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Background: This study aimed to explore whether a predictive model based on 
body composition and physical condition could estimate seasonal playing time 
in professional soccer players.
Methods: 24 professional soccer players with 5–7 years of professional 
experience participated. Body composition and physical condition variables 
were assessed, and total minutes played during the season were recorded 
as the dependent variable. Correlations between variables were examined to 
reduce multicollinearity, followed by a principal component analysis (PCA) of 
the selected predictors. The first three components were used as inputs in 
a Gradient Boosting model. Model performance was evaluated using 5-fold 
cross-validation and leave-one-out cross-validation (LOOCV).
Results: High intercorrelations among independent variables (r > 0.70) justified 
dimensionality reduction through PCA. The first three components explained 
70% of the total variance. However, no direct correlations were observed 
between individual variables and minutes played, and the Gradient Boosting 
model did not achieve positive predictive performance under cross-validation 
(5-fold CV: R2 = −0.04; LOOCV: R2 < 0).
Conclusion: In this small dataset, a multivariate approach combining 
PCA and Gradient Boosting did not yield predictive accuracy for playing 
time. Nonetheless, the PCA revealed meaningful structures in the players’ 
physical and body composition profiles, which may inform future research. 
Larger and more heterogeneous samples are required to determine
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whether component-based predictors can reliably estimate playing time in 
professional soccer.
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1 Introduction

Soccer is a team sport with high demands and specific 
episodes of aerobic and/or anaerobic nature, which impose various 
requirements on different physiological systems (Stølen et al., 2005). 
The physical demands during competition and the season mean that 
players must develop high technical-tactical and fitness (FC) levels 
(Bradley et al., 2013) to execute repetitive sprints, jumps, dribbles, 
accelerations and decelerations with or without the ball depending 
on the playing position (González-Rodenas et al., 2024; García-
Calvo et al., 2025). Body composition (BC) and physical condition of 
players are factors that influence participation in professional soccer 
competitions (Paoli et al., 2021; Bernal-Orozco et al., 2020).

The assessment of BF and physical condition in elite soccer 
players (Clemente et al., 2019; Slimani and Nikolaidis, 2019; 
Sebastiá-Rico et al., 2023; Cavia et al., 2019) is of great interest to 
medical teams, sports nutritionists, coaches and trainers (Sebastiá-
Rico et al., 2023; Cavia et al., 2019). Muscle mass, fat mass in absolute 
and relative terms (kg and % of body weight, respectively) and the 
sum of six folds have been of great interest (Slimani and Nikolaidis, 
2019; Sebastiá-Rico et al., 2023; Cavia et al., 2019; Sutton et al., 
2009). According to Sebastiá-Rico (2023), the average muscle mass 
is ∼39.28 kg, which corresponds to ∼52.03% of body weight, fat 
mass is ∼12.48 kg, body fat percentage is ∼13.46% and skinfolds 
are ∑52.18–59.93 (Sebastiá-Rico et al., 2023). A lower proportion 
of body fat (Rienzi et al., 2000; Pedroso et al., 2024) and greater 
muscle mass in the lower extremities (Nikolaidis, 2014) have been 
positively correlated with performance in high-intensity actions, 
such as repeated sprints, accelerations and changes of direction, 
which are crucial in the most decisive phases of the game (Nikolaidis, 
2014; Nikolaidis et al., 2016; Loturco et al., 2020).

The development of physical condition to withstand the 
demands of a season and the analysis of the short, medium and 
long term effects of various training systems is a constant concern 
of coaches and the scientific community. Determination of power 
and jumping (Pardos-Mainer et al., 2021; Asimakidis et al., 2024), 
estimation of maximal oxygen consumption (estimated VO2max) 
(Metaxas, 2021; Düking et al., 2024), ability to repeat sprints 
(Altmann et al., 2019; Haugen et al., 2014; Beato et al., 2021), speed 
and changes of direction (Fiorilli et al., 2020; Bianchi et al., 2019) 
are the variables that have been analyzed to the greatest extent in 
the performance of soccer players (Metaxas, 2021). However, there 
is recent interest in the study of recovery capacity, fatigue-inducing 
mechanisms, internal loading under the stress of competition 
(Mohr et al., 2005) and the study of finishing speed in different 
game situations (Ali, 2011) and how these components vary over the 
course of a season (Dolci et al., 2020).

