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We compared predictors of lower-limb arterial occlusion pressure (AOP) across 
commonly used blood flow restriction (BFR) cuff widths (11, 13, 18 cm) and 
developed prediction equations to estimate AOP for each cuff. Participants (n 
= 116) underwent measurements of thigh circumference (TC), systolic (SBP) and 
diastolic (DBP) blood pressure, and AOP was assessed using Doppler ultrasound 
in a seated position. Multiple linear regression models with commonality analysis 
and mixed-effects models were used to identify and compare predictors of 
AOP between each cuff. LASSO regression with bootstrap resampling was used 
to develop and internally validate prediction equations. TC, SBP, DBP, age, and 
sex explained 60%–70% of total variance in AOP, with greater predictive power 
in narrower cuffs. As cuff width increased, TC uniquely accounted for less 
(36%, 26%, 11% for 11, 13, 18 cm, respectively) and SBP uniquely accounted 
for more (2%, 6%, 12% for 11, 13, 18 cm, respectively) variance. A cuff width 
× TC interaction indicated that limb size had greater influence on AOP with 
narrower cuffs. In contrast, the relationship between SBP and AOP remained 
stable across cuff widths. Prediction equations demonstrated good predictability 
and calibration, with limits of agreement ranging from ±18.4 to ±28.6 mmHg 
and statistical equivalence between predicted and measured AOP. Internal 
validation showed minimal overfitting. These findings highlight the importance 
of accounting for cuff width in BFR pressure prescription, with narrower cuffs 
requiring consideration primarily of TC, and wider cuffs requiring consideration 
of both TC and SBP. These cuff-specific equations may offer a practical 
alternative to direct AOP measurement.

KEYWORDS

blood flow restriction, vascular occlusion, kaatsu, systolic blood pressure, limb 
occlussion pressure 

Introduction

For the implementation of exercise with blood flow restriction (BFR), it is 
recommended that cuff pressures be selected based on arterial occlusion pressure
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(AOP) (Patterson et al., 2019) which is the pressure required 
to occlude arterial blood flow to a limb. Selecting pressures 
relative to AOP ensures a standardized level of arterial restriction 
during exercise, typically within the 40%–80% AOP range, which 
is considered both safe and effective. Clinicians, coaches, and 
athletes, however, may not have access to equipment needed 
for directly assessing AOP (i.e., Doppler ultrasound, handheld 
Doppler, cuffs with pressure sensors). To develop alternative 
methods for establishing cuff pressures, several authors (Cirilo-
Sousa et al., 2019; Jessee et al., 2016; Loenneke et al., 2015; 
Loenneke et al., 2012; Sieljacks et al., 2018; Wedig et al., 2024) have 
investigated anthropometric, hemodynamic, and sociodemographic 
variables as predictors of AOP. Reports (Cirilo-Sousa et al., 2019; 
de Queiros et al., 2024; Loenneke et al., 2015; Loenneke et al., 2012; 
Sieljacks et al., 2018; Wedig et al., 2024) focusing on the lower-limbs 
indicate that measures of thigh circumference (TC) and various 
measures of blood pressure, including brachial systolic (SBP) and 
diastolic blood pressure (DBP), serve as the strongest predictors 
of AOP, collectively explaining ∼40–70% of the variance between 
individuals.

It is important to point out that a wide range of cuff widths 
are used for implementing exercise with BFR (i.e., 3–18 cm) 
(Patterson et al., 2019) and predictors of AOP may vary between 
different cuff widths. For example, de Queiros et al. (2024) recently 
reported that TC was the main predictor of lower-limb AOP when 
utilizing an 11 cm cuff while SBP was the main predictor when 
utilizing an 18 cm cuff. In related work, Crenshaw et al. (1988) 
demonstrated that lower-limb AOP is more dependent upon TC 
in narrower cuffs when compared to wider cuffs. These authors 
reported that Pearson correlations between TC and AOP for 4.5, 8, 
12, and 18 cm cuffs were 0.89, 0.82, 0.77, and 0.44, respectively. There 
was no relationship between SBP and AOP in any of the cuff widths 
studied. Conversely, Loenneke et al. (2012) reported that AOP was 
more dependent on TC with a 13.5 cm (r = 0.71) versus a 5 cm (r 
= 0.40) cuff. These authors also reported no relationship between 
brachial SBP and AOP. Alternatively, data from separate reports 
describing predictors of lower-limb AOP in 13.5 cm (Loenneke et al., 
2015) and 18 cm (Wedig et al., 2024) cuffs suggest that brachial 
SBP is the strongest predictor of AOP when utilizing a wider cuff. 
Based on these varied findings, the extent to which predictors 
of AOP vary across cuff widths remains unclear. Identifying the 
strongest predictors of AOP across commonly used cuff widths may 
support the development of alternative methods, such as prediction 
equations, for selecting BFR pressures without direct measurement.

Several multivariate prediction equations utilizing combinations 
of predictors such as TC, SBP, DBP, age, and sex have been 
developed for estimating lower-limb AOP in cuff widths ranging 
from 5–18 cm (Cirilo-Sousa et al., 2019; Jessee et al., 2016; 
Loenneke et al., 2015; Loenneke et al., 2012; Sieljacks et al., 
2018). These prediction equations provide a practical way to 
implement exercise with BFR, however, methodological quality and 
insufficient reporting of performance measures pose limitations to 

Abbreviations: AOP, Arterial Occlusion Pressure; BFR, Blood Flow 
Restriction; BMI, Body Mass Index; CITL, Calibration-in-the-large; DBP, 
Diastolic Blood Pressure; LASSO, Least Absolute Shrinkage and Selection 
Operator; SBP, Systolic Blood Pressure; TC, Thigh Circumference; TOST, 
Two One-side t-test; VIF, Variance Inflation Factor.

their use. Additionally, most equations have been developed to 
predict AOP in a supine position and thus may not provide accurate 
estimates of AOP in exercising body positions (de Queiros et al., 
2024; Sieljacks et al., 2018). Recently, we demonstrated good 
predictability for an equation to estimate AOP for an 18 cm cuff in 
a seated position (Wedig et al., 2024). Accordingly, similar methods 
for prediction equation development and performance reporting are 
needed for additional cuff widths in the seated position.

