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Introduction: Quantitative computed tomography (qCT) provides detailed
spatial assessments of lung structure and function, while electrical impedance
tomography (EIT) offers high temporal resolution for analyzing breathing
patterns but lacks structural detail. This study investigates the correlation
between qCT-based spatial variables and EIT-based temporal signals to
elucidate the physiological relationships between these two modalities.

Methods: Six participants with asthma underwent pulmonary function tests
(PFTs) before and after bronchodilator inhalation. CT scans were obtained in full
inhalation and normal exhalation, providing airway hydraulic luminal diameter
(Dh), airway wall thickness, and percent emphysema, and percent functional
small airway disease (fSAD%). On the same day, EIT imaging was performed
during tidal breathing, measuring impedance in three different anatomical
regions on the chest wall (upper, middle, and lower). The EIT-based impedance
was transformed using fast Fourier transform (FFT) to separate perfusion and
respiration components including high and low frequencies.

Results: High-frequency EIT values in the upper lungs were associated with
a decline of lung function in pre-bronchodilator. Skewness values, measured
by an imbalance between exhalation and inhalation, was elevated in the upper
lungs and correlated with impaired lung function. Besides, Dh decreased with a
higher expiration-to-inspiration (E:I) ratio in the upper lungs and middle lungs.
Functionally, higher high frequency values and lower low frequency values in
the upper lungs correlated with greater emphysema and functional small airway
disease, accompanied by reduced ventilation deformation metrics. Similarly,
increased hysteresis variables (e.g., E:I, skewness) in the upper and middle lungs
were associated with a further decrease in ventilation deformation metrics.

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1660948
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1660948&domain=pdf&date_stamp=
2025-08-19
mailto:dr.huhsc@gmail.com
mailto:dr.huhsc@gmail.com
mailto:s-choi@knu.ac.kr
mailto:s-choi@knu.ac.kr
https://doi.org/10.3389/fphys.2025.1660948
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1660948/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1660948/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1660948/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1660948/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1660948/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1660948/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1660948/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Jeong et al. 10.3389/fphys.2025.1660948

Conclusion: EIT temporal signals demonstrated significant associations with
spatial metrics from CT images, as well as PFTs metrics. A frequency analysis
of EIT may enhance diagnostic approaches and improve understanding of
respiratory mechanics in subjects with asthma.

KEYWORDS

computed tomography, electrical impedance tomography, asthma, fast fourier
transform, pulmonary function tests

Introduction

Asthma is characterized by episodic symptoms of airway
narrowing that make breathing difficult. These symptoms in asthma
appear repeatedly and episodically, caused by a combination of
genetic and environmental factors (Barnes and Drazen, 2002). The
inflammation of the airways causes the airway mucosa to swell
and the airway muscles to contract, leading to obstruction and
impaired airflow (Tillie‐Leblond et al., 2009). Typical symptoms
in obstructive airways include dyspnea, coughing, and wheezing
(Vestbo et al., 2013). Under normal conditions, human respiration
involves relatively short inhalations and comparatively longer
exhalations (Barnes et al., 1998; McCracke et al., 2017). Temporal
breathing patterns can reflect alterations in segmental large airways,
parenchymal small airways, and even perfusion (Deibele et al., 2008;
Zadehkoochak et al., 1992; Noordegraaf et al., 1998). Due to its high
temporal resolution, electrical impedance tomography (EIT) offers
unique insights into such pathophysiology (Brovman et al., 2018;
Cao et al., 2020; Mansouri et al., 2021).

Meanwhile, with the advantage of high spatial resolution,
quantitative computed tomography (qCT) images can extract
structural imaging characteristics such as the hydraulic luminal
diameter (Dh) and airway wall thickness (WT) of the airways
(Hoffman et al., 2006; Choi et al., 2015). In addition, parenchymal
functional characteristics such as Jacobian and functional small
airway disease (fSAD) can be extracted by applying image
registration technique with exhalation and inhalation images
(Choi et al., 2017; Choi et al., 2013; Jeong et al., 2024; Pyo et al.,
2023; Choi et al., 2014). While CT images have proven to be
useful in characterizing disease alterations sensitively with its own
high spatial resolution, it is still arguable if CT images acquired in
the static states provide dynamic features during actual breathing
over time (Wongviriyawong et al., 2013). In contrast, the EIT is
suitable for analyzing characteristics that subtly change over time,
such as breathing patterns in asthma patients. However, it can
limit detailed imaging-based pathophysiology due to its poor image
resolution.