On the other hand, the analysis of total minutes of play as 
an indicator of performance and competitive efficiency over the 
course of a season has not been sufficiently addressed in the 

literature and may be a crucial aspect to guide training processes 
(Silva, 2022), optimize performance (Silva, 2022; Della Villa et al., 
2020; Arnason et al., 2004) and minimize the risk of injury 
(Arnason et al., 2004). As physical demands must be improved 
or at least maintained over the course of a season, this can be a 
determining factor in the number of competitive minutes over the 
course of a season (Dambroz et al., 2022).

Principal component analysis (PCA) is a multivariate statistical 
technique that allows for the identification of data patterns and 
has enabled the creation of profiles to assess athletic performance 
(Cavia et al., 2019; Sutton et al., 2009; Silva, 2022; Della Villa et al., 
2020; Arnason et al., 2004; Dambroz et al., 2022). Total playing 
time during a season could be an indicator of performance and 
competitive efficiency, serving as a guide for training processes 
(Silva, 2022) and minimizing the risk of injuries (Arnason et al., 
2004). Previous studies using PCA focused on developing training 
profiles (Della Villa et al., 2020), identifying athletic talent, and 
analyzing tactical behavior (Becerra Patiño et al., 2025) and on-
field positioning (Pino-Ortega et al., 2021). However, the reviewed 
literature did not identify any PCA-derived patterns, based on 
body composition and physical fitness variables, that could establish 
playing time patterns for professional soccer players during a season.

However, studies of body composition and fitness variables 
as predictors of the minutes of play that a soccer player will 
have during a season have not been addressed in the literature. 
Therefore, the purpose of the study was to develop a predictive 
model capable of estimating the accumulated playing minutes 
during a season in professional soccer players from variables related 
to body composition and physical condition measured at the end 
of the season. The hypotheses of the study were established as a) 
none of the variables of body composition or physical condition, 
independently, explain the minutes played during a season in 
professional soccer players and b) the use of principal component 
analysis (PCA), combined with the implementation of decision 
trees, allows estimating the minutes played during the season and 
identifying sets of relevant variables. 

2 Materials and methods

2.1 Study design

A four-stage analytical design was implemented; a) data 
processing and normalization, b) evaluation of individual 
relationships between independent variables and minutes played, 
c) dimensionality reduction through PCA and d) development 
and evaluation of a predictive model based on the results of the 
PCA. The analysis was performed considering 20 independent 
variables; BC (Body Mass, Height, Fat Mass, %Fat Mass, %Muscle 
Mass; Muscle mass% and the sum of 6 folds), PC (Jump ability 
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for countermovement jump, Jumping Power, Linear speed 10 m, 
20 m and 30 m, Speed with changes of direction of 30 m, estimated 
VO2max, Speed reached in the Yo-Yo test IR2, Fatigue index, 
Maximum anaerobic power, Speed of finishing in 11 m and 
Coordination index), the minutes of play in a season (32 matches), 
was considered as a dependent variable. All data collection sessions 
were implemented in the sports facilities during AM hours 
(9:00–12:00 h) on consecutive days. The study conformed to the 
Declaration of Helsinki. Participation was voluntary and written 
informed consent was obtained from participants. 

2.2 Participants

24 male professional soccer players, with a mean age of 26.0 ± 
5.61 years, body weight 76.23 ± 6.71 kg, height 176 ± 5.07 cm, with 
5–7 years of sporting experience and a training frequency of seven 
to nine sessions per week participated in the study. 