The purpose of this study was to 1) compare predictors of 
lower-limb AOP across a range of cuff widths commonly used 
for implementing exercise with BFR and 2) develop and validate 
equations to predict AOP when applying these cuffs in a seated 
position. For Part 1 of this study, we compared the relationship 
between TC and measures of blood pressure (SBP and DBP) with 
AOP taken using 11, 13, and 18 cm cuffs. Based on previous 
reports (Crenshaw et al., 1988; de Queiros et al., 2024; Wedig et al., 
2024), we hypothesized that TC would be a stronger predictor of 
AOP when using narrower cuffs whereas blood pressure would be 
a stronger predictor when using wider cuffs. For Part 2 of this 
study, we developed a prediction equation for each cuff width and 
internally validated the resulting models to assess the stability of 
their performance within our data. Ultimately, this work aimed to 
increase accessibility to safe and effective BFR exercise by providing 
practical methods to estimate AOP and standardize cuff pressure 
selection.

Methods

Participants

One hundred sixteen healthy adults between the ages of 18 
and 39 years were recruited to participate in this study (Table 1). 
Data collection occurred during the COVID-19 pandemic and 
in-between case surges. In an effort to include a larger number 
of females, menstrual cycle was not controlled for. Participants 
were excluded from the study if they had a body mass index 
(BMI) >35 kg/m2, SBP >140 mmHg, DBP >90 mmHg, used nicotine 
products, had any cardiometabolic, dermatological, or neurological 
disorders, had a recent lower-limb injury or surgery, or had any 
implanted devices. Participants were informed of the purpose of the 
study, the risks involved, and provided informed written consent. 
This study was reviewed and approved by the Institutional Review 
Board at Michigan Technological University.

Study design and overview

In this investigation, we used a cross-sectional study design 
as participants visited the laboratory for one experimental testing 
session. Participants were asked to avoid caffeine consumption and 
strenuous exercise for 8 h prior to the visit and to refrain from eating 
at least 2 h prior. Upon arrival, height and body mass were measured. 
Next, TC was measured, followed by SBP and DBP. Finally, lower-
limb AOP was determined in the seated position using an 11, 13, and 
18 cm cuff in a randomized order. For Part 1 of this study, multiple 
linear regression models were constructed to predict AOP in the 
lower limb for each cuff using the predictor variables TC, SBP, DBP, 
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TABLE 1  Participant characteristics (Male: n = 68, Female: n = 48).

Variable Mean ± SD Minimum Maximum

Age (years) 23 ± 5 18 39

Height (m) 1.7 ± 0.1 1.5 2.0

Body mass (kg) 74.8 ± 12.6 48.0 114.0

BMI (kg/m2) 24.6 ± 3.3 17.9 34.4

TC (cm) 60.7 ± 5.0 50.0 78.8

SBP (mmHg) 122 ± 9 95 138

DBP (mmHg) 74 ± 7 57 89

11 cm AOP (mmHg) 185 ± 26 136 277

13 cm AOP (mmHg) 168 ± 19 131 228

18 cm AOP (mmHg) 150 ± 14 111 190

AOP , arterial occlusion pressure; DBP, diastolic blood pressure; SBP, systolic blood 
pressure; TC , thigh circumference.

age, and sex. Commonality analysis was used to compare the unique 
and shared percentage of variance in AOP that was associated with 
each predictor variable across all three cuff models. A linear mixed 
effect model was then used to further investigate the relationship 
between predictor variables and AOP across the different cuff 
widths. For Part 2 of this study, we used methods recently described 
by our laboratory (Wedig et al., 2024) to develop and internally 
validate prediction equations to estimate AOP for 11, 13, and 18 cm 
cuffs. Note that for the 18 cm cuff only, data from an additional 
27 participants from our previous work (Wedig et al., 2024) were 
included to develop and validate this prediction equation. An 
overview of the study design is presented in Figure 1.

Thigh circumference

Thigh circumference was obtained on the right leg of each 
participant at 33% of the distance from the inguinal crease to the 
proximal patella using a standard tape measure. This measurement 
location was selected to represent the site at which the cuffs were 
placed during AOP measurement. Measures were taken in duplicate 
to the nearest millimeter, and the average value was used for analysis. 
Based on preliminary data, reliability of circumference measures 
(ICC = 0.97) were excellent, which is consistent with previously 
reported data (Bakar et al., 2017; Wedig et al., 2024). 

Blood pressure

After resting quietly in a seated position for 10 min, brachial 
SBP and DBP were obtained using an appropriately sized automatic 
blood pressure cuff (Welch-Allyn, Model 4200B-E1, Skaneateles 
Falls, NY, United States). All blood pressure measures were obtained 
with the participant in a seated position. A minimum of two 

measurements were taken with a 1 min rest between measures. If 
SBP or DBP varied by more than 5 mmHg, measurements were 
repeated until values were within 5 mmHg of each other. The 
two sequential values within 5 mmHg were averaged and used 
for analysis. 

Arterial occlusion pressure

In a randomized order, measures of lower-limb AOP were 
assessed with an 11 cm (SC10D, 11 × 85 cm, Hokanson, Bellevue, 
WA, United States), 13 cm (SC12D, 13 × 85 cm, Hokanson, 
Bellevue, WA, United States), and 18 cm (Thigh Size Aneroid 
Sphygmomanometer, Elite Medical Instruments, Fullerton, CA, 
United States) pneumatic cuff. All cuffs were constructed of a rigid 
nylon material with a straight segmental shape. The 11 and 13 cm 
cuffs were inflated using a rapid cuff inflation system (E20 Rapid 
Cuff Inflation System, Hokanson, Bellevue, WA, United States) while 
the 18 cm cuff was manually inflated by hand. An 18 cm manually 
inflated cuff was used to maintain consistency in cuff shape, as 
the only 18 cm cuff available from the same manufacturer as the 
11 and 13 cm cuffs has a contoured design. Measures of lower-
limb AOP were obtained by first placing the cuff on the proximal 
portion of the thigh with the center of the bladder positioned 
at 33% of the distance from the inguinal crease to the proximal 
patella. Next, the participant was placed in a seated position and 
the pulse was detected at the posterior tibial artery using Doppler 
ultrasound (GE Logiq e BT12, GE Healthcare, Chicago, IL, United 
States). The cuff was first inflated to 75 mmHg and the pressure 
was slowly increased at a rate of 2–3 mmHg/s until blood velocity 
in the posterior tibial artery reached zero based on the absence 
of the Doppler spectrum. Once an initial blood velocity of zero 
was reached, the cuff pressure was maintained for approximately 
5–10 s to confirm full occlusion. If blood flow resumed during this 
period, inflation was continued until blood velocity again reached 
zero. The minimum pressure required fully to eliminate Doppler 
spectrum was recorded as the AOP. A minimum of two measures 
were obtained for each cuff with a 2 min break between measures. If 
values varied by more than 5 mmHg, measurements were repeated 
until values were within 5 mmHg. The two consecutive values within 
5 mmHg were averaged and used for analysis. Participants were 
given a 2 min break between measures of AOP with each cuff. Based 
on preliminary data, measurement of AOP using this method was 
reliable (SEM = 2.01 mmHg, ICC = 0.95) and is consistent with 
previous reliability data reported from our laboratory (Kilgas et al., 
2019a; Kilgas et al., 2019b; Kilgas et al., 2022; Wedig et al., 2024). 