In a previous EIT study, Frerichs et al. (Frerichs et al., 2009)
employed band-pass filtering techniques and linear regression fitting
to delineate functional regions of interest (ROI) within the left
and right lungs, in mechanically ventilated subjects. Fagerberg
et al. (Fagerberg et al., 2009a; Fagerberg et al., 2009b) explored
the EIT method to measure perfusion impedance during apnea,
but it could not fully address the complex interplay between
ventilation and perfusion. In response to these limitations, Caroline
A. Grant et al. (Grant et al., 2011) proposed a step-by-step approach
based on previous filtering techniques. This method extends its

applicability to a spontaneous breathing cohort and enables analysis
of ventilation-perfusion relationships. Consequently, the EIT could
measure the amount of ventilation by estimating the amount of
change in the patient’s impedance, and visualize the movement of
the lungs by expressing this as an image. In addition, perfusion
signals can be detected by measuring the vibration of minute
impedance signals.

Thus, EIT is recognized as a valuable technology for providing
complementary insights into patients’ lung function alongside
conventional pulmonary function tests (PFTs), as it offers regional
information and is less sensitive to patients’ compliance. Recently,
lung EIT research has been actively conducted to improve
the resolution of EIT images or to generate 3D images by
utilizing image reconstruction algorithms (Gao et al., 2024). An
EIT study has demonstrated a local lung function decline in
asthmapatients (Frerichs et al., 2016), comparedwithCTat the voxel
level qualitatively. However, it has still yet to confirm if the structural
and functional variables obtained from static CTs sufficiently
reflect the dynamic signals obtained from EIT. Accordingly, we
hypothesized that various structural and functional variables
extracted from static CT images reflect dynamic characteristics
measured from EIT temporal signals.

In this background, this study focused on the signal of
impedance change over time rather than the spatial resolution of
the EIT image, investigating the correlation between EIT images and
CT scans. To achieve these research objectives, the data obtained
through CT and EIT were compared and analyzed to confirm the
relationship with lung function. This provides an insight into how
CT and EIT can play complementary roles, and also how to integrate
the two techniques to achieve better lung function evaluation. These
findings are expected to present new prospects for the diagnosis and
treatment of lung disease.

Materials and methods

Demography and pulmonary function tests
of patients recruited

This study was designed as a hypothesis-generating pilot study,
with the primary goal of evaluating the feasibility of integrating
two complex advanced imaging techniques, Electrical Impedance
Tomography (EIT) and quantitative Computed Tomography (qCT),
and generating preliminary data for the design of future large-
scale validation studies. The number of participants that could
be recruited was limited by the realistic constraints of a 1-year
institutional research project. Institutional review board of Pusan
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National University Yangsan Hospital has approved the current
study (20-2021-007). EIT scanningwas conducted at PusanNational
University Yangsan Hospital, South Korea, with six asthma patients
aged 49–68 years. Among the six participants, five met the criteria
for severe asthma according to the 2023 GINA guidelines, and
none had any other respiratory diseases. All participants used
inhaled corticosteroids (ICS), with one additionally receiving oral
corticosteroids (OCS). Three participants were also on concomitant
bronchodilator. Detailed clinical information for each participant
is presented in Table 1. Pulmonary function tests (PFTs) were
performed to assess parameters, including forced expiratory volume
in one second (FEV1), forced vital capacity (FVC), the ratio of FEV1
to FVC (FEV1/FVC), and forced expiratory flow between 25% and
75% of vital capacity (FEF25%-75%). Consistent with the American
Thoracic Society guidelines for reproducibility, PFT values that
showed significant variability or did notmeet quality control criteria
were excluded as outliers. The highest valid measurement among
repeated tests was retained for analysis. All PFT assessments were
conducted with patients seated upright to ensure standardized
conditions. Each test was performed three consecutive times,
allowing sufficient rest periods between trials, and the maximum
value was selected for final analysis. PFT was measured in
milliliters (mL) using the Vmax 22 (SensorMedics, USA). The PFTs
were administered and supervised by a board-certified respiratory
therapist to maintain measurement consistency and accuracy
(Graham et al., 2019; Crapo et al., 1995). These parameters were
measured both before and after bronchodilator administration for
comparison with electrical impedance tomography (EIT) measures.

