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Introduction: Uterine fibroids are one of the most common benign tumors 
affecting the female reproductive system. In clinical practice, ultrasound imaging 
is widely used in the detection and monitoring of fibroids due to its accessibility 
and non-invasiveness. However, ultrasound images are often affected by 
inherent limitations, such as speckle noise, low contrast and image artifacts, 
which pose a substantial challenge to the precise segmentation of uterine 
fibroid lesions. To solve these problems, we propose a new multi-receptive 
attention fusion network with dual-path SE-enhancement module for uterine 
fibroid segmentation.
Methods: Specifically, our proposed network architecture is built upon a classic 
encoder-decoder framework. To enrich the contextual understanding within 
the encoder, we incorporate the multi-receptive attention fusion module 
(MAFM) at the third and fourth layers. In the decoding phase, we introduce 
the dual-scale attention enhancement module (DAEM), which operates on 
image representations at two different resolutions. Additionally, we enhance 
the traditional skip connection mechanism by embedding a dual-path squeeze-
and-excitation enhancement module (DSEEM).
Results and discussion: To thoroughly assess the performance and 
generalization capability of MAF-Net, we conducted an extensive series of 
experiments on the clinical dataset of uterine fibroids from Quzhou Hospital 
of Traditional Chinese Medicine. Across all evaluation metrics, MAF-Net 
demonstrated superior performance compared to existing state-of-the-art 
segmentation techniques. Notably, it achieved Dice of 0.9126, Mcc of 0.9089, 
Jaccard of 0.8394, Accuracy of 0.9924 and Recall of 0.9016. Meanwhile, we 
also conducted experiments on the publicly available ISIC-2018 skin lesion 
segmentation dataset. Despite the domain difference, MAF-Net maintained 
strong performance, achieving Dice of 0.8624, Mcc of 0.8156, Jaccard of 0.7652, 
Accuracy of 0.9251 and Recall of 0.8304. Finally, we performed a comprehensive 
ablation study to quantify the individual contributions of each proposed
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module within the network. The results confirmed the effectiveness of the 
multi-receptive attention fusion module, the dual-path squeeze-and-excitation 
enhancement module, and the dual-scale attention enhancement module.

KEYWORDS

image segmentation, uterine fibroid, multi-receptive attention fusion module, dualpath 
squeeze-and-excitation enhancement module, dual-scale attention enhancement 
module 

1 Introduction

Uterine fibroids are a common type of benign tumor that 
occurs within the uterus of women. Their incidence rate among 
women of childbearing age is as high as 70%–80% (Wang et al., 
2024). Traditionally, hysterectomy has always been the most 
commonly used treatment method. Although this method can 
completely eliminate uterine fibroids and prevent their recurrence, 
its operation process is highly invasive and often leads to irreversible 
physiological consequences. In recent years, advancements in non-
invasive therapeutic technologies have led to the emergence of high-
intensity focused ultrasound (HIFU) as a promising alternative. 
HIFU offers several clinical advantages, including targeted ablation 
of fibroids without incisions, reduced postoperative complications, 
shorter recovery times, and preservation of uterine function. 
Whether it is the traditional surgical therapy or the high-intensity 
focused ultrasound therapy, an accurate preoperative assessment 
of the characteristics (size, number and anatomical location) 
of uterine fibroids remains crucial. Among available diagnostic 
tools, ultrasound imaging stands out as the most accessible, 
cost-effective, and widely used technique for the detection and 
localization of uterine fibroids. However, achieving reliable and 
precise segmentation of fibroids from ultrasound images remains 
a significant challenge in clinical practice. Currently, segmentation 
tasks are predominantly performed manually by experienced 
radiologists or sonographers. This manual process is labor-intensive, 
time-consuming, and inherently subjective, with outcomes varying 
significantly based on individual expertise and interpretation. The 
complexity of automated segmentation arises from several intrinsic 
limitations of ultrasound imaging. Firstly, fibroids often exhibit 
low contrast relative to adjacent normal tissues. Secondly, fibroids 
usually occupy only a small portion of the imaging area. Thirdly, the 
significant differences in the shape, echo characteristics and spatial 
position among uterine fibroids.

In literature, various techniques have been explored to solve 
the problem of uterine fibroid segmentation in ultrasound images. 
Among them, Ni et al. (2015) introduced an approach that leverages 
a dynamic statistical shape model to enhance the segmentation 
accuracy of anatomical structures. Ni et al. (2016) developed a 
method that incorporates the correlation among multiple target 
shapes as a form of prior knowledge to guide the evolution of the 
active contour. Zhang et al. (2023) combined the advantages of 
the compression and activation module and the pyramid pooling 
module to enhance the feature representation in the task of 
uterine fibroid segmentation. Liu et al. (2025a) employed 3D V-
Net as the foundational architecture for their model, leveraging 
its strong capability in volumetric medical image segmentation. 
To enhance the training efficiency and guide the learning process 

more effectively, they incorporated a deep supervision strategy 
into the intermediate layers of the network. Lekshmanan Chinna 
and Pathrose Mary (2024) proposed an enhanced version of the 
bird flock optimization algorithm specifically tailored for the 
analysis of uterine fibroids. This improved algorithm was designed 
to more accurately extract relevant morphological and textural 
features. Cai et al. (2024) integrated MobileNetV2 with a generative 
adversarial network framework. This combination aimed to leverage 
MobileNetV2’s feature extraction capabilities while utilizing the 
generative power of generative adversarial network.

Furthermore, the rapid advancement of deep learning 
techniques in recent years has opened new avenues for 
improving the precision and reliability of automatic uterine 
fibroid segmentation. For instance, architectures such as attention 
mechanism (Zhou et al., 2025; Polattimur et al., 2025), multi-
scale feature extractors (Agarwal et al., 2024; Hu et al., 2025), and 
hybrid encoder-decoder frameworks (Kumar et al., 2022; Zhu et al., 
2025) have demonstrated significant potential in capturing complex 
anatomical structures and subtle boundary details. Among them, 
Ali and Xie, (2025) introduced a dynamic feature integration block 
designed to mitigate the semantic gap between the encoder and 
decoder stages in their network architecture. Zhang et al. (2025a) 
proposed the use of a shared global encoder to effectively capture 
consistent anatomical structures across varying input data. Li et al. 
(2025) proposed an interactive context aggregation module, which 
can solve the semantic inconsistency problem that often occurs 
when integrating multi-scale features. Huang and Xiao, (2025) 
introduced an advanced framework that combines efficient selective 
channel attention with a convolution-transformer fusion strategy. 
This mechanism selectively emphasizes informative channel-wise 
features while suppressing less relevant ones, thereby enhancing the 
network’s representational capacity. Liu et al. (2025b) proposed 
a multi-scale feature pyramid module, which incorporates an 
attention mechanism to enhance the model’s ability to focus on 
informative features across different spatial resolutions. Sun et al. 
(2025) introduced the multi-scale Mamba feature extraction block 
to enhance the network’s ability to capture rich and diverse features 
across multiple spatial resolutions. Deng et al. (2025) introduced a 
dual-branch convolutional boundary enhancement module aimed 
at improving the delineation of object edges in segmentation tasks. 
This module is composed of two parallel pathways: one dedicated 
to capturing semantic context, and the other focused on enhancing 
boundary-specific features. Xiao et al. (Xiao et al., 2025) proposed 
an enhanced network architecture that incorporates multi-level 
residual convolution within the skip connections to facilitate more 
effective feature propagation between the encoder and decoder. 
Ying et al. (2025) proposed a shape-supervised learning strategy 
aimed at enhancing the segmentation performance of ultrasound 
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images by guiding the network to better capture the structural 
characteristics of central muscle regions. Ahmed and Lasserre, 
(2025) introduced a weighted multiplication fusion module tailored 
for breast ultrasound image analysis, aiming to enhance the quality 
of feature representations by mitigating the impact of inherent 
speckle noise.