2.3 Procedure

Before each session, the players underwent a standardized 
15-min warm-up which was divided into two parts. The first 
consisted of 7–8 min of low intensity running (heart rate less 
than 120 bpm) and another part specific to the predominant 
muscle groups in the execution of the tests. Stretching was led by 
the Club’s physical trainer and complemented by self-regulation 
exercises for each player according to their sporting experience. 
The players maintained their training schedules and were advised 
to continue with their lifestyle and diet. The 30 m speed test 
(10 m, 20 m and 30 m), 30m change of direction (COD 30 m), 
Repeated Sprint Performance Test (RAST), Yo-Yo IR2 and finishing 
speed tests were performed on natural grass and with competition 
shoes. The jumping test was performed on a regular surface and 
with sports shoes. The order and distribution of the evaluation 
is shown in Figure 1.

2.4 Body composition

Anthropometric assessments were taken only once before 
starting the first session of physical assessments (session 1). Body 
mass was determined with an electronic scale (Tanita TBF 300A, 
Tokyo, Japan) with an accuracy of 100 g. Height was measured 
with a portable measuring rod (Seca 213, Hamburg, Germany) 
with an accuracy of 1 mm. Both measurements were used for the 
determination of body mass index. The percent-age of Fat Mass 
(%FM) and the % Muscle Mass (%MM) and the sum of the 6 
folds (triceps, subscapular, supraspinal, abdominal, medial thigh 
and calf), were calculated following the recommendations and pent 
compartmental protocol (Kerr, 1988), the sum of six skinfolds 
(triceps, subscapular, supraspinal, abdominal, medial thigh and 
calf) was adjusted to the Durnin and Womersley recommendations 
and equation (Durnin and Womersley, 1974). All measurements 
conformed to the recommendations of the International Society for 
the Advancement of Kinanthropometry (ISAK) (Marfell-Jones et al., 
2006) and were taken by trained personnel with 5 years of experience 
and ISAK certification. 

2.5 Countermovement jump

2.2 After the standardized warm-up all participants performed 
a maximal jumping test in a CMJ exercise following the instructions 
reported by Bosco (Bosco et al., 1983). Jump height was calculated 
with an Optojump Next infrared recording system (Microgate, 2023; 
Bolzano, Italy) and jump power was calculated according to the 
following equation:

P = 2.214 x body weight x√jump height

After a series of preparatory countermovement jumps, subjects 
initiated the jump from a bipedal position with knees extended, 
descended to 90° knee flexion and immediately performed 
an explosive concentric action of the lower limb extensor 
musculature to reach maximum height. The jump height was 
calculated from the flight time, the highest of three attempts
was recorded. 

2.6 Linear speed of 30 m

Linear speed was assessed in a 30 m sprint, with 10 m, 20 m and 
30 m recordings. The test started from a stationary position 30 cm 
from the first photocell. The sprint time was recorded using the 
Witty-Gate photocell system (Microgate, Bolzano 2023; Italy). Three 
attempts were made at the test, separated by a 2-min rest period, and 
the best score was recorded. 

2.7 VO2max estimation (Yo-Yo IR2)

After 10 min of the speed test and to estimate VO2max, 
participants performed the Yo-Yo Intermittent Recovery Test level 2 
(Bangsbo et al., 1991; Krustrup et al., 2003). The test was conducted 
following the recommendations of Bangsbo (Bangsbo et al., 2008). 
An audible signal was played from an-iPhone handheld device 
(Apple Inc., Cupertino, CA) connected by Bluetooth to a player, 
which was placed perpendicular to the 20-m running lanes. Between 
each out and back run (40 m), participants had a 10 s rest period of 
active recovery, where they had to move to a signal 5 m away before 
returning to the starting line. The test was considered completed 
when participants withdrew voluntarily or at the instruction of the 
assessors. The final distance and speed achieved were recorded for 
analysis. Estimated maximal oxygen consumption was calculated 
using the equation:

VO2max (ml · min− 1 · kg − 1) = IR2 distance (m) · 0,0136+ 45,3
 

2.8 Speed with changes (COD 30m)

In session 2 and after the standardized warm-up, the 
speed was determined in a 30 m sprint with 90° changes of 
direction every 5 m. The test started from a stationary position 
30 cm from the first photocell and the best of three attempts
was recorded. 
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FIGURE 1
Session 1A: Warm-up and anthropometric measurements, Session 1B: Counter-movement jump, Session 1C: 30-metre speed, Session 1D: Yo-Yo IR2 
assessment, Session 2A: Warm-up and anthropometric measurements, Session 2B: 30-metre speed, Session 2C: Archery shooting speed, Session 2D: 
Maximum aerobic power assessment (RAST).

2.9 Shoot speed from 11m

The shoot speed was recorded for the dominant leg and three 
others with the non-dominant leg from a distance of 11 m to the 
monitoring system. Speed was recorded with a Stalker Sport2 radar 
system (United States, 2024), which was positioned behind the 
11 m line. The highest speed was recorded for both segments. The 
Shoot Coordination Index (SCI) was determined as the percentage 
difference between the ball striking speed of the dominant and 
non-dominant leg. 

2.10 Repeated sprint performance (RAST)

The RAST test was used to verify repetitive sprint performance 
(De Andrade et al., 2016). All participants performed 6 sprints of 
35 m at maximum speed interspersed by 10 s of active recovery. 
The test was controlled by the photocell system. Three experienced 
testers controlled the test, one of the testers was positioned at the 
start and one at the end of the 35 m track to control the recovery 
time (10 s) and the good execution of the test. The third evaluator 
recorded the time of each sprint. Power was assumed to be the 
product of strength and speed for each effort (Power = speed - 
strength). The speed for the 6 efforts was used to establish the fatigue 
index (FRI) and the power of each sprint was used to establish 
the maximal anaerobic power. Table 1 shows the means, standard 
deviations, maximum and minimum values of the variables of body 
composition, physical condition and minutes of play.

2.11 Ethical approval

The Ethical approval was obtained from the Universidad 
Católica de la Santísima Concepción, (registration number: 
01/2024). Participants provided informed consent, which included 

comprehensive details about the research, associated risks, potential 
benefits, confidentiality measures, and participant rights. The study 
strictly adhered to the ethical principles outlined in the Declaration 
of Helsinki, ensuring the protection of participants’ rights and 
wellbeing throughout the design, procedures, and confidentiality 
measures. All stages of this study complied with the Helsinki 
guidelines for human research and met the current ethical standards 
in Sport and Exercise Science. 

2.12 Statistics

Descriptive data are summarized by means and standard 
deviations. An initial reduction in the number of independent 
variables was carried out, eliminating those highly correlated with 
each other to avoid redundancies. Prior to inferential analysis both 
the independent variables and the dependent variable (minutes 
played) were normalized using the Min-Max scaling method, to 
transform the values to a range between 0 and 1, maintaining the 
original relative distribution and ensuring comparability between 
different units of measurement. The distribution of each variable 
was assessed using the Shapiro-Wilk test (p ≤ 0.05). To identify 
individual associations between each independent variable and 
minutes played, Pearson’s correlation coefficients were calculated. 
The magnitude of the correlation was interpreted as low r < 
0.30; moderate: 0.30–0.70 and high: ≥0.70 (Field, 2013), in all 
cases a confidence level of 95% was considered. Subsequently, 
a Principal Component Analysis (PCA) was conducted on the 
seven normalized independent variables. Component retention 
was guided by three complementary criteria: inspection of the 
scree plot, the Kaiser criterion (eigenvalues >1), and cumulative 
variance explained. Both unrotated and Varimax-rotated solutions 
were examined; however, the unrotated solution was retained to 
preserve orthogonality and the ordered maximization of explained 
variance, which were required for subsequent predictive modelling. 
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TABLE 1  Body composition and physical condition variables analyzed.