Acquisitions of EIT and CT images

Electrical Impedance Tomography (EIT) measurements were
performed using a PulmoVista®500 device (Dräger Medical,
Lübeck, Germany). The system uses a flexible silicone belt
containing 16 integrated stainless steel electrodes, which was placed
around the patient’s thorax. An additional reference electrode
was attached to the central abdominal region to ensure a
stable potential baseline. Data were acquired using a 4-terminal
(tetrapolar) measurement protocol, which minimizes the effects
of electrode-skin contact impedance. A low-amplitude, high-
frequency alternating current (AC) was applied using a single
frequency standard for ventilation monitoring. The device employs
an adjacent injection pattern, where current is passed between
neighboring electrodes, and the active pair is rotated sequentially
around the thorax to generate a full data frame. Data were
acquired continuously at a frame rate of 10 frames per second
(fps) to ensure high temporal resolution for analyzing respiratory
dynamics. To ensure data quality, electrode-skin contact impedance
was continuously monitored by the device’s automated quality
control system. The electrodes were positioned on the chest wall
at three distinct anatomical regions corresponding to the upper,
middle, and lower lungs (Figure 1). This selection reflects the
anatomical division of the right lung into upper, middle, and
lower lobes, and the left lung into upper and lower lobes, thereby
capturing the functional characteristics of each pulmonary lobe.
The rationale for this three-plane setup was not to achieve the
anatomical precision of CT but to capture the well-known vertical

heterogeneity of lung function. This approach provides a simplified
model for assessing these vertical functional gradients. The upper
thorax reflects thoracic breathing, characteristic of spontaneous
respiration, the middle thorax encompasses the influence of
major airways and vascular structures, and the lower thorax is
strongly affected by diaphragmatic motion and gravity-dependent
ventilation-perfusion effects.

EIT datawere recorded during tidal breathing for over 60 s while
patients were in the supine position. The measurement was initiated
in a relaxed state to ensure stable breathing patterns. A stable 60-
s respiration period from the patient’s first cycle of breathing
was selected for analysis. Tidal breathing predominantly influences
the upper lung regions, while gravitational effects contribute
to ventilation heterogeneity across vertical positions. The upper
thorax reflects thoracic breathing, characteristic of spontaneous
respiration, the middle thorax encompasses the influence of
major airways and vascular structures, and the lower thorax is
strongly affected by diaphragmatic motion and gravity-dependent
ventilation-perfusion effects (Bastir et al., 2017). This stratified
electrode placement provides adequate spatial resolution without
prolonging measurement time or causing patient discomfort. Data
obtained from the three vertical positions were sufficient to evaluate
the functional characteristics of each pulmonary lobe, allowing for
the assessment of anatomical and functional vertical inhomogeneity
in lung function. This comprehensive approach demonstrates that
the selection of three vertical positions is supported by both
scientific rationale and practical considerations.

An alternating current was injected through a selected pair
of electrodes, and surface potentials were measured across the
remaining electrode pairs. Bioelectrical impedance was calculated
using Ohm’s law. The electrode pairs sequentially rotated around
the thorax, yielding 16 voltage profiles. Each profile consisted of
13 voltage measurements, resulting in 208 data points used for
reconstructing cross-sectional images. EIT image reconstruction
facilitated by dedicated software (MATLAB®914.0,TheMathWorks
Inc., Natick, MA, USA, and EIDORS 3.11, Open Source). Baseline
measurements were automatically established using a reference
measurement system. To ensure the integrity and reliability of the
measured physiological signals, electrode-skin contact impedance
was continuously monitored by the device’s automated quality
control system. Monitoring contact impedance is a critical technical
quality control measure that is a prerequisite for obtaining reliable
physiological data; it is not a physiological measurement itself.
EIT operates by injecting a small, precise alternating current and
measuring the resulting millivolt-level surface potentials. If the
contact impedance between the electrodes and the skin is too high
or unstable, it can distort the injected current field and introduce
significant noise into the sensitive voltage measurements, rendering
the subsequent data unreliable. Therefore, this procedure verifies a
stable and high-quality connection between the electrodes and the
patient, which is essential forminimizing artifacts andmeasurement
inaccuracies in the acquired voltage data. A multi-stage process
was implemented to minimize measurement inaccuracies from
artifacts. First, at the source, the device’s automated quality control
system continuously monitored electrode-skin contact impedance
to ensure high signal quality. Second, to exclude gross motion
artifacts, the analysis was performed on a 60-s segment of data
that was selected from a longer recording after visual inspection
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TABLE 1 Medical records of each subject.