Inspired by the challenges in ultrasound-based fibroid 
segmentation, we propose a novel multi-receptive attention 
fusion network (MAF-Net), which integrates the strengths of 
multi-receptive attention fusion module, dual-scale attention 
enhancement module, and dual-path squeeze-and-excitation 
enhancement module. The major contributions are summarized 
as follows. 

1. The multi-receptive attention fusion module is embedded 
in the deeper layers of the encoder to improve contextual 
representation. By aggregating multi-scale receptive field 
information through attention mechanisms, this module 
enables the network to capture both global context and fine-
grained semantic cues.

2. The dual-scale attention enhancement module is introduced 
within the decoder to enhance segmentation accuracy by 
processing image features at two distinct resolutions. Through 
dual-scale attention operations, this module effectively 
balances the integration of high-resolution structural details 
and low-resolution semantic context.

3. The dual-path squeeze-and-excitation enhancement module 
is incorporated into the skip connection to strengthen 
feature transmission between the encoder and decoder. 
Unlike conventional skip connections, DSEEM refines both 
channel-wise and spatial feature responses via parallel 
squeeze-and-excitation pathways, facilitating richer and more 
discriminative feature fusion across network stages.

2 Methods

2.1 Overview of MAF-net

In this section, we provide a detailed description of the overall 
structure of MAF-Net. This network is based on the classic U-Net 
architecture and consists of encoder modules, decoder modules, 
and improved skip connections, as shown in Figure 1. In the 
encoder part, MAF-Net performs feature extraction and down-
sampling on the input ultrasound images layer by layer. The first two 
layers adopt a double-layer 3 × 3 convolution structure to extract 
basic features such as edge contours and textures. As the network 
becomes increasingly deep, the information density of the shallow 
layers gradually decreases, while the deep layers carry richer and 
more abstract semantic information. Therefore, we introduced the 
multi-receptive attention fusion module in the third and fourth 
layers of the encoder. Through the combination of different scale 
receptive fields and the weighted fusion of the attention mechanism, 
the model’s ability to perceive complex structures and blurred 
boundaries has been significantly enhanced. In the decoder, to fully 
integrate the feature information of different scales, we designed the 
dual-scale attention enhancement module. This module conducts 
parallel modeling of high-resolution and low-resolution image 

FIGURE 1
Architecture of MAF-Net.

features at each decoding stage, which not only retains the detailed 
features but also incorporates the macroscopic semantic context. To 
address the issues of low information utilization and poor semantic 
consistency in the traditional U-Net skip connection structure, 
we introduced the dual-path squeeze-and-excitation enhancement 
module, which integrates the dual-path attention mechanism. It 
adaptively adjusts the feature responses from both the channel and 
spatial dimensions, and also enhances the coupling between shallow 
and deep features. Finally, a 1 × 1 convolutional layer followed by a 
sigmoid activation function is applied to the final decoder output to 
generate the binary segmentation map.

2.2 Multi-receptive attention fusion 
module

To address the issues of limited receptive field and difficulty in 
capturing global context information in traditional convolutional 
methods, we designed the multi-receptive attention fusion module, 
whose structure is shown in Figure 2. In terms of the specific 
structure, the input features are first subjected to a 1 × 1 
convolution, which serves to reduce dimensionality and unify 
feature channels before further processing. Then, the resulting 
features are propagated through three distinct parallel branches, 
each of which performs a 3 × 3 convolution operation with 
different dilation rates, namely 1, 3, and 5. To further improve the 
discriminative power of the feature representation, we introduce a 
spatial attention mechanism (Cheng et al., 2022) in the first and 
third branches, as shown in Figure 3. In the second branch, the 
module introduces a channel attention mechanism (Cai et al., 2025), 
which is used to explore the dependencies between channels and 
generates a channel importance weight map, as shown in Figure 4. 
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FIGURE 2
Structure of multi-receptive attention fusion module.

It is worth noting that MAFM not only adopts a multi-scale 
parallel structure but also enhances the coupling between features 
through an information fusion strategy across branches. Before 
the second branch begins, the feature map is fused with the 
output of the first branch. Similarly, the third branch also fuses 
the outputs of the first and second branches. This mechanism 
not only enhances the correlation between features, but also 
improves the optimization behavior by addressing issues such as 
gradient vanishing. After that, the outputs of all three branches, 
along with the original input features from the main path, are 
aggregated through a unified fusion operation. In the final stage, 
to further refine the aggregated feature map, an additional spatial 
attention module is applied. Compared with the convolutional 
block attention module (CBAM), the MAFM introduces a more 
advanced mechanism by simultaneously leveraging spatial and 
channel attention in a complementary fashion. By introducing 
multi-scale dilated convolution, MAFM effectively expands the 
receptive field and can capture richer semantic information at 
different resolutions. Moreover, the architecture incorporates a 
cross-branch connection strategy to reduce the risk of network 
degradation. This design not only maintains the integrity of features 
between layers but also enhances the diversity and representational 
ability of feature extraction.

2.3 Dual-scale attention enhancement 
module

To enhance the feature restoration capability and semantic 
expression effect in the decoding stage, we designed a dual-scale 
attention enhancement module, as shown in Figure 5. Specifically, 
the DAEM starts with feature maps at two different scales: one 
is the original resolution feature map, and the other is its up-
sampling version, which provides a broader contextual view. 
The feature maps of these two scales are respectively input 
into the parallel 3 × 3 convolution operations. After the initial 
convolution processing is completed, the branches of the two 
scales respectively introduce the channel attention mechanism to 
explore the dependency relationships among different channels in 
the feature map. Subsequently, the feature maps before and after 
the attention mechanism processing are fused. This fusion can 

FIGURE 3
Structure of spatial attention mechanism.

retain the original structural information while incorporating the 
enhanced semantic features through attention. Next, the features 
of the two scales are further fused. This operation aims to achieve 
the collaborative modeling of local detail information in high-
resolution images and global context information in low-resolution 
images. The fused feature map is then subjected to a combination 
of two convolutions and two attention enhancement modules. 
In these two convolution-attention stages, the channel attention 
mechanism was first adopted, and the spatial attention mechanism 
was introduced in the second stage. Finally, the module outputs a 
high-quality feature map that integrates semantic information from 
multiple scales, channel dimensions, and spatial dimensions, which 
is used to guide the subsequent segmentation prediction. Similarly, 
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FIGURE 4
Structure of channel attention mechanism.

FIGURE 5
Structure of dual-scale attention enhancement module.

our DAEM is derived from concept of CBAM but introduces 
a significant advancement by processing the input image across 
multiple resolutions in parallel. This dual-scale strategy enables the 
module to simultaneously capture fine-grained local texture details 
and broader global contextual cues, which are both critical for 
accurate ultrasound image segmentation.

2.4 Dual-path squeeze-and-excitation 
enhancement module

To overcome the limitations of the traditional U-Net skip 
connection structure in terms of semantic consistency and feature 
transmission, we propose a dual-path squeeze-and-excitation 
enhancement module, as shown in Figure 6. This module takes 
the down-sampled features from the encoder (Input1) and the up-
sampled features from the decoder (Input2) as its inputs. Through 
the fusion of multiple paths and the reinforcement of the attention 
mechanism, it enhances the feature expression ability. Firstly, the 

feature maps output by the encoder are down-sampled to unify their 
scales, while the feature maps output by the decoder are up-sampled 
to match the size of the encoder. Subsequently, these two are fused 
in the channel dimension to form the basic feature representation 
of this module. Next, the fused features are input into two 
cascaded squeeze-and-excitation (SE) modules (Xiong et al., 2024; 
Wang et al., 2025) to introduce the channel attention mechanism. 
The SE mechanism compresses the spatial dimensions through 
global average pooling to establish the dependency relationships 
between channels, and uses fully connected layers and activation 
functions to generate precise channel weights, as shown in Figure 7. 
After the first SE module processing, the weight map is multiplied 
with the base features channel by channel to complete the first 
attention enhancement. Subsequently, this enhancement attention 
feature is input into the second SE module for further deep 
refinement, thereby completing the channel attention modeling in 
the second stage. To avoid possible information attenuation and 
gradient transmission obstacles during the attention operation, we 
introduced residual connections after each attention processing. 
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FIGURE 6
Structure of dual-path squeeze-and-excitation enhancement module.