Mean SD Max Min

Body Mass (kg) 76.23 6.71 90.20 66.10

Size (cm) 176.20 5.07 184.30 168.10

%FM 20.67 2.18 25.32 16.96

%MM 51.43 1.96 55.08 47.91

Σ 6 Folds (mm) 50.42 9.65 66.70 30.50

CMJ (cm) 40.55 4.48 48.20 30.40

Jumping Power (W) 1,073.47 111.98 1,285.48 806.89

Distance Yo-Yo (m) 723.33 175.32 1,160 480

Speed Yo-Yo (m·s-1) 5.77 0.15 6.16 5.58

VO2max E (mL·kg-1·min-1) 55.14 2.38 61.08 51.83

Speed 10m (m·s-1) 5.79 0.21 6.21 5.43

Speed 20m (m·s-1) 8.03 0.36 8.55 7.27

Speed 30m (m·s-1) 7.12 0.28 7.58 6.59

Speed COD (m·s-1) 3.22 0.18 3.46 2.87

% Change −54.72 2.05 −59.30 −51.08

Fatigue Index (%) 14.51 7.71 37.55 6.60

MAEP (W) 775.12 121.99 1,037.43 588.52

Dominant shoot (m·s-1) 108.42 4.67 114.50 96.20

Non-dominant shoot (m·s-1) 96.13 8.14 104.40 92.00

Coordination index (%) −11.30 7.07 −34.85 −2.14

Minutes of play (min) 815.91 814.84 2,275 0

Abbreviations: %FM, percentage fat mass; %MM, percentage muscle mass; MM, 
millimeters; CMJ, countermovement jump; VO2max E, estimated maximum oxygen 
consumption; COD, change of direction; MAEP, maximum anaerobic power.

Loadings ≥ |0.30| were considered meaningful contributors (Field, 
2013). The first three components were then used as predictors 
in a Gradient Boosting model (Friedman, 2001) to estimate 
minutes of play. Model performance was assessed using 5-fold 
cross-validation with shuffling, complemented by leave-one-out 
cross-validation (LOOCV) as a sensitivity analysis. A leakage-free 
pipeline was implemented, combining scaling, PCA, and Gradient 
Boosting. To further limit overfitting, hyperparameters (learning 
rate, number of estimators, maximum depth, and subsampling rate) 
were tuned via grid search within the cross-validation framework. 
Performance was evaluated on out-of-fold predictions using the 
coefficient of determination (R2), mean squared error (MSE), 
and mean absolute error (MAE). All analyses were performed
in Python 3.9. 

3 Results

Figure 2 shows the results of the correlation analysis between the 
independent variables. High correlations are observed between BM, 
%FM and %MM, 10 m, 20 m and 30 m speed and 30 m speed with 
change of direction.

Correlational analysis of each of the remaining 7 independent 
variables and minutes of play showed no strong association. The 
correlation coefficients obtained were: %MM (r = 0.47), Fatigue 
Index (r = 0.22), Coordination Index (r = −0.09), CMJ (r = −0.10), 
Speed 10 m (r = 0.28), Speed Yo-Yo (r = 0.28) speed COD (r = −0.39).

The PCA indicated that the first three components explained 
34.2%, 21.4% and 14.3% of the variance, respectively, for a 
cumulative total of 70%. According to both the Kaiser criterion 
and the scree plot, the retention of three components was justified. 
Although a Varimax rotation was tested, it resulted in more 
diffuse loadings and did not improve interpretability. In addition, 
since rotation disrupts the ordered maximization of variance that 
is essential for predictive modelling, the unrotated solution was 
selected for the final analysis. The interpretation of the principal 
components was based on selecting, for each variable, the two 
components with the highest loadings, and then identifying the two 
or three most representative variables per component. This approach 
was subjective but commonly used, as no standard criterion is 
universally established. In the selection of variables, although we 
had set a threshold load of 0.30 for component interpretation 
(Field, 2013), the values were within more stringent thresholds (e.g., 
>0.40–0.70) applied in sports science studies (Rojas-Valverde et al., 
2020). The factor loadings matrix for each variable in the first three 
components is presented in Table 2.