Characteristic Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Sex Male

Age 64 49 62 68 61 61

Height 168 175 182 163 165 164

BMI 23 35 27 25 24 23

Severity O O O O X O

Comorbidity X X X X X X

Medication use

LAMA Glycopyrronium Glycopyrronium Glycopyrronium Umeclidinium - Umeclidinium

LABA Indacaterol Indacaterol Formoterol Vilanterol Formoterol Vilanterol

SABA Salbutamol - Salbutamol - - -

ICS Budesonide Budesonide Beclometasone Fluticasone Budesonide Fluticasone

OCS Methylprednisolone - - - - -

Blood/serum

Total WBC, N/µl 10.4 8.51 7.53 5.89 11.39 13.85

% Eosinophils 0.4 2.4 1.5 2 0 0.1

% Neutrophils 73.6 60.3 61.3 53.7 91.7 71.3

% Lymphocyte 15.2 28.6 29.9 37.4 5.5 23.5

Additional biomarkers

Total IgE, IU/mL 426 >2000 1381 34.81 165 653

FeNO, ppb 103 25 19 N/A 16 30

Exacerbation History

ICU Hospitalized in the past year 0 0 0 0 0 0

for a stable tidal breathing pattern, free from coughs or significant
body movements. Finally, as detailed in the signal processing
section, a Fast Fourier Transform (FFT)-based filtering technique
was employed to separate the low-frequency impedance changes
associated with ventilation from the higher-frequency signals
associated with cardiac perfusion.

An image reconstruction was performed using a Finite Element
Method (FEM)-based linearized Newton-Raphson algorithm. This
algorithm first reconstructs impedance changes onto an FEM
mesh composed of non-uniform triangular elements that model a
thoracic cross-section. For visualization and subsequent analysis, the
impedance values from this irregular mesh were then interpolated
onto a regular 32 × 32 resolution grid to create the final
image matrix. Reconstruction artifacts—particularly noise and
instability—can arise near the image boundaries, especially in
regions adjacent to the electrodes. To address these artifacts,

we applied a selective boundary filtering technique as a post-
reconstruction step. This spatial filter specifically targets peripheral
elements in the reconstructed image, smoothing them to reduce
boundary-related artifacts and enhance the signal-to-noise ratio
in the central lung regions, which are of primary clinical interest.
Subsequently, linear interpolation was performed to produce a
smooth and continuous image suitable for visual interpretation.

On the same day these measurements were made, PFTs
and high-resolution CT scans were recorded simultaneously.
The CT scans were acquired in the supine position using a
consistent imaging protocol on two SIEMENS Definition scanners
(SOMATOM Definition Flash, Siemens Healthineers, Germany;
SOMATOM Definition AS+, Siemens Healthineers, Germany) to
mitigate inter-scanner variability. The scans were conducted both
at total lung capacity (TLC) and functional residual capacity
(FRC). High-resolution CT (HRCT) helical protocol was employed
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FIGURE 1
An illustration of three different anatomical regions on the chest wall where EIT scanned: (A) upper lung as measured on a patient, (B) middle lung as
measured on a patient, and (C) lower lung as measured on a patient.

throughout with a standardized slice thickness of 0.6 mm. Structural
variables derived from these CT scans underwent normalization to
enhance comparability across subjects. Detailed information on the
imaging protocol is provided in Table 2.

CT-based structural and functional
variables

For the CT image analysis of both TLC and FRC scans,
a commercial segmentation software AVIEW (Corline Soft, Co.,
Ltd., Seoul, Republic of Korea) was used, followed by image
post-processing to extract the desired morphological features of
the bronchial structure, including hydraulic luminal diameter
(Dh) and airway wall thickness (WT) (Choi et al., 2015). The
bronchial tree was automatically segmented and manually labeled
according to anatomical airway structures, allowing for accurate
measurement of these variables, calculated using Equations 1a, 1b,
respectively:

Dh =
4× LA
Pe

(1a)

WT = (Douter −Dave)/2 (1b)

where LA, Pe, Douter, and Dave are luminal cross-sectional area,
perimeter of the cross-section, outer diameter, and luminal diameter
(Figure 2). The Dh and WT were respectively normalized based on
predicted values fromhealthy Korean individuals (Chae et al., 2021),

TABLE 2 Scanner and scanning protocol for CT imaging.