FIGURE 7
Structure of squeeze-and-excitation module.

Finally, the fused feature map passes through a 3 × 3 convolution 
layer to further extract local features, and is deeply integrated with 
the first SE feature, the second SE feature, and the convolutional 
extracted features. Compared with the traditional SE module, 
which only captures channel-wise dependencies, and attention gate 
mechanisms that focus on spatial relevance, our proposed DSEEM 
integrates both types of attention across dual paths with different 
resolutions. Additionally, by incorporating dense connections, 
DSEEM allows for deeper semantic feature reuse, ensuring robust 
and discriminative feature representations especially suitable for 
challenging ultrasound scenarios.

2.5 Loss function

To evaluate the consistency between the predicted segmentation 
results and the true labels, we adopted Dice as the loss function 
(Fu et al., 2024; Zhang et al., 2024). The mathematical formula of 
Dice loss is given in Equation 1:

Ldice(y,p) = 1−
2∑N

i=1
piyi

∑N
i=1

yi +∑
N
i=1

pi

(1)

where N is the number of pixels, pi and yi are the true labels and 
predicted results. 

3 Experiments and results

3.1 Dataset

To comprehensively assess the segmentation performance and 
generalization capability of MAF-Net, we conducted experiments on 

two distinct datasets: a clinical ultrasound dataset of uterine fibroid 
collected from Quzhou Hospital of Traditional Chinese Medicine, 
and the publicly available ISIC-2018 skin lesion segmentation 
dataset (Codella et al., 2019). The visual examples of these datasets 
are illustrated in Figure 8. Given the inherent complexity of 
the MAF-Net architecture and the constraints imposed by GPU 
memory, all input images were uniformly resized to 256 × 256 
pixels. Furthermore, to guarantee the fairness and reproducibility 
of the evaluation, all experiments were conducted under identical 
experimental settings. The detailed summary of these datasets 
characteristics are provided in Table 1.

Uterine fibroid dataset: The dataset was sourced from Quzhou 
Hospital of Traditional Chinese Medicine and comprises a total 
of 1,484 high-resolution ultrasound images specifically capturing 
uterine fibroid cases. These images were acquired under real-world 
clinical diagnostic settings and reflect a broad spectrum of fibroid 
presentations in terms of size, shape, and anatomical location. To 
ensure the reliability and clinical relevance of the ground truth, 
all images were meticulously annotated by experienced medical 
professionals, with manual segmentation masks delineating the 
fibroid regions. For the purposes of training, validation, and 
performance evaluation, the dataset was systematically partitioned 
into three subsets. Specifically, 891 images were for training, 297 
images were for validation, and the remaining 296 images were 
designated as the independent testing.

ISIC-2018 dataset: In addition to the clinical ultrasound dataset, 
we also incorporated the ISIC-2018 skin lesion segmentation dataset 
to further validate the robustness and cross-domain generalization 
of our proposed method. This publicly available benchmark dataset 
contains a total of 3,694 dermoscopic images, each accompanied by 
high-quality ground truth masks that outline the lesion regions. To 
ensure a structured evaluation framework, the dataset was divided 
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FIGURE 8
Representative examples of uterine fibroid dataset and ISIC-2018 dataset. The first and second rows are images with their corresponding annotations 
on the uterine fibroid dataset. The third and fourth are images with their corresponding annotations on the ISIC-2018 dataset.

TABLE 1  Detailed summary of uterine fibroid dataset and 
ISIC-2018 dataset.

Dataset Number Training Validation Testing

Uterine 
fibroid dataset

1,484 891 297 296

ISIC-2018 
dataset

3,694 2,594 100 1,000

into three subsets: 2,594 were for training, 100 were for validation, 
and the remaining 1,000 were for testing. 

3.2 Implementation details

The training process of MAF-Net was implemented using the 
TensorFlow framework on a GeForce RTX 4090 GPU with 24 GB 
of memory. In our experiment, we employed the Adam optimizer 
(Li et al., 2023) and set its initial learning rate to 0.001. Each 
model was trained for 200 epochs with a batch size of 16. Figure 9 
illustrates the evolution of loss and accuracy metrics over the course 
of training and validation on two distinct datasets. The upper row 
presents results on the uterine fibroid dataset, where the loss curves 
show a rapid descent in the initial epochs followed by stable low 
values, indicating efficient minimization of the objective function. 
The close alignment between training and validation loss suggests 
that the model maintains good generalization without evidence of 
overfitting. In parallel, the accuracy curves demonstrate a sharp 
increase early in training, ultimately reaching a plateau above 

0.95, with minimal divergence between training and validation 
performance. The second row displays similar trends on the ISIC-
2018 dataset. Although the initial loss values differ due to dataset 
complexity, the overall trajectory also shows steady improvement, 
with smooth convergence and stable validation behavior. The 
accuracy curves rise consistently and maintain high levels above 
0.9, again confirming the model’s robustness and adaptability 
across varied segmentation domains. Figure 10 showcases the 
qualitative segmentation results produced by MAF-Net on the 
uterine fibroid dataset and the ISIC-2018 dataset. These visual 
results highlight the model’s ability to accurately delineate lesion 
boundaries and preserve structural details across different medical 
imaging modalities.

3.3 Evaluation indicators

To comprehensively evaluate the segmentation performance of 
MAF-Net and ensure a fair comparison with several well-established 
algorithms, we employed five widely metrics: Dice (Selvaraj and 
Nithiyaraj, 2023; Li et al., 2022), Mcc (Rainio et al., 2024; Zhu, 
2020), Jaccard (Yang et al., 2024; Yuan et al., 2024), Accuracy 
(Yang et al., 2025; Hu et al., 2025) and Recall (Zhang et al., 2025b; 
Xia et al., 2024). The formula for the Dice is shown in Equation 2, 
the formula for the Mcc is shown in Equation 3, the formula for 
the Jaccard is shown in Equation 4, the formula for the Accuracy 
is shown in Equation 5, and the formula for the Recall is shown
in Equation 6:

Dice = 2TP
2TP+ FN+ FP

(2)
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FIGURE 9
The loss and accuracy curves throughout the training and validation phases of our network. The first row is the results on the uterine fibroid dataset. 
The second is the results on the ISIC-2018 dataset.

Mcc = TP×TN− FP× FN

√(TP+ FN)(TP+ FP)(TN+ FN)(TN+ FP)
(3)

Jaccard = TP
TP+ FN+ FP

(4)

Accuracy = TP+TN
TP+TN+ FN+ FP

(5)

Recall = TP
TP+ FN

(6)

 

3.4 Ablation experiments

To further validate the effectiveness of each proposed module 
within the MFA-Net architecture, we conducted comprehensive 
ablation experiments on the uterine fibroid dataset. As summarized 
in Table 2, the Baseline model, which excludes all proposed 

enhancement modules, achieves Dice of 0.8993, Mcc of 0.8957, 
Jaccard of 0.8178, Accuracy of 0.9912, and Recall of 0.8712. 
When the multi-receptive attention fusion module is integrated 
into the Baseline, all five metrics show noticeable improvement, 
with the Dice increasing to 0.9076, the Mcc increasing to 0.9038, 
the Jaccard reaching to 0.8311, the Accuracy reaching to 0.9919, 
while the Recall reaching to 0.9014. This indicates that MAFM 
effectively enhances the network’s ability to capture multi-scale 
contextual information and refine feature attention. Similarly, 
incorporating the dual-scale attention enhancement module yields 
a moderate performance gain, pushing the Dice to 0.9044, the 
Mcc to 0.9003, the Jaccard to 0.8259, the Accuracy to 0.9916, 
and the Recall to 0.8956. This improvement suggests that DAEM 
contributes to more precise localization and boundary refinement 
by adaptively focusing on different spatial scales. Adding the dual-
path squeeze-and-excitation enhancement module also leads to a 
clear performance boost over the baseline, with Dice of 0.9071, 
Mcc of 0.9031, Jaccard of 0.8301, Accuracy of 0.9918 and Recall of 
0.8956. Most notably, when all three modules (MAFM + DAEM + 
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FIGURE 10
Results of MAF-Net on the uterine fibroid dataset and ISIC-2018 dataset. The first to third rows are images, their corresponding annotations and our 
segmentation masks on the uterine fibroid dataset. The last three rows are images, their corresponding annotations and our segmentation masks on 
the ISIC-2018 dataset.

