indicating that female SD rats do not undergo the same 
cardiovascular issues that male SD rats due to aging. On the other 
hand, earlier studies showed that Dahl salt sensitive female rats, even 
under low-sodium diet, displayed an increase in BP over time, from 
the age of 3 months to the age of 12 months (Hinojosa-Laborde et al., 
2004) indicating that the salt sensitive trait in these animals may 
overcome the protective effects of sexual hormones during the 
evaluated aging period. Ovariectomy accelerated the development of 
hypertension in Dahl salt rats, while the ovariectomy accompanied 
by estrogen replacement attenuated its development (Hinojosa-
Laborde et al., 2004). These findings are aligned with results from 
studies showing an increase in salt sensitivity over the aging process 
is also reported in humans (Sander, 2002; Schulman et al., 2006) 
and further highlight the importance of the steroid hormones in the 
SSBP protection as salt-resistance women pre-menopause become 
salt-sensitive after menopause (Schulman et al., 2006).

A growing number of studies have showed that the decline 
in expression of the Klotho protein is linked to aging in humans 
and experimental animals (Abraham and Li, 2022). Klotho is a 
membrane/soluble protein expressed in the choroid plexus of the 
brain, a structure primarily linked to the CSF production, and the 
convoluted tubules in the kidney (Abraham and Li, 2022). The 
circulating levels of the soluble form of Klotho (α-Klotho) have 
been shown to directly correlate with glomerular filtration rate 
suggesting its diagnostic importance in kidney function decline, 
especially during aging (John et al., 2011). Interesting, the missense 
single nucleotide polymorphism in the Klotho gene, rs9536314, 
do humans is also associated with SSH (Citterio et al., 2020). In 
addition, experimental findings showed that high sodium intake 
led to SSH in mice Klotho heterozygous knockout mice as wells 
as in aged mice and that Klotho supplemented reversed SSH in 
these animals (Kawarazaki et al., 2020). Also, Klotho deficiency in 
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heterozygous knockout mice is associated with renal damage and 
SSH through CCR2-mediated inflammation (Zhou et al., 2015), 
linking the Klotho deficiency with immune regulation of SSBP. 
Whether Klotho blood levels can function as a reliable marker of 
SSBP, especially in aged people, is yet to be determined.

The ongoing findings point toward the important role of 
immune signaling in key brain regions controlling autonomic 
regulation of BP in experimental models and may represent an 
important step for the understanding of its role in the human 
set of SSBP. 

6.1 Key points

1. Aging is an important risk factor for cardiovascular diseases 
that encompass factors like epigenetic modifications, diet, gut 
microbiome changes, immune system setting, mitochondrial 
dysfunctions, hormones changes and other factors that 
contribute to age-related BP elevation over time.

2. Experimental data have shown that aging is associated 
with hypertension development along with increased 
neurogenic pressor activity, BBB disruption and low-grade 
neuroinflammation.

3. Interesting, female experimental animals did not display the 
same increased BP associated with PIM production as male 
during aging. However, the salt-sensitive trait found in Dahl-
salt sensitive rats resulted in increased BP during aging 
suggesting this trait may overcome the protective effects of 
female sexual hormones.

4. The decline in Klotho protein expression is linked to aging and 
SSH. The mechanisms seem to involve renal function decline 
and inflammation.

7 Therapeutic implications and future 
directions

High salt intake is important risk factor for cardiovascular and 
kidney disease and yet reductions in salt intake have proved a 
challenging task to be achieved in the modern western society. 
Although the daily salt consumption has, indeed, reduced from 
the 18th century to current days (Ha, 2014), it still far from the 
recommendations by worldwide health authorities. Therefore, new 
strategies and approaches must be considered to mitigate the effects 
of the high salt intake, especially when considering the aging and 
longer lifespan our society conquer over the past century. The gut 
microbiota plays a crucial role in regulating BP and kidney function 
through its interaction with the immune and nervous systems. 
Therapeutic strategies such as dietary interventions, probiotics, 
prebiotics, symbiotic, and fecal microbiota transplantation have 
shown promise, under experimental and controlled conditions, in 
modulating gut microbiota to manage hypertension and chronic 
kidney disease (Al-Habsi et al., 2024; Baldi et al., 2021). These 
interventions aim to restore microbial balance, enhance gut barrier 
function, and reduce systemic inflammation, which are critical for 
lowering BP and protecting kidney and brain health. Targeting 
neural pathways that regulate immunity, and inflammation offers 
a novel approach to treating kidney diseases and hypertension. 

The use of anti-inflammatory agents that specifically target the 
CNS like minocycline or drugs with specific action on cytokine 
receptors like IL-1R and TNFR antagonists may be proven effective 
in counteract the pro-inflammatory effects of high salt intake and 
work alongside conventional anti-hypertensive therapies. SCFA, 
produced by gut microbiota, have anti-inflammatory effects and play 
a role in BP regulation. Enhancing SCFA production through dietary 
modifications or supplementation could be a therapeutic strategy to 
mitigate hypertension and its associated kidney damage.

However, further research is needed to elucidate the precise 
mechanisms by which the gut microbiota influences hypertension 
and kidney diseases. Understanding these pathways will aid in 
the development of targeted therapies that can more effectively 
modulate the neuron-immune-microbiome axis and may mitigate 
the detrimental effects of high salt intake on the cardiovascular 
and renal systems. As our understanding of the microbiome’s role 
in hypertension and kidney diseases grows, there is potential for 
developing personalized treatment strategies. These could involve 
tailoring dietary interventions and microbiota-targeted therapies 
based on individual microbiome profiles. Conducting well-designed 
clinical trials to test the efficacy of microbiota-targeted interventions 
in humans is crucial. These trials will help validate the therapeutic 
potential of probiotics, prebiotics, and other microbiome-related 
strategies in managing hypertension and salt-related kidney 
diseases. In addition, utilizing metagenomics, metabolomics, 
and other omics technologies can provide comprehensive 
insights into the microbiome’s role in disease pathogenesis. This 
integration will facilitate the identification of novel biomarkers and 
therapeutic targets. 

8 Conclusion

In this review, we focused on key findings that substantiate the 
role of the immune signaling pathway in the pathophysiology of 
SSH, particularly emphasizing certain aspects of the neural and 
renal mechanisms. The salt-induced challenges that prompt the 
immune system to corroborate pro-hypertensive mechanisms also 
entail significant alterations in the gut microbiome. Consequently, 
the trafficking of large amounts of salt through the body not 
only impairs autonomic and volume-related regulation of the 
cardiovascular system, but also adversely affects the commensal 
bacterial community in the gut, which subsequently reverberates 
in the immune system, contributing to a low-grade, chronic 
inflammatory state associated with important neural and renal 
pathophysiological mechanisms. The multiplicity of signaling 
mechanisms involved and the overlapping effects of aging and sexual 
dimorphism underscore the complexity of SSH, necessitating novel 
approaches and further investigation in this field to develop effective 
management strategies for hypertension. A chart of our working 
hypothesis is summarized in Figure 1.
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