Parameter Specification

Institution PNUYH

Scanner model SIEMENS Definition Flash or SIEMENS AS+

Scan type Helical

Rotation time (s) 1

Detector configuration 1085.6

Pitch 1.5

Peak kilovoltage (kVp) 120

mAs 100

Dose modulation None

Reconstruction algorithm Mediastinum and Lung

Thickness (mm) 0.6

Iterative reconstruction None

using Equations 2a, 2b:

Dtrachea = 12.79− 0.13 log (age) − 5.82 log (height)

× sex+ 3.01 log (age) × log (height) (2a)
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FIGURE 2
(A) Extraction of luminal area, inner perimeter and outer perimeter. (B) A schematic of obtaining hydraulic diameter (Dh) and wall thickness (WT).

WTtrachea = log [9.11− 1.02 log (age) − 0.98 height2

×sex+ 1.01 ⁢height2 × log (age)] (2b)

The Dh and WT were measured at the trachea, left and right
main bronchi, right intermediate bronchus (Bronint), and the four
bronchi (TriRUL, TriLUL, TriRLL, and TriLLB) leading to the
lobes. Furthermore, Dh and WT values were acquired from the
five subgroups within the lobes. Figure 3 depicts the labeling of
26 segmental airways and the categorization into five subgroups of
lobes for the extraction of structural variables.

Figure 4 illustrates original images acquired from static CT and
EIT. From an image registration with two static CT images, we
further acquired parenchymal functional variables, including the
proportion of abnormal regions characterized by CT Hounsfield
units (HU), focusing on fSAD (under −856 HU) and Emphysema
(under −950 HU) (Schroeder et al., 2013). The image registration
also provides the determinant of Jacobian (Jacobian) and the
anisotropic deformation index (ADI) (Choi et al., 2017; Kim et al.,
2022). The Jacobian determinant, a scalar value calculated for each
voxel, quantifies the local volume change of lung parenchyma
between the FRC and TLC states. It is derived from the deformation
field thatmaps the FRC image to theTLC image and serves as a direct
measure of regional lung expansion (Equation 3a). The anisotropic
deformation index (ADI) was also calculated (Equation 3b).

Jacobian = λ1λ2λ3 (3a)

ADI = √(
λ1 − λ2

λ2
)

2
+(

λ2 − λ3

λ3
)

2
(3b)

The functional variables were acquired in five lobes (RUL,
RLL, RML, LUL, and LLL) and whole lung (total). The spatial

data analyzed included Dh and WT from TLC images, along
with the Emph and fSAD both extracted from TLC images. To
account for respiratory-induced deformation, image registration
was performed to align FRC images within the TLC space.
We further obtained CT-based inspiratory capacity (IC), as the
volume difference between total lung capacity (TLC) and functional
residual capacity (FRC) CT images acquired in the supine position,
reflecting the tidal breathing feature, being similar to the slow vital
capacity (SVC).

EIT-based frequency and respiration
variables

The EIT system, configured with the standard adjacent injection
pattern for the Dräger PulmoVista®500, generated a time-series
of impedance images at 10 frames per second. Each 32x32 cross-
sectional image frame was reconstructed from a complete set of
208 voltage measurements acquired over approximately 1/10th of
a second. From this image sequence, a global impedance waveform
was derived. It is crucial to clarify that this waveform is not the signal
from a single electrode pair. Instead, it is produced by integrating the
impedance change values across the entire lung region of interest
for each individual frame to yield a single summary statistic. This
sequence of summary values, when plotted against time, forms the
global impedance waveform, which represents the temporal change
in overall lung aeration (Figure 5A). This waveform, reflecting
tidal breathing, was then transformed into the frequency domain
for analysis using the Fast Fourier Transform (FFT) method
(Figure 5B) (Kerrouche et al., 2001). It is hypothesized that these
frequency components have distinct physiological origins. The low-
frequency signal (typically below 40 breaths per minute) originates
from the large impedance changes caused by air filling and emptying
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FIGURE 3
Location of 26 segmental airways and their respective five subgroups.

from the lungs during the respiratory cycle, thus serving as a direct
measure of regional ventilation. In contrast, the high-frequency
signal, corresponding to the heart rate, originates from the smaller,
pulsatile impedance changes caused by the flow of blood into the
pulmonary vasculature with each heartbeat.