DSEEM) are combined, the model achieves the highest performance 
across all metrics: Dice of 0.9126, Mcc of 0.9089, Jaccard of 
0.8394, Accuracy of 0.9924, and Recall of 0.9016. These results 
indicate that each module can bring about unique benefits, and 
their coordinated integration can achieve the best segmentation 
accuracy. Meanwhile, Table 2 also presents the parameters and 
running time when integrating each module into the basic 
network. Specifically, the baseline model starts with 2.06 million 
parameters and a per-step inference time of 45 ms, representing 
a lightweight architecture. After adding the MAFM module, the 
parameter count increases modestly to 2.41M, and the time per 
step rises slightly to 49 ms, suggesting that MAFM enhances 
feature representation with minimal computational overhead. In 
contrast, introducing DAEM leads to a more noticeable increase 
in inference time, from 45 ms to 103 ms, despite the parameter 
count only increasing to 2.62M. This indicates that although the 
DAEM module has a relatively compact structure, the operations 
it performs internally involve a high level of computational 
intensity. The inclusion of DSEEM increases the parameter count 
to 3.01M and inference time to 52 ms. Finally, the complete 

model incorporating MAFM + DAEM + DSEEM has the largest 
parameter size of 3.56M and a per-step time of 54 ms. Notably, 
even with all modules combined, the time increase relative to 
the baseline is only 9 ms, showing that the overall architecture 
maintains high computational efficiency while enabling stronger 
feature learning.

3.5 Comparative experiments

3.5.1 Experiments on the uterine fibroid dataset
To comprehensively evaluate the capability of MAF-Net 

on the uterine fibroid dataset, we carried out a series of 
experiments involving several methods. The benchmarked 
approaches include SE-U-Net (Jiang et al., 2021), CLNet 
(Zheng et al., 2021), RMAU-Net (Jiang et al., 2023), SegNet 
(Badrinarayanan et al., 2017), SSA-UNet (Jiang et al., 2024), 
and AttUNet (Oktay et al., 2018). The quantitative assessment 
of the five key indicators are summarized in Table 3. Among 
the evaluated models, SE-U-Net and CLNet record the lowest 
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TABLE 2  Ablation experiments on the uterine fibroid dataset.

Method Dice Mcc Jaccard Accuracy Recall Parameter (M) Time (ms/step)

Baseline 0.8993 0.8957 0.8178 0.9912 0.8712 2.06 45

Baseline + MAFM 0.9076 0.9038 0.8311 0.9919 0.9014 2.41 49

Baseline + DAEM 0.9044 0.9003 0.8259 0.9916 0.8956 2.62 103

Baseline + DSEEM 0.9071 0.9031 0.8301 0.9918 0.9013 3.01 52

Baseline + MAFM + DAEM + DSEEM 0.9126 0.9089 0.8394 0.9924 0.9016 3.56 54

TABLE 3  Comparative experiments on the uterine fibroid dataset.

Method Dice Mcc Jaccard Accuracy Recall

SE-U-Net (Jiang et al., 2021) 0.8170 0.8113 0.6914 0.9912 0.8808

CLNet (Zheng et al., 2021) 0.8350 0.8287 0.7172 0.9906 0.8644

RMAU-Net (Jiang et al., 2023) 0.8686 0.8633 0.7685 0.9905 0.8746

SegNet (Badrinarayanan et al., 2017) 0.8558 0.8509 0.7498 0.9888 0.8336

SSA-UNet (Jiang et al., 2024) 0.8486 0.8429 0.7379 0.9909 0.8695

AttUNet (Oktay et al., 2018) 0.8786 0.8736 0.7840 0.9917 0.8720

MAF-Net 0.9126 0.9089 0.8394 0.9924 0.9016

performance, with Dice of 81.70% and 83.50%, Mcc of 81.13% 
and 82.87%, Jaccard of 69.14% and 71.72%, Accuracy of 0.9912 
and 0.9906, Recall of 0.8808 and 0.8644. These results suggest 
a limited capacity in capturing complex lesion boundaries and 
spatial details, likely due to inadequate contextual modeling. 
Slightly outperforming CLNet, SSA-UNet and SegNet report 
moderate improvements but still fall short of competitive accuracy 
Notably, RMAU-Net and AttUNet exhibit more competitive 
performance, with Dice coefficients of 86.86% and 87.86%, 
respectively. The integration of residual learning and attention 
mechanisms in these models contributes to more refined feature 
representations and improved lesion delineation. Despite these 
strong performances, the proposed MAF-Net surpasses all 
competing approaches, attaining the highest segmentation accuracy 
across all evaluation criteria: Dice of 91.26%, Mcc of 90.89%, 
Jaccard of 83.94%, Accuracy of 0.9924 and Recall of 0.9016. 
This superior performance can be attributed to MAF-Net’s well-
crafted architectural design, which synergistically combines the 
multi-receptive attention fusion module, dual-scale attention 
enhancement module, and dual-path squeeze-and-excitation
enhancement module.

Figure 11 illustrates the qualitative comparison results on 
the uterine fibroid dataset across several state-of-the-art models. 
The first and second columns display the original ultrasound 
images and their corresponding ground truth annotations. The 
subsequent columns present the predicted segmentation masks 
generated by SE-U-Net, CLNet, RMAU-Net, SegNet, SSA-UNet, 

AttUNet, and the proposed MAF-Net. Among all models, SE-U-
Net and CLNet demonstrate the least satisfactory performance. 
Its predictions are often incomplete, with fragmented and under-
segmented regions that fail to align with the actual fibroid 
boundaries. SSA-UNet and SegNet show modest improvements, 
yet their segmentations still suffer from noise, discontinuities, 
and misaligned contours. RMAU-Net and AttUNet produce more 
coherent results, with better overall shape conformity and partial 
boundary accuracy. However, in several instances, their masks 
remain either overly smooth or slightly under-extended. In 
comparison, the proposed MAF-Net consistently achieves the most 
accurate and complete segmentation across all test samples. It 
excels at delineating fibroid regions with clear, smooth contours 
that closely match the ground truth. Overall, the qualitative 
results in Figure 11 clearly highlight MAF-Net’s advantage in 
capturing fine-grained structural details while maintaining high 
segmentation fidelity.