Statistical analysis

Part 1- Predictors of AOP
Multiple linear regression models were constructed to predict 

lower-limb AOP for each of the three cuffs using the predictor 
variables of TC, SBP, DBP, age, and sex. These variables were 
selected as they have been previously identified as predictors of AOP 
which collectively explain 40%–70% of the total variance (Cirilo-
Sousa et al., 2019; de Queiros et al., 2024; Loenneke et al., 2015; 
Loenneke et al., 2012; Wedig et al., 2024), corresponding to a large 

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2025.1658744
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Wedig et al. 10.3389/fphys.2025.1658744

FIGURE 1
Overview of study design. Part 1- methods for identifying and comparing predictors of AOP in 11, 13, and 18 cm cuffs. Part 2 - methods for developing 
and internally validating prediction equations to estimate AOP in 11, 13, and 18 cm cuffs. AOP = Arterial Occlusion Pressure, BA LoA = Bland-Altman 
Limits of Agreement, CITL = Calibration-in-the Large, DBP = Diastolic Blood Pressure, SBP = Systolic Blood Pressure, RMSE = Root mean squared error.

effect size (Cohen’s f2 > 0.35) (Cohen, 2013). Given a power of 0.8 (ß 
= 0.20) and a two-tailed significance level (α) of 0.05, we determined 
that 91 participants would provide an adequate sample to detect a 
medium effect size (f2) of 0.15 with five predictor variables. One 
theoretical model including all predictors was constructed for each 
cuff. Model fit was evaluated using coefficient of determination 
(R2), adjusted coefficient of determination (Adj R2), standard error 
of the estimate (SEE), mean squared error (MSE), and an F-
test to determine whether the full set of predictors explained a 
significant proportion of variance in AOP. Individual predictors 

were evaluated using their respective t-tests and p-values, with 
an alpha level set at 0.05. Standardized beta coefficients (β) were 
reported to compare the relative contributions of each predictor. 
Assumptions of linear models were checked with a visual inspection 
of normality and residual plots. Multi-collinearity between predictor 
variables was assessed using variance inflation factor (VIF) and 
Pearson’s correlations. Multi-collinearity was defined as a VIF ≥5 
and/or Pearson’s correlations of 0.85 or greater. To assess the 
unique and shared variance explained by each predictor in the 
linear regression models, we conducted a commonality analysis 
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(Nathans et al., 2012). The analysis was performed using the ‘yhat’ 
package (Nimon et al., 2009) available on R (R: A Language and 
Environment for Statistical Computing, 2020, R Foundation for 
Statistical Computing, Vienna, Austria). To further compare the 
influence of TC, SBP, and DBP on AOP across the different cuff 
widths we fit a linear mixed effects model. The model included AOP 
as the outcome variable with fixed effects of TC, SBP, DBP, cuff width, 
TC x cuff width, SBP x cuff width, and DBP x cuff width, and a 
random intercept for participants. Age and sex were not included 
as fixed effects given the limited sample size. The random intercept 
for participants accounts for some inter-individual variability 
potentially related to age and sex. Additionally, while age and 
sex have previously been identified as predictors of AOP, findings 
are inconsistent, and these variables typically explain minimal 
variance when considered alongside limb circumference and blood 
pressure. Given this, we focused our analysis on the more influential 
predictors. The mixed effects model was constructed using the 
‘lme4’ package (Bates et al., 2015) available on R and alpha was
set to 0.05. 

Part 2- Developing and validating prediction 
equations

Data from all participants were used to develop equations to 
predict AOP for the 11, 13, and 18 cm cuffs. The minimum sample 
size for developing the prediction equation was determined using 
criteria described by Riley et al. (2019) for prediction models with 
continuous outcome variables. Based on preliminary data (n = 88) 
utilizing a model with five predictor variables, an adjusted R2 of 0.40, 
and a mean AOP of 154 mmHg and standard deviation of 13 mmHg, 
a sample of 140 participants was determined to control model 
optimism (shrinkage < 10%) and provide estimates of the residual 
standard deviation and model intercept with a margin of error less
than 20%.

We followed the transparent reporting of a multivariable model 
for individual prognosis or diagnosis (TRIPOD) guidance for 
development and reporting of multivariable prediction models 
(Moons et al., 2015). Least absolute shrinkage and selection operator 
(LASSO) regression was carried out for the 11, 13, and 18 cm cuffs 
and included each of the significant predictor variables that were 
identified in Part 1 as candidate predictors. The optimal penalization 
parameter (λ) was selected using automated 30-fold cross-validation 
to determine the λ that minimizes mean-squared error in the 
model. Variables with coefficients that were reduced to zero after 
regularization were removed from the model. Performance of the 
resulting models were evaluated in the development dataset by 
assessing model R2 (the proportion of variance in AOP explained 
by the model), model root-mean squared error (RMSE, the average 
difference between the predicted and observed values), calibration 
slope (slope from a model regressing observed on predicted AOP 
values; ideal value is 1), and calibration-in-the large (CITL, the 
intercept term from a model regressing observed on predicted 
AOP values; ideal value is 0). The degree of agreement between 
observed and predicted AOP values obtained from the prediction 
equations was assessed using techniques described by Bland and 
Altman (1986). The 95% limits of agreement were determined by 
calculating two standard deviations of the mean difference between 
observed and predicted values and 95% confidence intervals (CI) 
were constructed around the limits of agreement (Giavarina, 

2015). To statistically test the equivalence of mean observed and 
predicted AOP values we utilized a two one-sided t-test (TOST; 
90% confidence interval, or 5% for each lower and upper limit) 
described by Lakens (2017). The equivalence region was selected 
as ± 10% of the mean AOP determined via Doppler ultrasound. 
This equivalence region was selected arbitrarily as a 10% error in 
AOP likely has little practical importance. The test was carried out 
using the TOST package available on R from the CRAN repository
(Mara and Cribbie, 2012).