In this research, we adopted a modified approach to distinguish
between perfusion and respiration by employing a filtering
technique based on 2.5 times the peak respiration frequency as
suggested by Caroline A. Grant et al. (Grant et al., 2011). Respiration
components were defined as a frequency range of 2–40 breaths
per minute, and thus frequencies exceeding 40 breaths per minute
can be categorized as perfusion. More specifically, frequencies
below 25 breaths per minute are in the low-frequency region, and
respiration rates above 25 breaths per minute while resting may be
a sign of underlying health. On the other hand, the frequency of
25–40 breaths per minute is in the high-frequency region, where
there is abnormal signal absorption between normal and heart
rates. The respiratory rates per minute of the study subjects were

all less than 25, consistent with the findings from the Cleveland
Clinic indicating that adults have a normal breathing rate of 12–25
breaths per minute at rest (no activity) (Clinica). Furthermore, the
Cleveland Clinic suggests that heart rate typically ranges from 40
to 100 beats per minute, encompassing both sleep and exercise
(Clinicb; Samaan, 2024). These criteria serve as pivotal elements
for frequency distinction. In this study, the integration values
within the three newly defined regions were designated as new
variables for investigating their correlation with CT image variables
in the study (Figure 5B).

Our choice of a 40 Cycles per minute cutoff to distinguish
the lower-frequency ventilation signal from the higher-frequency
cardiac signal is consistent with established practices in EIT analysis.
For instance, prior studies have effectively used similar thresholds
around 40 Cycles per minute to separate these two physiological
signals, demonstrating that our selected cutoff is based on accepted
methodologies in the field (Graf and Riedel, 2017). While we
acknowledge that heart and respiratory rates can vary in diseased
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FIGURE 4
Illustrations of (A) CT and EIT images; (B) image registration-derived metrics of Jacobian and ADI; (C) emphysema (Emph) and functional small airway
disease (fSAD) based on Hounsfield Unit values.

cohorts, a qualitative check was performed for each participant in
this pilot study.We visually inspected the frequency power spectrum
of the global EIT signal for each recording and confirmed a clear
and unambiguous separation between the dominant, low-frequency
respiratory peak and the secondary, high-frequency cardiac peak in
all six cases. This provided confidence that our fixed threshold was
adequate for robustly separating the two signal components in this
specific dataset.

The respiration patterns measured by EIT were utilized to
analyze the association with CT image variables. Each subject’s
breathing was monitored for 60 s over multiple breath cycles, so
that their skewness and integral values could be further computed
(Figure 5E). The integral value was partitioned into left and right
segments based on the peak, and the ratio of these areas was
established as a variable, i.e., E:I ratio. In Figure 5E, left part (I)
corresponds to inhalation, while the right part (E) corresponds to
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FIGURE 5
(A) Illustration of the high frequency found in the impedance change signal over time measured through EIT, (B) Schematic of the low, high frequency
and perfusion after fast Fourier transform, (C) Perfusion signal separated from impedance change signal over time, (D) Multiple breathing cycles of a
patient measured through EIT for 60 s, and (E) Inspiration (I):expiration (E) ratio and skewness of the patient.
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FIGURE 6
Breathing patterns of (A) a subject with relatively high FEV1/FVC (64%), and (B) a subject with low FEV1/FVC (32%).

exhalation. While the value of I is relatively stable across subjects,
there is considerable variability in E among patients. Therefore, the
E:I ratio was calculated by dividing E by I. The correlation between
CT image variables and the exhalation and inhalation (E:I) ratios
was further investigated.

Statistical analysis

Statistical analyses were conducted to explore the relationships
among variables derived from EIT, CT, and PFTs variables.
Spearman correlation coefficients (ρ) and their corresponding P
values were computed to assess their associations. Furthermore, to
account for the small sample size and aid in evaluating the strength
and precision of the associations, 95% confidence intervals were
also presented for all reported correlation coefficients. A significance
level of P < 0.01 was taken. All data preprocessing and statistical
analyses were performed using Python version 3.11.