3.5.2 Experiments on the ISIC-2018 dataset
Table 4 provides a detailed quantitative comparison of MAF-

Net with several contemporary segmentation networks on the ISIC-
2018 dataset. Among all methods evaluated, MAF-Net achieves the 
highest performance across all metrics, attaining Dice of 86.24%, 
Mcc of 81.56%, Jaccard of 76.52%, Accuracy of 0.9251 and recall 
of 0.8304. In contrast, SegNet yields the lowest performance, 
with Dice, Mcc, Jaccard, Accuracy and Recall of 81.73%, 75.02%, 
69.50%, 91.07% and 82.97, respectively. This performance gap 
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FIGURE 11
Qualitative comparison on the uterine fibroid dataset. The first to second rows are images and their corresponding annotations. The third to last are 
results of SE-U-Net, CLNet, RMAU-Net, SegNet, SSA-UNet, AttUNet and MAF-Net.

indicates significant limitations in its ability to capture intricate 
lesion details. Other models, such as SE-U-Net, CLNet, and 
RMAU-Net, deliver marginally better results, with Dice values 
close to 83.5% and Jaccard scores ranging between 72.17% and 
72.27%. SSA-UNet achieves slightly improved results, reaching 
Dice of 84.00%, Mcc of 78.08%, Jaccard of 73.03%, Accuracy 
of 91.51% and Recall of 82.93%. However, the segmentation 
accuracy remains inferior to MAF-Net, particularly in terms of 
overlap with ground truth. Similarly, AttUNet performs well in 
utilizing the attention mechanism, but its Dice score is only 
82.88% and fails to achieve competitive Jaccard, Mcc, Accuracy 
and Recall. To visually corroborate the numerical evaluation, 
Figure 12 presents a qualitative comparison of segmentation 
results across the same models. Visual inspection reveals that 
SegNet frequently produces coarse or overly smoothed masks. 
Predictions from SE-U-Net, CLNet, and RMAU-Net are more 
refined but still exhibit noise and partial under-segmentation 
in several cases. The SSA-UNet and AttUNet can generate 
clearer segmentation maps, but they still have shortcomings in 
terms of boundary clarity and sensitivity to small or irregular 

structures. By comparison, MAF-Net consistently produces precise 
and complete masks that closely match the annotated regions. 
In summary, both the quantitative results in Table 4 and the 
visual comparisons in Figure 12 confirm the effectiveness of 
MAF-Net in skin lesion segmentation. It not only outperforms 
existing architectures in metric-based evaluation but also exhibits 
superior visual quality and lesion localization in complex real-
world cases.

3.5.3 Experiments of dilation rate in the MAFM
To investigate the impact of different dilation rate combinations 

within the multi-receptive attention fusion module, we conducted a 
comprehensive set of experiments on the uterine fibroid dataset, 
as summarized in Table 5. Among all tested configurations, 
the dilation rate combination of (1, 3, 5) achieved the highest 
overall performance, with Dice of 0.9126, Mcc of 0.9089, 
Jaccard of 0.8394 and Accuracy of 0.9924, outperforming other 
settings across multiple evaluation metrics. Specifically, the 
dilation rate of 1 enables the model to capture fine-grained 
spatial details, while dilation rates of 3 and 5 effectively 
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TABLE 4  Comparative experiments on the ISIC-2018 dataset.

Method Dice Mcc Jaccard Accuracy Recall

SE-U-Net (Jiang et al., 2021) 0.8333 0.7749 0.7227 0.9201 0.8287

CLNet (Zheng et al., 2021) 0.8354 0.7765 0.7226 0.9139 0.8239

RMAU-Net (Jiang et al., 2023) 0.8352 0.7764 0.7217 0.9200 0.8213

SegNet (Badrinarayanan et al., 2017) 0.8173 0.7502 0.6950 0.9107 0.8279

SSA-UNet (Jiang et al., 2024) 0.8400 0.7808 0.7303 0.9151 0.8293

AttUNet (Oktay et al., 2018) 0.8288 0.7653 0.7121 0.9125 0.8199

MAF-Net 0.8624 0.8156 0.7652 0.9251 0.8304

FIGURE 12
Qualitative comparison on the ISIC-2018 dataset. The first to second rows are images and their corresponding annotations. The third to last are results 
of SE-U-Net, CLNet, RMAU-Net, SegNet, SSA-UNet, AttUNet and MAF-Net.

expand the receptive field to aggregate multi-scale contextual 
information without causing gridding artifacts or excessive 
sparsity in the feature map. Compared to larger dilation 

combinations (e.g (1, 3, 8) or (1, 4, 8)) (1, 3, 5) avoids over-
dilated convolutions that may result in missing critical structure 
boundaries, as reflected in their lower performance scores. 
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TABLE 5  Experiments of dilation rate in the MAFM on the uterine 
fibroid dataset.

Dilation 
rate

Dice Mcc Jaccard Accuracy Recall

(1, 2, 3) 0.9106 0.9067 0.8361 0.9922 0.9066

(1, 2, 4) 0.9100 0.9062 0.8350 0.9922 0.9065

(1, 2, 5) 0.9086 0.9047 0.8327 0.9920 0.9080

(1, 2, 6) 0.9124 0.9087 0.8392 0.9924 0.9085

(1, 2, 7) 0.9088 0.9049 0.8331 0.9920 0.9122

(1, 2, 8) 0.9093 0.9055 0.8340 0.9921 0.8960

(1, 3, 4) 0.9080 0.9042 0.8318 0.9918 0.9253

(1, 3, 5) 0.9126 0.9089 0.8394 0.9924 0.9016

(1, 3, 6) 0.9082 0.9044 0.8321 0.9919 0.8995

(1, 3, 7) 0.9075 0.9038 0.8311 0.9920 0.8905

(1, 3, 8) 0.9020 0.8985 0.8228 0.9915 0.8779

(1, 4, 5) 0.9111 0.9074 0.8370 0.9923 0.9039

(1, 4, 6) 0.9087 0.9048 0.8329 0.9919 0.9108

(1, 4, 7) 0.9073 0.9037 0.8307 0.9920 0.8833

(1, 4, 8) 0.9061 0.9023 0.8285 0.9919 0.8921

(1, 5, 6) 0.9064 0.9028 0.8295 0.9919 0.8915

(1, 5, 7) 0.9116 0.9080 0.8378 0.9924 0.8966

(1, 5, 8) 0.9099 0.9061 0.8349 0.9921 0.9108

(1, 6, 7) 0.9085 0.9047 0.8326 0.9920 0.9036

(1, 6, 8) 0.9070 0.9031 0.8302 0.9918 0.8961

(1, 7, 8) 0.9033 0.8994 0.8242 0.9915 0.8965

Therefore, the selection of (1, 3, 5) is empirically justified 
and demonstrates a well-rounded ability to integrate multi-
scale features.

3.5.4 Experiments of path selection in the DSEEM
To validate the effectiveness of the dual-path design in the dual-

path squeeze-and-excitation enhancement module, we conducted 
comparative experiments under three different configurations: (1) 
dual-path, (2) single-path using Input1 only, and (3) single-
path using Input2 only. The quantitative results on the uterine 
fibroid dataset are summarized in Table 6. Among the three 
configurations, the dual-path variant achieved the best overall 
performance, with Dice of 0.9126, Mcc of 0.9089, Jaccard of 
0.8394, Accuracy of 0.9924, and Recall of 0.9016. These results 
clearly demonstrate that simultaneously incorporating both feature 
streams (Input1 and Input2) enables more comprehensive and 

TABLE 6  Experiments of path selection in the DSEEM on the uterine 
fibroid dataset.

Path 
selection

Dice Mcc Jaccard Accuracy Recall

dual-path 0.9126 0.9089 0.8394 0.9924 0.9016

Single-path 
(Input1)

0.7474 0.7380 0.5979 0.9793 0.7186

Single-path 
(Input2)

0.8888 0.8844 0.8005 0.9904 0.8726

complementary feature representation. In contrast, the single-path 
(Input1) configuration resulted in significantly lower performance 
across all metrics, with Dice dropping to 0.7474 and Jaccard to 
0.5979, suggesting that this path alone lacks sufficient contextual 
or semantic information to accurately localize lesion regions. The 
single-path (Input2) setting performed moderately better, with 
Dice of 0.8888 and Jaccard of 0.8005, but still failed to match 
the performance of the dual-path design. This result indicates 
that while Input2 carries more informative or higher-level features 
than Input1, it still benefits significantly from the complementary 
support of the other pathway. Overall, these findings confirm 
that the dual-path architecture in DSEEM is not merely additive, 
but effectively leverages multi-level feature fusion to enhance the 
network’s capacity in learning discriminative and semantically rich 
representations.