Finally, internal validation was completed for each model using 
bootstrap resampling methods in which 1,000 samples (n = 30) were 
randomly selected from the development dataset with replacement. 
The prediction equation developed from the full dataset was applied 
to each of the random samples and used to predict AOP. The 
variable selection process was not included in internal validation 
as this was performed via LASSO regression. The performance of 
the model across validation samples was assessed by evaluating 
the distributions of model R2, RMSE, calibration slope, and CITL 
obtained from the set of random samples. All data analysis was 
completed using R.

Results

Part 1- predictors of AOP

One hundred and sixteen adults participated in Part 1 of this 
investigation. Participant characteristics are presented in Table 1. 
Results of the multiple linear regression analysis for the 11 cm 
cuff are presented in Table 2. The model explained 70% of the 
total variance in AOP, with TC (ß = 0.646, Part = 3.373), SBP 
(ß = 0.231, Part = 0.655), and DBP (ß = 0.165, Part = 0.610) 
constituting significant predictors. Results of the multiple linear 
regression analysis for the 13 cm cuff are presented in Table 3. 
The model explained 66% of the total variance in AOP, with TC 
(ß = 0.550, Part = 2.025), SBP (ß = 0.367, Part = 0.735), and 
sex (ß = −0.141, Part = −5.263) constituting significant predictors. 
Results of the multiple linear regression analysis for the 18 cm 
cuff are presented in Table 4. The model explained 61% of the 
total variance in AOP, with TC (ß = 0.363, Part = 1.031), SBP 
(ß = 0.536, Part = 0.827), and age (ß = 0.179, Part = 0.570) 
constituting significant predictors. Results of commonality analysis 
are shown in Table 5. In the 11 cm cuff, TC accounted for the 
largest portion of variance in AOP (58.3%), with a substantial unique 
contribution (36.1%). SBP contributed 29.2% to the total variance, 
though most of this was shared with other predictors (26.9%). In 
the 13 cm cuff, TC remained the strongest overall predictor (48.2% 
total; 26.2% unique) while SBP contributed 34.9% to the total 
variance with a unique contribution of 5.7%. For the 18 cm cuff, 
SBP accounted for the greatest variance in AOP (44.0%), with its 
unique contribution (12.2%) surpassing that of TC (11.4%). TC’s 
overall contribution decreased to 32.8%. The variables DBP, age, and 
sex explained minimal variance across cuff sizes, with most of their 
effects being shared with other predictors. The linear mixed effects 
model revealed significant main effects of TC (p < 0.001), SBP (p 
< 0.001), DBP (p < 0.01), cuff width (p < 0.001), TC x cuff width 
interaction (p < 0.001), and DBP x cuff width interaction (p < 0.01)
(Figure 2a–c).
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TABLE 2  Linear regression model for 11 cm cuff.

Predictor Stand. ß p value Part

TC 0.646 < 0.001 3.373

SBP 0.231 < 0.01 0.655

DBP 0.165 < 0.05 0.610

Age 0.021 0.698 0.121

Sex −0.060 0.346 −3.159

R2 Adj. R2 MSE SEE p value

0.695 0.681 208.50 14.83 < 0.001

DBP, diastolic blood pressure; SBP, systolic blood pressure; TC, thigh circumference.

TABLE 3  Linear regression model for the 13 cm cuff.

Predictor Stand. ß p value Part

TC 0.550 < 0.001 2.025

SBP 0.367 < 0.001 0.735

DBP 0.128 0.108 0.334

Age −0.018 0.752 −0.074

Sex −0.141 < 0.05 −5.263

R2 Adj. R2 MSE SEE p value

0.660 0.645 115.40 11.03 < 0.001

DBP, diastolic blood pressure; SBP, systolic blood pressure; TC, thigh circumference.

TABLE 4  Linear regression model for 18 cm cuff.

Predictor Stand. ß p value Part

TC 0.363 <0.001 1.031

SBP 0.536 <0.001 0.827

DBP 0.007 0.937 0.013

Age 0.179 <0.01 0.570

Sex −0.053 0.460 −1.526

R2 Adj. R2 MSE SEE p value

0.606 0.588 79.47 9.16 <0.001

DBP, diastolic blood pressure; SBP, systolic blood pressure; TC, thigh circumference.

Part 2 - Developing and validating 
prediction equations

Prediction equation development
When performing LASSO regression to predict AOP for the 

11 cm wide cuff the variables of TC, SBP, and DBP were entered as 

candidate predictors. The optimal value to use for λ was determined 
to be 0.844. Coefficients for TC, SBP, and DBP remained non-zero 
after regularization and thus these predictor variables were retained 
in the final model. The representative formula for the resulting 
equation when using the 11 cm cuff was:

AOP (mmHg) = −124.750+ 3.269 (Thigh Circum ference)

+ 0.506 (SBP) + 0.6647 (DBP)

When performing LASSO regression to predict AOP for the 
13 cm cuff the variables of TC, SBP, and sex were entered as 
candidate predictors. The optimal value to use for λ was determined 
to be 0.053. Coefficients for all candidate predictors remained non-
zero after regularization and thus all predictor variables were utilized 
in the final model. The representative formula for the resulting 
equation when using the 13 cm cuff was:

AOP (mmHg) = −55.636+ 2.017 (Thigh Circum ference)

+ 0.915 (SBP) – 6.960 (Sex,2 =male,1 = female)

For the 18 cm cuff, the variables of SBP, TC, and age were 
entered as candidate predictors in LASSO regression. The optimal 
value to use for λ was determined to be 0.042. The coefficients for 
each predictor variable remained non-zero after regularization and 
thus all predictor variables were retained in the final model. The 
representative formula for the resulting equation when using the 
18 cm cuff was:

AOP (mmHg) = −12.179+ 1.084 (Thigh Circum ference)

+ 0.720 (SBP) + 0.426 (Age) 