Cross-validated performance was very limited. With 5-fold CV, 
Gradient Boosting on the three PCA components did not achieve 
positive predictive performance (R2 ≤ 0 in CV/LOOCV). These 
results contrast with the higher R2 = 0.75 observed under a single 
80/20 split, indicating that the latter likely overestimated predictive 
accuracy due to sampling variability and the very small test set 
(n = 5). The updated cross-validated metrics (R2, MSE, MAE) are 
presented in Table 3. Overall, these findings demonstrate that the 
predictive model should be regarded as exploratory, with limited 
generalizability in the current dataset.

4 Discussion

The purpose of the study was to determine the relationship 
between variables of body composition, physical condition and their 
relationship with minutes of play in professional soccer players 
in a regular season of 32 games. The following hypotheses were 
established: a) none of the body composition or physical condition 
variables, independently, explain the minutes played during a season 
in professional soccer players and b) the use of principal components 
analysis, combined with the implementation of decision trees, allows 
estimating minutes played during the season and identifying sets of 
variables that are relevant. Although the first hypothesis is fulfilled, 
the second is not completely, since with this data set Gradient 
Boosting approach did not achieve positive predictive performance. 
However, the approach allowed to identify relevant variables and test 
the methodological feasibility.

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2025.1659313
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Ulloa-Díaz et al. 10.3389/fphys.2025.1659313

FIGURE 2
Correlation matrix of study variables. Abbreviations: %FM: percentage fat mass, %MM: percentage muscle mass, MM: millimetres, CMJ: 
countermovement jump, Speed Yo-Yo IR2: Speed test Yo-Yo intermittent resistance level 2, Speed 10 m: Speed of 10 m, Speed COD 30 m: Speed 
change of direction 30 m.

TABLE 2  Matrix of factor loadings for each variable in the first three 
components.

PC1 PC2 PC3

%MM −0.34 −0.42 −0.43

CMJ (cm) −0.44 0.04 −0.51

Speed Yo-Yo IR2 (m·s-1) 0.27 0.54 −0.25

Speed 10m (m·s-1) −0.52 0.15 −0.08

Speed COD 30m (m·s-1) −0.52 0.54 0.33

Fatigue index (%) −0.17 −0.45 0.39

Coordination index (%) 0.21 0.03 −0.49

Abbreviations: PC, principal component; %MM, percentage muscle mass; CMJ, 
countermovement jump; Speed Yo-Yo IR2, Speed test Yo-Yo intermittent resistance level 2; 
Speed 10m, Speed of 10 m; Speed COD, 30m, Speed change of direction 30 m. Values 
highlighted in bold indicate the variables selected for component interpretation. Values in 
bold: statistical significance.

TABLE 3  Cross-validated performance metrics.

Validation strategy R2 MSE MAE

5-fold CV (default hyperparameters) −0.204 791,094 692.9

5-fold CV (tuned hyperparameters, nested) −0.041 654,998 667.1

LOOCV (default hyperparameters) −0.056 703,728 678.9

Abbreviations: R2, coefficient of determination; MSE, mean square error; MAE, mean 
absolute error.