Results

Breathing patterns of subjects with high
FEV1/FVC vs. low FEV1/FVC

The respiratory patterns showed distinct characteristics
depending on the subject’s lung function status. First of all, we
compared breathing patterns of two subjects with relatively high
FEV1/FVC (64%) vs. low FEV1/FVC (32%). Figure 6A illustrates
the respiratory pattern of patients with high PFTs, while Figure 6B
represents the respiratory pattern of patients with low PFTs. Overall
impedance values during inspiration seem to be similar between
two subjects, but they were quite different during expiration. The
subject with better lung function has sharp drop of impedance, but
the subject with lower lung function has gradual decline of the slope.
Thus, as lung function deteriorates, the expiratory phase tends to
lengthen relative to the inspiratory phase. This prolonged expiratory

phase in subjects with poor lung function suggests increased airway
resistance, typical characteristics of asthma.

Correlation between EIT and pulmonary
function (PFTs and CT) results

Our analysis revealed significant relationships between electrical
impedance measurements and conventional pulmonary function
tests, particularly in the upper lung regions. In Figure 7, an increase
in the high-frequency value of the upper lung (U-High, EIT) was
associated with a decrease in the FEV1/FVC ratio (PFTs) at pre-
bronchodilator. Similarly, an increase in the skewness of the upper
lung (U-Skewness, EIT) was significantly correlated with a decrease
in the FEV1/FVC ratio before bronchodilator.

We also analyzed CT-based IC, measured in the supine position,
which reflects tidal breathing characteristics. The IC demonstrated
a strong negative correlation with the E:I ratio in the upper lung
(ρ = −0.90), a hysteresis-related variable. IC exhibited trends
similar to FVC and showed direct relevance to the evaluation
of lung function under tidal breathing conditions. Notably, IC
effectively captured hysteresis parameters derived from EIT that
reflect breathing patterns during tidal breathing.

Correlation between EIT and CT-based
structural variables

The analysis demonstrated multiple significant correlations
between airway dimensions measured by CT and ventilation
distribution patterns measured by EIT. Figure 8 illustrates the
correlation between CT-based structural parameters and EIT
respiratory frequency parameters. In the main branches, an increase
in the wall thickness (WT) of TriRUL and TriLLB (CT) was
associated with an increase in the low-frequency value of the upper
lung (U-Low, EIT). Similarly, in the sub-branches, an increase in
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FIGURE 7
Spearman correlation of EIT-based (A) breathing frequency, (B) E:I ratio and skewness with pulmonary function metrics from PFTs and CT (e.g., IC).
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the hydraulic diameter (Dh) of sRML (CT) was associated with an
increase in the low-frequency value of the upper lung (U-Low, EIT).

Among the respiratory hysteresis variables obtained through
EIT, the exhalation-to-inhalation (E:I) ratio in the upper lung (U-
E:I, EIT) showed a significant correlation with structural variables
obtained through qCT. In the main branches, a smaller Dh in the
trachea and TriLLB (CT) were associated with higher U-E:I values.
In the sub-branches, the Dh of sLUL decreased with increasing
E:I ratio in the middle lung lobe (M-E:I, EIT), while the Dh of
sLLL decreased with increasing skewness in the lower lung lobe
(L-skewness, EIT).

Correlation between EIT and CT-based
functional variables

Quantitative analysis revealed strong associations between
regional ventilation patterns measured by EIT and lung tissue
characteristics assessed by CT. Figure 9 illustrates significant
associations between qCT-based functional variables and EIT-
based indicators. An increase in EIT-based high-frequency values
in the upper lung (U-High, EIT) showed a significant positive
correlation with an increase in emphysema (Emph) in the left
lower lobe (LLL). Additionally, U-High was strongly associated
with an increase in functional small airway disease (fSAD) in the
lower lung (ρ in the left lower lobe = 0.90, ρ in the right lower
lobe = 0.90). Conversely, an increase in low-frequency values in the
upper lung was correlated with a decrease in disease severity. These
findings suggest that high-frequency components are significantly
associated with structural and functional changes, as reflected by
Emph and fSAD. Furthermore, an increase in U-High in the
left upper lobe (LUL) was associated with a reduction in the
anisotropic deformation index (ADI). Similarly, increased perfusion
was correlated with decreases in both the Jacobian and ADI values.