Apparent performance in development data
The equation developed for the 11 cm cuff explained 69% of 

the total variance in AOP (R2 adj = 0.68) with an RMSE of 
11.72 mmHg. The CITL and calibration slope were −9.38 and 
1.05, respectively (Figure 3a). A Bland-Altman plot displaying the 
limits of agreement between measured and predicted AOP values 
is presented in Figure 3b. The estimated mean difference between 
values was 0.0 mmHg, 95% CI [-0.29, 0.29]. The upper and lower 
95% limits of agreement were 28.64 mmHg, 95% CI [24.0, 33.3] 
and −28.64 mmHg, 95% CI [-33.3, −24.0]. The model displayed 
proportional bias as the slope of the regression of the differences of 
observed and predicted values by the mean of values was different 
from 0 (0.25, 95% CI [0.14, 0.36], p < 0.001). Observed and predicted 
AOP values were equivalent, t (115) = −8.616, p < 0.001, given an 
equivalence region −11.69 to +11.69 mmHg. The 90% confidence 
interval for the mean difference between observed and predicted 
AOP values was −2.25 and +2.25 mmHg, which was well within the 
selected equivalence region.

The equation developed for the 13 cm cuff explained 65% 
of the total variance in AOP (R2 adj = 0.64) with an RMSE 
of 8.89 mmHg. The CITL and calibration slope were −0.89 and 
1.01, respectfully (Figure 4a). A Bland-Altman plot displaying the 
limits of agreement between measured and predicted AOP values 
is presented in Figure 4b. The estimated mean difference between 
values was 0.0 mmHg, 95% CI [-0.21, 0.21]. The upper and lower 
95% limits of agreement were 21.40 mmHg, 95% CI [17.9, 24.9] 
and −21.40 mmHg, 95% CI [-24.9, −17.9]. The model displayed 
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TABLE 5  Results of commonality analysis for regression models predicting AOP in 11, 13, and 18 cm cuffs.

Predictor variable 11 cm cuff 13 cm cuff 18 cm cuff

Unique Common Total Unique Common Total Unique Common Total

TC 0.361 0.222 0.583 0.262 0.221 0.482 0.114 0.214 0.328

SBP 0.023 0.269 0.292 0.057 0.292 0.349 0.122 0.318 0.440

DBP 0.013 0.207 0.220 0.008 0.243 0.251 0.000 0.198 0.198

Age 0.000 0.018 0.019 0.000 0.008 0.008 0.031 0.039 0.070

Sex 0.003 0.002 0.003 0.014 −0.014 0.000 0.002 0.025 0.027

DBP, diastolic blood pressure; SBP, systolic blood pressure; TC, thigh circumference.

proportional bias as the slope of the regression of the differences of 
observed and predicted values by the mean of values was different 
from 0 (0.24, 95% CI [0.12, 0.36], p < 0.001). Observed and predicted 
AOP values were equivalent, t (115) = −8.616, p < 0.001, given 
an equivalence region −8.74 to +8.74 mmHg. The 90% confidence 
interval for the mean difference between observed and predicted 
AOP values was −1.68 and +1.68 mmHg, which was well within the 
selected equivalence region.

The equation developed for the 18 cm cuff explained 54% 
of the total variance in AOP (R2 adj = 0.53) with an RMSE 
of 7.18 mmHg. The CITL and calibration slope were −0.88 and 
1.01, respectfully (Figure 5a). A Bland-Altman plot displaying the 
limits of agreement between measured and predicted AOP values 
is presented in Figure 5b. The estimated mean difference between 
values was 0.0 mmHg, 95% CI [-1.55, 1.55]. The upper and lower 
95% limits of agreement were 18.35 mmHg, 95% CI [15.7, 21.0] 
and −18.53 mmHg, 95% CI [-21.0, −15.7]. The model displayed 
proportional bias as the slope of the regression of the differences of 
observed and predicted values by the mean of values was different 
from 0 (0.36, 95% CI [0.23, 0.49], p < 0.001). Observed and predicted 
AOP values were equivalent, t (152) = −9.985, p < 0.001, given 
an equivalence region −7.49 to +7.49 mmHg. The 90% confidence 
interval for the mean difference between observed and predicted 
AOP values was −1.25 and +1.25 mmHg, which was well within the 
selected equivalence region.

Internal validation
Distributions for each of the performance measures across 

internal validation samples for the equation to predict AOP with an 
11 cm cuff are shown in Figures 3c–f. The mean model R2 adj was 
0.67 ± 0.09, 95% CI [0.66, 0.67], RMSE was 11.7 ± 8.8, 95% CI [11.2, 
12.2], CITL was −6.71 ± 25.2, 95% CI [-8.3, −5.1], and calibration 
slope was 1.03 ± 0.14, 95% CI [1.02, 1.04]. Accordingly, there 
were small differences between the apparent and optimism adjusted 
performance measures (R2 = −0.01, RMSE = −0.02 mmHg, CITL = 
−2.67, calibration slope = −0.02) indicating minimal overfitting.

For the 13 cm cuff, distributions of the performance metrics 
across internal validation samples are presented in Figures 4c–f. The 
mean model R2 adj was 0.64 ± 0.09, 95% CI [0.63, 0.64], RMSE 
was 8.94 ± 6.25, 95% CI [8.56, 9.33], CITL was 0.83 ± 21.3, 95% CI 
[-0.49, 2.15], and calibration slope was 1.00 ± 0.13, 95% CI [0.99, 

1.01]. Therefore, there were small differences between the apparent 
and optimism adjusted performance measures (R2 = 0.00, RMSE = 
−0.05 mmHg, CITL = −1.72, calibration slope = −0.01) indicating 
minimal overfitting.

Performance measure distributions across internal 
validation samples for the 18 cm cuff prediction equation are 
illustrated in Figures 5c–f. The mean model R2 adj was 0.52 ± 
0.13, 95% CI [0.51, 0.53], RMSE was 7.10 ± 5.51 mmHg, 95% 
CI [6.76, 7.45], CITL was 0.11 ± 25.8, 95% CI [-1.49, 1.72], and 
calibration slope was 0.99 ± 0.16, 95% CI [0.98, 1.00]. There were 
small differences between the apparent and optimism adjusted 
performance measures (R2 = −0.01, RMSE = −0.08 mmHg, CITL = 
−0.99, calibration slope = −0.02) indicating minimal overfitting.