Significant correlations (r > 0.7; p < 0.05) were found between 
the BC variables of BM, %FM and %MM and the PC variables 
of 10m, 20m and 30m speed and COD 30m. Previous studies 
analyzing the relationship between BC and different physical 
performance variables in elite soccer players have identified 
significant associations that reinforce the importance of a BC profile 
optimized for the demands of the game (García-Calvo et al., 2025; 
Paoli et al., 2021; Bernal-Orozco et al., 2020; Clemente et al., 2019;
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Slimani and Nikolaidis, 2019; Sebastiá-Rico et al., 2023; Cavia et al., 
2019; Sutton et al., 2009; Rienzi et al., 2000; Pedroso et al., 2024; 
Nikolaidis, 2014). A lower proportion of body fat (%BF) tends to 
correlate positively with performance in high-intensity actions, such 
as repeated sprints, accelerations and changes of direction, which 
are essential in the most decisive phases of the game (Dalen et al., 
2016), which is consistent with our results. This could be explained 
by the increase in energy availability and mechanical efficiency, 
which would be favored by a reduced fat mass, by reducing the 
inertial load during movements (Pedroso et al., 2024; Nikolaidis, 
2014). In contrast, a high muscle mass in the lower limbs is a 
determining factor in performance in explosive strength tests, such 
as the CMJ and short sprints associated with real game situations 
(Pedroso et al., 2024; Nikolaidis, 2014; Nikolaidis et al., 2016). This 
finding highlights the importance of developing lean mass in key 
areas for power generation and for the performance of technical 
gestures at high intensity (Reilly et al., 2000). The results suggest that 
fat and muscle mass in relative terms have a significant influence 
on performance, justifying their inclusion in the evaluation and 
training planning processes in elite soccer (Oliver et al., 2024). 
However, these results also show that the use of these variables may 
be redundant, which should be considered when designing some 
statistical analyses.

On the other hand, the results of the individual correlations 
between the remaining independent variables and minutes played 
(all r < 0.70, p > 0.05), showed that none of these variables, 
on their own, have a direct explanatory weight on competitive 
participation throughout the season. This finding supports our 
first hypothesis and justifies the use of a multivariate approach 
such as PCA, given that the relationships could be collinear, non-
linear or interdependent. Although the absence of strong individual 
correlations with minutes played might appear predictable, the 
use of PCA provided added value beyond this initial observation. 
Specifically, PCA reduced the redundancy inherent in highly 
collinear variables, allowing for the extraction of latent dimensions 
that summarized complex performance profiles. These components 
captured meaningful constructs such as explosive power, anaerobic 
endurance, and agility, which could not be identified through 
single-variable analyses. This multivariate perspective is consistent 
with recommendations in sports science to apply PCA when 
dealing with interdependent physiological and anthropometric data 
(Pino-Ortega et al., 2021; Rojas-Valverde et al., 2020). Thus, PCA 
contributed to a more nuanced understanding of how physical and 
body composition variables cluster, offering a framework that can be 
extended to larger and more diverse samples in future research. In 
practical terms, the application of PCA can help reduce the number 
of evaluations to those that truly contain relevant information 
regarding a given factor.

In our study, the first three components extracted by PCA 
explained 70% of the total variance of the independent variables. The 
relative analysis of the weights of the variables in the components 
obtained in the PC1 shows that Speed 10m (−0.52), COD 30 m 
(−0.52) and CMJ (−0.44) are relevant. Given that these are negative 
values, this component can be associated with low values of speed 
and power (Dambroz et al., 2022; Taylor et al., 2022). PC2 seems to 
capture endurance and agility in short movements, given that Yo-Yo 
speed (0.54) and COD 30 m (0.54) are the main related variables. 
Here positive values indicate that players with higher values in that 

variable will have higher scores in that component (Russell et al., 
2011). In addition, this component includes the fatigue index with a 
negative value (−0.45). Since a higher index reflects less anaerobic 
endurance (Riley et al., 2024), its value within the component 
indicates that players with higher anaerobic endurance will have 
higher scores in PC2. As for PC3, its association with CMJ (−0.509), 
%MM (−0.417), and the coordination Index (−0.49), suggest that it 
captures power in both physical and technical actions, in this case 
its interpretation goes in the same direction as PC1.