3.5.5 Experiments of optimizer selection
To explore the impact of different optimization strategies 

on MAF-Net, we conducted a comparative experiment using 
five commonly used optimizers on the uterine fibroid dataset, 
as shown in Table 7. Among all the tested optimizers, Adam 
performed the best overall, with Dice of 91.26%, Mcc of 90.89%, 
Jaccard of 83.94%, Accuracy of 99.24, and recall of 90.16%. These 
results indicate that Adam’s ability to dynamically adjust the learning 
rate for each parameter during the training process is particularly 
outstanding, which helps accelerate the convergence speed and 
make the optimization process more stable. The performance of 
RMSprop is also excellent, with Dice of 90.74%, Mcc of 90.35%, 
Jaccard of 83.09%, Accuracy of 99.19%, and Recall of 89.44%. 
Although it is close to Adam in terms of segmentation accuracy, 
its slightly inferior performance may be attributed to the slightly 
poorer balance effect in terms of convergence speed and stability 
when dealing with different feature scales. Adamax is a variant 
of Adam based on the infinity norm, with Dice of 89.39%, Mcc 
of 88.98%, Jaccard of 80.92%, Accuracy of 99.08% and 88.00%. 
Although it retains many of the advantages of Adam, its sensitivity 
to rare gradients is relatively low, which may lead to poor 
parameter update effects in tasks requiring fine spatial details. 
Adagrad is an optimizer that dynamically adjusts the learning 
rate based on the frequency of parameter updates. However, its 
performance is significantly inferior, with Dice of 79.34%, Mcc 
of 79.68%, Jaccard of 66.42%, 98.37% and 67.90%. SGD is the 
most basic optimizer tested, and its results are clearly the worst. 
The Dice is 31.05%, the Mcc is 29.10%, while the Jaccard is 
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TABLE 7  Experiments of optimizer selection on the uterine fibroid dataset.

Optimizer Dice Mcc Jaccard Accuracy Recall

Adam 0.9126 0.9089 0.8394 0.9924 0.9016

Adagrad 0.7934 0.7968 0.6642 0.9837 0.6790

Adamax 0.8939 0.8898 0.8092 0.9908 0.8800

RMSprop 0.9074 0.9035 0.8309 0.9919 0.8944

SGD 0.3105 0.2910 0.1848 0.9124 0.4733

only 18.48%. Therefore, for the segmentation framework of the 
uterine fibroid dataset, Adam is undoubtedly the most effective 
optimizer.

3.5.6 Experiments of computational efficiency
As presented in Table 8, we evaluate the computational 

efficiency of MAF-Net in comparison with these models. Among 
all models, SE-U-Net exhibits the smallest parameter count 
(1.87 M) and fastest inference speed (42 ms/step), reflecting its 
lightweight design. However, its simplicity may come at the 
cost of limited feature representation capacity. Although CLNet 
is highly functional, it has the largest number of parameters 
(7.73 M), and due to its optimized architecture, its inference time 
remains relatively efficient (50 ms/step). In contrast, AttUNet has 
an even larger model size (8.49 M) and a slower inference time 
(61 ms/step), highlighting the computational burden introduced 
by attention mechanisms when not efficiently designed. RMAU-
Net and SSA-UNet present moderate parameter sizes (2.27 M 
and 2.33 M), yet RMAU-Net’s inference time reaches 62 ms/step, 
likely due to recursive or multi-scale operations, while SSA-UNet 
maintains a more balanced runtime of 48 ms/step. Compared to 
these models, our MAF-Net strikes a favorable balance between 
complexity and speed. With 3.56M parameters, it achieves 
an inference time of 54 ms/step, which is significantly lower 
than that of AttUNet and RMAU-Net. In summary, MAF-Net 
demonstrates competitive computational efficiency, offering a 
good trade-off between model size, runtime performance, and 
segmentation accuracy.

3.6 Limitations

Figure 13 presents several failure cases from the uterine 
fibroid dataset of the proposed MAF-Net. In some cases (e.g., 
columns 2 and 3), the predicted masks are noticeably larger 
than the ground truth annotations, indicating over-segmentation. 
This may be attributed to blurred lesion boundaries or low-
contrast regions in the ultrasound images, which confuse the model 
and lead it to mistakenly include surrounding normal tissues. 
Conversely, under-segmentation is evident in columns 1 and 4, 
where the model identifies only a small portion of the lesion 
or fails to detect it almost entirely. This typically occurs when 
the lesion is small, indistinct from the background, or has poor 
contrast, making it difficult for the network to capture complete 

TABLE 8  Experiments of computational efficiency on the uterine 
fibroid dataset.

Method Parameter (M) Time (ms/step)

SE-U-Net (Jiang et al., 2021) 1.87 42

CLNet (Zheng et al., 2021) 7.73 50

RMAU-Net (Jiang et al., 
2023)

2.27 62

SegNet 
(Badrinarayanan et al., 2017)

2.80 48

SSA-UNet (Jiang et al., 2024) 2.33 48

AttUNet (Oktay et al., 2018) 8.49 61

MAF-Net 3.56 54

contextual information. Mis-segmentation is observed in cases 
such as columns 5, 6, and 7, where the predicted regions are 
significantly misaligned with the actual lesion locations. These 
failures may result from the presence of structures with similar 
textures or intensities, which mislead the model into segmenting 
anatomically irrelevant regions. Overall, these cases highlight the 
challenges posed by low-contrast lesions, boundary ambiguity, and 
anatomical variability in ultrasound images. In the future, we 
will introduce boundary perception mechanisms, enhance multi-
scale feature extraction, or utilize auxiliary supervision to further 
improve the robustness and accuracy of MAF-Net in complex 
scenarios.

4 Conclusion

In this study, we proposed the MAF-Net deep learning 
framework, which was specifically designed for precise 
segmentation of uterine fibroids in ultrasound imaging. Specifically, 
by utilizing a unified encoder-decoder architecture, MAF-Net 
combined the multi-receptive attention fusion module, the 
dual-path squeeze-and-excitation enhancement module, and 
the dual-scale attention enhancement module, enabling it to 
effectively handle the inherent noise, boundary blurring, and 
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FIGURE 13
Failure cases from the uterine fibroid dataset. The first and second rows are images with their corresponding annotations on the uterine fibroid dataset. 
The third row is the results of MAF-Net.

scale variations in clinical ultrasound data. Extensive validation 
on the real-world uterine fibroid dataset demonstrated that 
MAF-Net consistently outperforms existing models in key 
performance metrics. The evaluation on the ISIC-2018 dataset 
further confirmed its strong generalization ability. Additionally, 
ablation studies emphasized the synergy of each architectural 
module, which collectively enhanced the accuracy and robustness. 
Overall, MAF-Net provided a reliable, accurate, and clinically 
applicable automatic segmentation solution for the ultrasound
diagnostic workflow.

Data availability statement

The raw data supporting the conclusions of this article will be 
made available by the authors, without undue reservation.

Author contributions

YJ: Methodology, Validation, Writing – original draft. QZ: 
Supervision, Writing – original draft. HZ: Conceptualization, 
Investigation, Writing – review and editing. XD: Formal Analysis, 
Visualization, Writing – review and editing. 

Funding

The author(s) declare that financial support was received for 
the research and/or publication of this article. This work was 
supported by the National Natural Science Foundation of China 

(No. 62102227), the Joint Fund of Zhejiang Provincial Natural 
Science Foundation of China (No. ZCLTGS24E0601), the Science 
and Technology Major Projects of Quzhou (No. 2022K128).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of 
the authors and do not necessarily represent those of their 
affiliated organizations, or those of the publisher, the editors 
and the reviewers. Any product that may be evaluated in this 
article, or claim that may be made by its manufacturer, is not 
guaranteed or endorsed by the publisher.