Discussion

In the current investigation we compared predictors of lower-
limb AOP between a variety of commonly used cuff widths (11, 13, 
18 cm) for performing exercise with BFR (Part 1). Additionally, we 
developed and validated prediction equations to estimate lower-limb 
AOP for these cuffs (Part 2). Our main findings were that 1) the 
relationship between anthropometric and hemodynamic variables 
with lower-limb AOP depended on cuff width, 2) TC was the 
strongest predictor of AOP when using narrower cuffs, but its 
influence decreased as cuff width increased, with SBP becoming 
a stronger predictor, and 3) prediction equations containing TC, 
measures of blood pressure, age, and sex provided acceptable 
estimates of lower-limb AOP for 11, 13, and 18 cm cuffs that appear 
to be internally valid. Collectively, these results suggest that methods 
used to set cuff pressures during exercise with BFR should consider 
the width of cuff and that our prediction equations provide a valid 
way to estimate lower-limb AOP for a variety of cuff widths without 
the need for direct measurement. 

Part 1- predictors of AOP

Our regression models containing the predictor variables of 
TC, SBP, DBP, age, and sex explained approximately 60%–70% of 
the total variance in lower-limb AOP across cuff widths ranging 
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FIGURE 2
AOP versus predictor variables for the 11, 13, and 18 cm cuffs (a) AOP 
vs. TC (b) AOP vs. SBP (c) AOP vs. DBP. Significant effects of TC, SBP, 
DBP, cuff width, TC x cuff width, and DBP x cuff width (all p < 0.01). 
Pearson’s correlations (r) between the respective predictor variable 
and AOP are presented in the upper left corner of each plot.

from 11 to 18 cm. These results generally support previous findings 
for 11 cm (de Queiros et al., 2024), 13 cm (Loenneke et al., 2012), 
and 18 cm cuffs (Cirilo-Sousa et al., 2019; de Queiros et al., 
2024; Wedig et al., 2024). Overall, the models explained more 
variance in AOP with narrower cuffs, explaining 70%, 66%, and 
61% of the variance for the 11, 13, and 18 cm cuffs, respectively. 
Thigh circumference consistently emerged as a significant predictor 
across all cuff widths, uniquely accounting for 11%–36% of the 
total variance explained by our models, which supports previous 
work in 11 cm (de Queiros et al., 2024), 13 cm (Loenneke et al., 
2012), and 18 cm cuffs (Cirilo-Sousa et al., 2019; de Queiros et al., 
2024; Wedig et al., 2024). Additionally, SBP was also identified 

as a significant predictor of AOP in all cuff widths and uniquely 
accounted for 2%–12% of the total variance explained by our 
models. In contrast, DBP, age, and sex were not consistent predictors 
and uniquely accounted for relatively small amounts of variance 
in AOP (<3%). Taken together, our findings across 11, 13, and 
18 cm cuffs, along with previous data involving cuff widths from 
5 to 18 cm (Cirilo-Sousa et al., 2019; de Queiros et al., 2024; 
Loenneke et al., 2015; Loenneke et al., 2012; Wedig et al., 2024), 
suggest that anthropometric and hemodynamic variables are the 
primary determinants of lower-body AOP, while sociodemographic 
factors have little unique influence once contributions of limb size 
and blood pressure are accounted for.

This is the first investigation to directly and comprehensively 
compare the influence of TC, SBP, DBP, age, and sex on lower-
limb AOP in 11, 13, and 18 cm cuffs within a single group of 
participants. In agreement with previous findings (Crenshaw et al., 
1988; de Queiros et al., 2024), our results suggest that the influence 
of predictor variables on AOP is dependent upon cuff width. While 
TC was a significant predictor of AOP for all three cuffs investigated, 
the amount of variance in AOP uniquely explained by TC decreased 
with increasing cuff width (36%, 26%, 11% for 11, 13, and 18 cm 
cuffs, respectively), supporting our hypothesis that TC would be a 
stronger predictor of AOP when using narrower cuffs. A similar 
relationship was reported by Crenshaw and colleagues (1988) when 
investigating the influence of TC alone on AOP in 4.5, 8, 12, and 
18 cm cuffs, in which TC explained 79%, 67%, 59%, and 24% of 
the variance, respectively. Comparably, de Queiros and colleagues 
(2024) reported that adding TC to a regression model already 
containing SBP explained more additional variance in AOP for an 
11 cm cuff compared to an 18 cm cuff, when assessed in the same 
seated position used in our study. They also found that TC was 
the strongest predictor for the 11 cm cuff, but not for the 18 cm 
cuff, based on standardized ß coefficients. These interpretations 
should be made with caution, as the relative influence of predictors 
is conditional on the other variables included in the model and 
does not reflect their unique contributions. To our knowledge, this 
is the first study to report the unique and shared contributions 
of TC to the variance in AOP. Results of our mixed linear effects 
modeling indicated that there was an interaction effect between 
TC and cuff width, suggesting that the relationship between TC 
and AOP varied across the different cuff widths (i.e., the slopes 
of the lines plotting AOP vs. TC were different between cuff 
widths; see Figure 2a). For the narrower cuffs, each unit of TC 
was associated with a larger difference in AOP than those in the 
wider cuffs. Differences in the relationship between TC and AOP 
across cuff widths is likely explained by the efficiency with which 
various cuffs transmit pressure to underlying soft tissues. Wider 
cuffs have been suggested to transmit force more effectively into 
underlying tissues (Crenshaw et al., 1988), which would in turn 
reduce the influence of limb size in determining the amount of 
external cuff pressure that is required to mechanically compress the 
underlying vasculature and occlude blood flow. As the proportion 
of variance in AOP explained by TC decreases with increasing 
cuff width, the total variance accounted for by the model also 
declines. This likely explains why our regression models including 
the same predictor variables (TC, SBP, DBP, age, and sex) explained 
progressively less variance in AOP as cuff width increased (70%, 
66%, and 61% for the 11, 13, and 18 cm cuffs, respectively). While 
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FIGURE 3
Performance of equation to predict AOP for the 11 cm cuff in the development dataset (a,b) and distribution of performance measures across internal 
validation samples (c–f). (a) Calibration plot of observed versus predicted AOP values. Black dashed line represents the ideal trendline (b = 0, slope = 1). 
Red solid line represents the line of best ft between observed and predicted values and gray shaded region is the 95% CI. (b) Bland–Altman plot 
displaying the limits of agreement between observed and predicted AOP values. Black dashed lines represent the mean difference and upper and lower 
limits of agreement (95% interval). Shaded regions represent 95% CIs. Black solid line is a regression ft of the difference on the means and gray shaded 
region is the 95% CI. (c) Model R2, (d) root mean square error (RMSE), (e) calibration-in-the large (CITL), (f) calibration slope. Note that black dashed 
lines (c–f) represent distribution means and red shaded regions represent 95% CIs.