By incorporating the three main components into a Gradient 
Boosting model, no positive predictive performance was achieved 
under cross-validation, indicating that the multicomponent 
approach could not reliably estimate minutes played in this 
small dataset. Confidence intervals were not reported due to the 
small sample size, which would render such estimates unstable 
(Ghasemzadeh et al., 2024). Instead, robustness was assessed 
through cross-validation procedures (5-fold CV and LOOCV), 
providing a more reliable indication of model generalizability. 
Indeed, studies have shown that statistical confidence can be up 
to four times higher when using nested cross-validation compared 
to simple methods such as hold-out (Ghasemzadeh et al., 2024). 
The initial 80/20 split suggested an apparent predictive signal, 
but this was likely due to overestimation arising from sampling 
variability and the very small test set. Indeed, recent work has 
shown that models trained on small datasets systematically 
overestimate predictive performance, and that substantially 
larger samples are required to obtain stable estimates of 
generalizability (Zantvoort et al., 2024). Consequently, the model 
should be regarded as exploratory, highlighting the need for larger 
and more heterogeneous samples to evaluate whether component-
based predictors can meaningfully account for seasonal playing 
time. In the initial 80/20 split analysis, PC2 showed the highest 
relative influence, followed by PC1 and PC3. However, since cross-
validation revealed no predictive accuracy, these relative weights 
should be regarded solely as descriptive of how the model fitted 
this specific split, and not as reliable indicators of component 
importance. 

5 Conclusion

The use of a multivariate approach allowed us to identify 
combinations of physical and body composition variables that, 
when integrated into principal components, summarized relevant 
aspects of players’ profiles. Although Gradient Boosting applied 
to these components did not yield reliable predictive accuracy 
for competitive playing time in this small dataset, the analysis 
highlighted dimensions such as anaerobic endurance, high-intensity 
aerobic capacity, change-of-direction speed, and muscle power 
as important elements within the component structure. These 
results emphasize the potential of tools such as PCA and Gradient 
Boosting for exploring complex relationships in sports data, but 
also demonstrate the need for larger and more heterogeneous 
samples to evaluate their predictive value. Rather than providing 
a tool to anticipate season participation, the present findings 
should be regarded as exploratory evidence that may guide future 
investigations into training, injury prevention, and performance 
management. Although there may be other aspects that can 
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influence the minutes of the season, such as technical and tactical 
decisions and the state of health of the athlete. 

5.1 Limitations

This study was conducted with a small sample of 24 players 
from a single professional club. Therefore, the results cannot be 
generalized to all professional football players and should be 
regarded as exploratory findings specific to this cohort. The limited 
sample size also restricts the statistical power of the analyses and 
increases the risk of overfitting in the predictive models, even 
when cross-validation procedures were applied. Moreover, the use 
of total minutes played across the entire season does not capture 
temporal fluctuations related to player form, injuries, or coaching 
decisions, which likely influenced match participation. Finally, the 
interpretation of principal components and their integration into 
the Gradient Boosting model should be considered preliminary, as 
larger and more heterogeneous datasets will be required to confirm 
and extend these observations. 

5.2 Applicability and future research

Future studies should consider integrating technical–tactical 
indicators into PCA, as these may represent additional key 
factors influencing the minutes of play accumulated over a 
season. It is also important to include variables reflecting internal 
and external load throughout the competitive calendar, as well 
as information on time lost due to injuries or suspensions, 
since these aspects directly affect player availability. While the 
present study did not achieve predictive accuracy, the use of 
PCA and Gradient Boosting illustrates a methodological pathway 
for exploring complex multivariate relationships in professional 
football. Larger and more heterogeneous samples are required to test 
whether component-based profiles combining body composition, 
physical condition, tactical indicators, and contextual factors can 
meaningfully predict playing time. If validated in future research, 
such models could provide medical, performance, and coaching 
staff with tools to support injury prevention, training feedback, 
recruitment, and player selection.
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