Frontiers in Physiology 15 frontiersin.org

https://doi.org/10.3389/fphys.2025.1659098
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Jiang et al. 10.3389/fphys.2025.1659098

References

Agarwal, R., Ghosal, P., Sadhu, A. K., Murmu, N., and Nandi, D. (2024). Multi-scale 
dual-channel feature embedding decoder for biomedical image segmentation. Comput. 
Methods Programs Biomed. 257, 108464. doi:10.1016/j.cmpb.2024.108464

Ahmed, M. R., and Lasserre, P. (2025). FusionSegNet: a hierarchical multi-
axis attention and gated feature fusion network for breast lesion segmentation 
with uncertainty modeling in ultrasound imaging. Inf. Fusion 124, 103399. 
doi:10.1016/j.inffus.2025.103399

Ali, H., and Xie, J. (2025). DFIT-Net: a novel dynamic feature integration transformer 
for automatic segmentation of multi-organ structures in medical imaging. Displays 90, 
103087. doi:10.1016/j.displa.2025.103087

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). SegNet: a deep convolutional 
encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. 
Intell. 39, 2481–2495. doi:10.1109/TPAMI.2016.2644615

Cai, P., Yang, T., Xie, Q., Liu, P., and Li, P. (2024). A lightweight hybrid model for the 
automatic recognition of uterine fibroid ultrasound images based on deep learning. J. 
Clin. Ultrasound 52, 753–762. doi:10.1002/jcu.23703

Cai, S., Jiang, Y., Xiao, Y., Zeng, J., and Zhou, G. (2025). TransUMobileNet: 
integrating multi-channel attention fusion with hybrid CNN-transformer architecture 
for medical image segmentation. Biomed. Signal Process. Control 107, 107850. 
doi:10.1016/j.bspc.2025.107850

Cheng, Z., Qu, A., and He, X. (2022). Contour-aware semantic segmentation network 
with spatial attention mechanism for medical image. Vis. Comput. 38, 749–762. 
doi:10.1007/s00371-021-02075-9

Codella, N., Rotemberg, V., Tschandl, P., Celebi, M. E., Dusza, S., Gutman, D., et al. 
(2019). Skin lesion analysis toward melanoma detection 2018: a challenge hosted by the 
international skin imaging collaboration (ISIC). arXiv preprint. arXiv:1902.03368.

Deng, L., Wang, W., Chen, S., Yang, X., Huang, S., and Wang, J. (2025). 
PDS-UKAN: subdivision hopping connected to the U-KAN network for 
medical image segmentation. Comput. Med. Imaging Graph. 124, 102568. 
doi:10.1016/j.compmedimag.2025.102568

Fu, L., Chen, Y., Ji, W., and Yang, F. (2024). SSTrans-Net: smart swin transformer 
network for medical image segmentation. Biomed. Signal Process. Control 91, 106071. 
doi:10.1016/j.bspc.2024.106071

Hu, S., Tao, X., and Zhao, X. (2025). MCANet: feature pyramid network with multi-
scale convolutional attention and aggregation mechanisms for semantic segmentation. 
J. Vis. Commun. Image Represent. 110, 104466. doi:10.1016/j.jvcir.2025.104466

Hu, M., Dong, Y., Li, J., Jiang, L., Zhang, P., and Ping, Y. (2025). 
LAMFFNet: lightweight adaptive multi-layer feature fusion network for 
medical image segmentation. Biomed. Signal Process. Control 103, 107456. 
doi:10.1016/j.bspc.2024.107456

Huang, W., and Xiao, H. (2025). AESC-TransUnet: attention enhanced selective 
channel transformer U-Net for medical image segmentation. Signal Image Video Process
19, 710. doi:10.1007/s11760-025-04311-4

Jiang, L. Y., Kuo, C. J., Tang-Hsuan, O., Hung, M. H., and Chen, C. C. (2021). SE-
U-Net: contextual segmentation by loosely coupled deep networks for medical imaging 
industry. In: Asian conference on intelligent information and database systems. New 
York, NY: Springer. p. 678–691. doi:10.1007/978-3-030-73280-6_54

Jiang, L., Ou, J., Liu, R., Zou, Y., Xie, T., Xiao, H., et al. (2023). RMAU-Net: residual 
multi-scale attention u-net for liver and tumor segmentation in CT images. Comput. 
Biol. Med. 158, 106838. doi:10.1016/j.compbiomed.2023.106838

Jiang, S., Chen, X., and Yi, C. (2024). SSA-UNet: whole brain segmentation by U-Net 
with squeeze‐and‐excitation block and self‐attention block from the 2.5 D slice image. 
IET Image Process 18, 1598–1612. doi:10.1049/ipr2.13052

Kumar, A., Ghosal, P., Kundu, S. S., Mukherjee, A., and Nandi, D. (2022). 
A lightweight asymmetric U-Net framework for acute ischemic stroke lesion 
segmentation in CT and CTP images. Comput. Methods Programs Biomed. 226, 107157. 
doi:10.1016/j.cmpb.2022.107157

Lekshmanan Chinna, M., and Pathrose Mary, J. P. (2024). Efficient feature extraction 
and hybrid deep learning for early identification of uterine fibroids in ultrasound 
images. Int. J. Imaging Syst. Technol. 34, e23073. doi:10.1002/ima.23073

Li, Y., Zhang, Y., Liu, J. Y., Wang, K., Zhang, K., Zhang, G. S., et al. (2023). 
Global transformer and dual local attention network via deep-shallow hierarchical 
feature fusion for retinal vessel segmentation. IEEE Trans. Cybern. 53, 5826–5839. 
doi:10.1109/TCYB.2022.3194099

Li, B., Li, W., Wang, B., Liu, Z., Huang, J., Wang, J., et al. (2025). SECNet: spatially 
enhanced channel-shuffled network with interactive contextual aggregation for medical 
image segmentation. Expert Syst. Appl. 290, 128409. doi:10.1016/j.eswa.2025.128409

Liu, Z., Sun, C., Li, C., and Lv, F. (2025a). 3D segmentation of uterine fibroids 
based on deep supervision and an attention gate. Front. Oncol. 15, 1522399. 
doi:10.3389/fonc.2025.1522399

Liu, S., Wang, H., Lin, Y., Jin, X., Wang, Y., and Cheng, Y. (2025b). Context-aware 
network with enhanced local information for medical image segmentation. Pattern 
Anal. Appl. 28, 122. doi:10.1007/s10044-025-01496-9

Ni, B., He, F., and Yuan, Z. (2015). Segmentation of uterine fibroid ultrasound images 
using a dynamic statistical shape model in HIFU therapy. Comput. Med. Imaging Graph.
46, 302–314. doi:10.1016/j.compmedimag.2015.07.004

Ni, B., He, F. Z., Pan, Y. T., and Yuan, Z. Y. (2016). Using shapes correlation for active 
contour segmentation of uterine fibroid ultrasound images in computer-aided therapy. 
Appl. Math. J. Chin. Univ. 31, 37–52. doi:10.1007/s11766-016-3340-0

Oktay, O., Schlemper, J., Folgoc, L. L., Lee, M., Heinrich, M., Misawa, K., et al. 
(2018). Attention U-Net: learning where to look for the pancreas. arXiv Preprint. arXiv 
1804.03999. doi:10.48550/arXiv.1804.03999

Polattimur, R., Yıldırım, M. S., and Dandıl, E. (2025). Fractal-based architectures with 
skip connections and attention mechanism for improved segmentation of MS lesions in 
cervical spinal cord. Diagnostics 15, 1041. doi:10.3390/diagnostics15081041

Rainio, O., Teuho, J., and Klén, R. (2024). Evaluation metrics and statistical tests for 
machine learning. Sci. Rep. 14, 6086. doi:10.1038/s41598-024-56706-x

Selvaraj, A., and Nithiyaraj, E. (2023). CEDRNN: a convolutional encoder-decoder 
residual neural network for liver tumour segmentation. Neural process. Lett. 55, 
1605–1624. doi:10.1007/s11063-022-10953-z

Sun, J., Chen, K., Wu, X., Xu, Z., Wang, S., and Zhang, Y. (2025). MSM-UNet: 
a medical image segmentation method based on wavelet transform and multi-scale 
Mamba-UNet. Expert Syst. Appl. 288, 128241. doi:10.1016/j.eswa.2025.128241