TC’s predictive power diminishes with wider cuffs, the contribution 
of the remaining variables does not increase proportionally, resulting 
in a lower overall explanatory capacity.

In agreement with de Queiros and colleagues (2024), SBP 
became a stronger predictor of AOP as cuff width increased, 
uniquely accounting for 2%, 6%, and 12% of total variance in 
11, 13, and 18 cm cuffs, respectively. These results support our 
hypothesis that blood pressure would be a stronger predictor of AOP 
when using wider cuffs. Previous reports (de Queiros et al., 2024; 
Wedig et al., 2024) have identified SBP as the strongest predictor 
of lower limb AOP in an 18 cm wide cuff based on standardized ß 
coefficients. While our findings generally support this, our results 
show that SBP uniquely accounts for only ∼1% more variance than 
TC in this cuff, suggesting that despite its relatively greater influence 
compared to narrower cuffs, SBP and TC are similarly important 
predictors in this context. Arm and leg blood pressures are closely 
related (Sheppard et al., 2019). Therefore, brachial SBP reflects 
the pressure within the arteries of the lower-limb which must be 
overcome by the cuff to compress and occlude their blood flow. 

Interestingly, results of our mixed-linear modeling indicated that 
there was no interaction effect of SBP and cuff width, suggesting 
that the relationship between SBP and AOP was consistent across 
the three cuff widths (i.e., the slopes of the lines plotting AOP vs. SBP 
were not different between cuff widths; see Figure 2b). Accordingly, 
each unit of SBP was associated with similar differences in AOP 
for all cuff widths. These data indicate that increases in variance 
explained by SBP with increasing cuff width may be mostly due 
to reduced dependence on TC as a predictor rather than a shift 
toward SBP playing a larger physiological role in determining the 
pressure required to compress and occlude the vasculature. Taken 
together, these results suggest that most of the variance in AOP 
that occurs between cuffs of different width is explained by factors 
related to the transmission of external force from the cuff to the 
vasculature (Cuff width x TC). After accounting for this variance, 
the pressure that must be overcome within the artery (SBP) may be 
a consistent determinant of AOP regardless of cuff width. Ultimately, 
these data suggest that methods of establishing cuff pressures during 
exercise with BFR should consider the width of cuff being utilized. 
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FIGURE 4
Performance of equation to predict AOP for the 13 cm cuff in the development dataset (a,b) and distribution of performance measures across internal 
validation samples (c–f). (a) Calibration plot of observed versus predicted AOP values. Black dashed line represents the ideal trendline (b = 0, slope = 1). 
Red solid line represents the line of best ft between observed and predicted values and gray shaded region is the 95% CI. (b) Bland–Altman plot 
displaying the limits of agreement between observed and predicted AOP values. Black dashed lines represent the mean difference and upper and lower 
limits of agreement (95% interval). Shaded regions represent 95% CIs. Black solid line is a regression ft of the difference on the means and gray shaded 
region is the 95% CI. (c) Model R2, (d) root mean square error (RMSE), (e) calibration-in-the large (CITL), (f) Calibration slope. Note that black dashed 
lines (c–f) represent distribution means and red shaded regions represent 95% CIs.

Specifically, for narrower cuffs, methods of setting pressure based on 
TC alone may be suitable, whereas methods for setting pressure in 
wider cuffs should be based on both TC and SBP. 

Part 2 - Developing and validating 
prediction equations

We developed three specific prediction equations to estimate 
lower-limb AOP for the 11, 13, and 18 cm cuffs. Each equation 
demonstrated good predictive performance, adequate calibration, 
and minimal evidence of overfitting, which supports their use for 
setting individualized exercising cuff pressures during exercise 
with BFR. Unlike previous AOP prediction models (Cirilo-
Sousa et al., 2019; Jessee et al., 2016; Loenneke et al., 2015; 
Loenneke et al., 2012; Sieljacks et al., 2018), we employed LASSO 
regression for variable selection and coefficient regularization. 
LASSO is a robust method for creating parsimonious models 
and reducing overfitting (Steyerberg et al., 2000), aligning with 

best practices in prediction modeling (Chowdhury and Turin, 
2020). Model performance was evaluated using calibration 
and Band-Altman Limits of Agreement, as recommended for 
prediction model assessment (Steyerberg and Vergouwe, 2014) 
and for determining the level of agreement between continuous 
measures (Zaki et al., 2012). Lastly, each of our models were 
subjected to internal validation procedures performed via bootstrap 
resample, which is consistent with recommended practices for the 
development of clinical prediction models (Moons et al., 2015;
Steyerberg, 2008).

The developed prediction equations demonstrated good model 
fit, calibration, and agreement with direct measurements of AOP 
taken using Doppler ultrasound. While each model included slightly 
different predictor combinations, TC and SBP were consistently 
retained in the final models across all cuff widths. Model fit tended 
to be highest for narrower cuffs, which accounted for more total 
variance in AOP and displayed lower RMSE compared to wider 
cuffs. Similar to Yamada and colleagues (2022), proportional bias 
was observed in all models, each with a tendency to overestimate 
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FIGURE 5
Performance of equation to predict AOP for the 18 cm cuff in the development dataset (a,b) and distribution of performance measures across internal 
validation samples (c–f). (a) Calibration plot of observed versus predicted AOP values. Black dashed line represents the ideal trendline (b = 0, slope = 1). 
Red solid line represents the line of best ft between observed and predicted values and gray shaded region is the 95% CI. (b) Bland–Altman plot 
displaying the limits of agreement between observed and predicted AOP values. Black dashed lines represent the mean difference and upper and lower 
limits of agreement (95% interval). Shaded regions represent 95% CIs. Black solid line is a regression ft of the difference on the means and gray shaded 
region is the 95% CI. (c) Model R2, (d) root mean square error (RMSE), (e) calibration-in-the large (CITL), (f) calibration slope. Note that black dashed 
lines (c–f) represent distribution means and red shaded regions represent 95% CIs. Figure reprinted with permission from Wedig et al. (2024).

lower AOP values and underestimate higher AOP values. This 
consistent bias across models may reflect either measurement-
related error in predictor variables or unmodeled physiological 
mechanisms that influence AOP estimation across the range 
of observed values. Despite the proportional bias, group-level 
comparisons indicated statistical equivalence between predicted 
and measured values (within 10% of the mean AOP value 
determined via Doppler ultrasound) with no systematic bias of 
under or overestimation. Limits of Agreement ranged from ±18.4 to 
±28.6 mmHg and narrowed with increasing cuff width, suggesting 
slightly greater individual-level precision in wider cuffs. Internal 
validation showed minimal overfitting and good model stability, 
as performance for each of the equations remained consistent 
between the development dataset and random bootstrapped 
samples. Accordingly, our data supports the clinical utility of these 
equations, as predictions fell within a practically acceptable range 

for prescribing BFR pressures and their performance appeared to be 
stable within our data.

Importantly, these equations are intended to estimate AOP 
for selecting cuff pressures to be used during exercise with BFR. 
Evidence indicates that exercising with pressures between 40% 
and 80% of AOP are effective in promoting training adaptations 
(Patterson et al., 2019) which represents a wide range of effective 
pressures that can be utilized. Given that some acute responses 
(e.g., pain, discomfort, blood pressure) and chronic adaptations 
(e.g., muscular vs. vascular changes) are pressure-dependent 
(Mouser et al., 2019; Patterson et al., 2019), the ability to estimate 
AOP precisely may be valuable. However, due to the observed 
Limits of Agreement, caution is warranted when selecting pressures 
at the extreme ends of the recommended pressure ranges when 
utilizing these equations. As such, when using these three prediction 
equations, we recommend using a more conservative target zone 
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(i.e., ∼45–70% of estimated AOP) to ensure actual exercising 
pressures remain within a safe and effective window. It is important 
to note that AOP can fluctuate over time within individuals, likely 
due in part to acute changes in hemodynamic variables such as 
blood pressure (Ingram et al., 2017). Our prediction equations 
may capture some of this variability by including blood pressure 
as a predictor; however, other transient physiological factors such 
as vessel size may also influence AOP (Vehrs et al., 2024) and 
are not accounted for in our models. While we have not directly 
tested the reliability of the equations across multiple time points 
with consistent blood pressure and thigh circumferences, we do not 
anticipate substantial changes in predictive accuracy provided that 
current values are measured and entered at each use. To account for 
temporal changes in AOP, it is essential that updated blood pressure 
and thigh circumference measurements are used each time BFR is
implemented.

To the best of our knowledge, these are the first internally 
validated prediction equations for estimating AOP across several 
cuff widths commonly utilized to implement exercise with 
BFR. They may offer a practical solution for practitioners and 
researchers lacking access to equipment for directly measuring 
AOP. Since limited equipment access is a frequently cited 
barrier to BFR use (Cuffe et al., 2022; Scott et al., 2024), these 
equations may help to enhance accessibility to BFR in variety of
settings.

Limitations

This study has several limitations that should be considered 
when interpreting the results. First, while internal validation did 
not suggest that our model was overly optimistic, we did not 
reach the a priori sample size needed to fully minimize optimism 
and ensure parameter precision in the 11 and 13 cm cuff width 
models. Second, while our prediction equations demonstrated 
good internal validity, they were not externally validated. As such, 
their generalizability to independent samples remains untested and 
should be confirmed in future work. Third, AOP and predictor 
variables were not measured under blinded conditions, and data 
collection was not standardized for time of day. These factors may 
have introduced measurement variability or bias. Fourth, the type 
of cuff used (material and inflation mechanism) was not identical 
between all three cuff widths evaluated making comparison of 
predictor variables across cuffs less consistent. Also, these cuffs may 
differ from other commercially available cuffs of the same width 
in material, bladder type and position, shape and contour, which 
could influence AOP and limit the generalizability of our equations 
to other devices. Fifth, although we aimed to increase female 
representation in our sample, we did not control for menstrual cycle 
phase, which may influence hemodynamic variables and thus affect 
the relationship between predictors and AOP. Finally, our models 
were developed using a relatively homogenous sample of young, 
healthy adults. We did not collect data on participants’ racial or 
ethnic backgrounds, which limits our ability to assess how these 
equations might perform across diverse populations or in clinical 
cohorts with varying health statuses. Importantly, the validity of 
our prediction equations is limited to individuals whose blood 
pressure and thigh circumference fall within the ranges observed 

in our sample. Therefore, caution is warranted when applying these 
equations to individuals with hypo- or hypertension, obesity, or 
other conditions associated with larger limb girth or abnormal 
limb composition. As these populations may face a higher risk of 
adverse events during BFR exercise, we do not recommend using 
our equations in such cases. Instead, more precise or validated 
methods of direct AOP determination should be used to set cuff 
pressure. Future research should aim to validate these equations 
in external, more diverse populations that better reflect those 
who may benefit most from BFR training and to assess their 
performance across different cuff types. These efforts are essential 
to fully establish the clinical utility and broader applicability of our
models.

Summary

For this study, we compared predictors of lower-limb AOP 
across commonly used BFR cuff widths (11, 13, 18 cm) and 
developed prediction equations to estimate AOP for each cuff. 
Our findings demonstrated that anthropometric and hemodynamic 
variables, particularly TC and SBP, are the primary determinants of 
AOP, with their relative influence varying by cuff width. Specifically, 
TC was a stronger predictor with narrower cuffs, while SBP became 
more influential with wider cuffs, underscoring the need to tailor 
methods for setting BFR cuff pressure to the width of cuff being 
used. The resulting prediction equations indicated good calibration, 
acceptable agreement with direct AOP measurements, and minimal 
overfitting, supporting their use as practical tools for estimating 
AOP when direction measurement is unavailable. To promote safety 
and effectiveness, we recommend applying a conservative target 
pressure range (e.g., ∼45–70% of estimated AOP) when using these 
equations. Finally, these results may help to improve accessibility 
to individualized BFR pressure prescription and facilitate broader 
implementation of BFR training in rehabilitation and sport training
settings.
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