Wang, T., Wen, Y., and Wang, Z. (2024). nnU-Net based segmentation and 3D 
reconstruction of uterine fibroids with MRI images for HIFU surgery planning. BMC 
Med. Imaging 24, 233. doi:10.1186/s12880-024-01385-3

Wang, Y., Bian, Y., and Jiang, S. (2025). PSE: enhancing structural contextual 
awareness of networks in medical imaging with permute squeeze-and-excitation 
module. Biomed. Signal Process. Control 100, 107052. doi:10.1016/j.bspc.2024.107052

Xia, F., Peng, Y., Wang, J., and Chen, X. (2024). A 2.5 D multi-path fusion network 
framework with focusing on z-axis 3D joint for medical image segmentation. Biomed. 
Signal Process. Control 91, 106049. doi:10.1016/j.bspc.2024.106049

Xiao, L., Liu, Y., and Fan, C. (2025). Attention-enhanced separable residual 
with dilation net for medical image segmentation. Neurocomputing 641, 130434. 
doi:10.1016/j.neucom.2025.130434

Xiong, L., Yi, C., Xiong, Q., and Jiang, S. (2024). SEA-NET: medical image 
segmentation network based on spiral squeeze-and-excitation and attention modules. 
BMC Med. Imaging 24 (17), 17. doi:10.1186/s12880-024-01194-8

Yang, M. Y., Shen, Q. L., Xu, D. T., Sun, X. L., and Wu, Q. B. (2024). Striped WriNet: 
automatic wrinkle segmentation based on striped attention module. Biomed. Signal 
Process. Control 90, 105817. doi:10.1016/j.bspc.2023.105817

Yang, L., Dong, Q., Lin, D., Tian, C., and Lü, X. (2025). MUNet: a novel framework 
for accurate brain tumor segmentation combining UNet and mamba networks. Front. 
Comput. Neurosci. 19, 1513059. doi:10.3389/fncom.2025.1513059

Ying, Y., Fang, X., Zhao, Y., Zhao, X., Zhou, Y., Du, G., et al. (2025). SAM-MyoNet: 
a fine-grained perception myocardial ultrasound segmentation network based on 
segment anything model with prior knowledge driven. Biomed. Signal Process. Control
110, 108117. doi:10.1016/j.bspc.2025.108117

Yuan, H., Chen, L., and He, X. (2024). MMUNet: morphological feature 
enhancement network for colon cancer segmentation in pathological images. Biomed. 
Signal Process. Control 91, 105927. doi:10.1016/j.bspc.2023.105927

Zhang, J., Liu, Y., Chen, L., Ma, S., Zhong, Y., He, Z., et al. (2023). DARU-Net: a dual 
attention residual u-net for uterine fibroids segmentation on MRI. J. Appl. Clin. Med. 
Phys. 24, e13937. doi:10.1002/acm2.13937

Zhang, D., Wang, C., Chen, T., Chen, W., and Shen, Y. (2024). Scalable swin 
transformer network for brain tumor segmentation from incomplete MRI modalities. 
Artif. Intell. Med. 149, 102788. doi:10.1016/j.artmed.2024.102788

Zhang, R., Xie, M., and Liu, Q. (2025a). CFRA-Net: fusing coarse-to-fine refinement 
and reverse attention for lesion segmentation in medical images. Biomed. Signal Process. 
Control 109, 107997. doi:10.1016/j.bspc.2025.107997

Zhang, W., Qu, S., and Feng, Y. (2025b). LMFR-Net: lightweight multi-scale feature 
refinement network for retinal vessel segmentation. Pattern Anal. Appl. 28 (44), 44. 
doi:10.1007/s10044-025-01424-x

Zheng, Z., Wan, Y., Zhang, Y., Xiang, S., Peng, D., and Zhang, B. (2021). 
CLNet: cross-Layer convolutional neural network for change detection in optical 
remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 175, 247–267. 
doi:10.1016/j.isprsjprs.2021.03.005

Zhou, S., Lei, X., and Sun, L. (2025). Liver image segmentation using a rotated 
variable-sized window attention mechanism: application of the ARVSA U-Net model. 
Biomed. Signal Process. Control 108, 107954. doi:10.1016/j.bspc.2025.107954

Zhu, Q. (2020). On the performance of matthews correlation coefficient (mcc) for 
imbalanced dataset. Pattern Recognit. Lett. 136, 71–80. doi:10.1016/j.patrec.2020.03.030

Zhu, Y., Li, H., Cao, B., Huang, K., and Liu, J. (2025). A novel hybrid layer-based 
encoder-decoder framework for 3D segmentation in congenital heart disease. Sci. Rep.
15, 11891. doi:10.1038/s41598-025-96251-9

Frontiers in Physiology 16 frontiersin.org

https://doi.org/10.3389/fphys.2025.1659098
https://doi.org/10.1016/j.cmpb.2024.108464
https://doi.org/10.1016/j.inffus.2025.103399
https://doi.org/10.1016/j.displa.2025.103087
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1002/jcu.23703
https://doi.org/10.1016/j.bspc.2025.107850
https://doi.org/10.1007/s00371-021-02075-9
https://doi.org/10.1016/j.compmedimag.2025.102568
https://doi.org/10.1016/j.bspc.2024.106071
https://doi.org/10.1016/j.jvcir.2025.104466
https://doi.org/10.1016/j.bspc.2024.107456
https://doi.org/10.1007/s11760-025-04311-4
https://doi.org/10.1007/978-3-030-73280-6_54
https://doi.org/10.1016/j.compbiomed.2023.106838
https://doi.org/10.1049/ipr2.13052
https://doi.org/10.1016/j.cmpb.2022.107157
https://doi.org/10.1002/ima.23073
https://doi.org/10.1109/TCYB.2022.3194099
https://doi.org/10.1016/j.eswa.2025.128409
https://doi.org/10.3389/fonc.2025.1522399
https://doi.org/10.1007/s10044-025-01496-9
https://doi.org/10.1016/j.compmedimag.2015.07.004
https://doi.org/10.1007/s11766-016-3340-0
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.3390/diagnostics15081041
https://doi.org/10.1038/s41598-024-56706-x
https://doi.org/10.1007/s11063-022-10953-z
https://doi.org/10.1016/j.eswa.2025.128241
https://doi.org/10.1186/s12880-024-01385-3
https://doi.org/10.1016/j.bspc.2024.107052
https://doi.org/10.1016/j.bspc.2024.106049
https://doi.org/10.1016/j.neucom.2025.130434
https://doi.org/10.1186/s12880-024-01194-8
https://doi.org/10.1016/j.bspc.2023.105817
https://doi.org/10.3389/fncom.2025.1513059
https://doi.org/10.1016/j.bspc.2025.108117
https://doi.org/10.1016/j.bspc.2023.105927
https://doi.org/10.1002/acm2.13937
https://doi.org/10.1016/j.artmed.2024.102788
https://doi.org/10.1016/j.bspc.2025.107997
https://doi.org/10.1007/s10044-025-01424-x
https://doi.org/10.1016/j.isprsjprs.2021.03.005
https://doi.org/10.1016/j.bspc.2025.107954
https://doi.org/10.1016/j.patrec.2020.03.030
https://doi.org/10.1038/s41598-025-96251-9
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

	1 Introduction
	2 Methods
	2.1 Overview of MAF-net
	2.2 Multi-receptive attention fusion module
	2.3 Dual-scale attention enhancement module
	2.4 Dual-path squeeze-and-excitation enhancement module
	2.5 Loss function

	3 Experiments and results
	3.1 Dataset
	3.2 Implementation details
	3.3 Evaluation indicators
	3.4 Ablation experiments
	3.5 Comparative experiments
	3.5.1 Experiments on the uterine fibroid dataset
	3.5.2 Experiments on the ISIC-2018 dataset
	3.5.3 Experiments of dilation rate in the MAFM
	3.5.4 Experiments of path selection in the DSEEM
	3.5.5 Experiments of optimizer selection
	3.5.6 Experiments of computational efficiency

	3.6 Limitations

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