Regarding respiratory hysteresis variables derived from EIT, an
increase in U-Skewness was significantly associated with a decrease
in ADI in the left upper lobe (LUL). Moreover, the Jacobian value
in the LLL decreased with increasing U-E:I values, while the M-E:I
value increased with a decrease in the Jacobian value in the right
middle lobe (RML). These comprehensive correlations between
EIT and CT parameters demonstrate that EIT can effectively
capture both the structural and functional aspects of lung disease,
particularly in detecting regional variations in ventilation and tissue
characteristics.

Discussion

For the purpose of comparing CT vs. EIT metrics, we
prospectively collected a set of CT images including inspiration
and expiration scans, and EIT data from six participants with
asthma. Furthermore, PFTs were performed in pre- and post-
bronchodilators. Using fast Fourier transform, the temporal metrics
of impedances from EIT were transformed into frequency domains,
characterized by low frequency, high frequency, and perfusion.
We conducted Spearman’s correlations to explore the relationships
among EIT, CT, and PFT metrics for better understanding

pathophysiology from the temporal and spatial signals provided by
different modalities.

Although tidal breathing and forced exhalation represent
distinct respiratory patterns, both reflect the functional status of the
same respiratory system. Fundamental physiological mechanisms
influencing lung function—such as airway resistance, airway
narrowing, lung elasticity, lung compliance, and the mechanical
properties of the thoracic wall—are active in both breathing
patterns. While correlations were observed between EIT-derived
metrics obtained during tidal breathing and traditional PFT
results, these findings must be interpreted with caution. Pulmonary
function tests (PFTs) remain the gold standard for assessing
global lung function. Our data do not suggest that EIT can
replace spirometry. Rather, they indicate that integrating EIT
with PFTs may offer a more comprehensive understanding of
lung pathophysiology in asthma. EIT provides novel regional
insights into the spatial and temporal heterogeneity of ventilation
that are not captured by the global metrics of PFTs, thereby
serving as a complementary—rather than substitutive—modality.
Frequency domain analysis using Fourier transform enables the
decomposition of impedance variation patterns over time, isolating
contributions from specific frequency bands. These frequency
components quantitatively reflect the patient’s overall pulmonary
function, allowing for correlation analysis with pulmonary function
test (PFT) results obtained from forced maneuvers. The correlation
between tidal breathing and PFT results from forced maneuvers
has been demonstrated in multiple studies (Frerichs et al.,
2016; Hebbink et al., 2024; Qu et al., 2025; Cui et al., 2024;
Vogt et al., 2016; Reinartz et al., 2019). Notably, both methods
provide complementary information, particularly in assessing
ventilation distribution. Furthermore, tidal breathing reflects a
patient’s typical daily respiratory pattern, offering a different
perspective on lung function compared to forced maneuvers.
By analyzing the correlation between these two measurement
techniques, it is possible to gain insights into the relationship
between routine breathing conditions and maximal respiratory
capacity. In this study, we compared CT-based IC with EIT metrics
and observed similar correlation patterns. The IC, reflecting volume
changes similar to SVC, demonstrated consistent associations
with frequency-domain and hysteresis-related variables obtained
from EIT, reinforcing the relevance of EIT-derived parameters
in evaluating pulmonary function under spontaneous breathing
conditions. Among the three anatomically segmented andmeasured
regions, the upper part exhibited a distinct respiratory pattern, due
to the fact that EIT measurements were taken during tidal breathing
in the supine position. This study demonstrated that subjects
with low-frequency dominance in EIT are likely to have better
CT features, whereas subjects with high-frequency dominance
are likely to have an alteration of CT features such as elevated
Emph% and fSAD%.

Previous studies by Cristiano et al. and Binks et al. (Cristiano
and Schwartzstein, 1997; Binks et al., 2001) suggest that stimulation
of lung receptors by thoracic vibrations can potentially alter the
perception of dyspnea. Additionally, Eckmann et al. (Eckmann
and Gavriely, 1996) noted that these vibrations may enhance
respiratory function by improving gas exchange within the central
airways. In this study, the high-frequency variable in the upper
lung showed a significant positive correlation with emphysema
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FIGURE 8
(Continued).
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FIGURE 8
(Continued). Spearman correlations of EIT-based (A) breathing frequency, (B) breathing hysteresis (E: I ratio and skewness) with CT segmental
structural metrics.

(Emph%) and functional small airway disease (fSAD%) in the
lower lobes. Conversely, Jacobian and ADI—representing the
magnitude and features of regional lung deformation—were
negatively correlated with both the expiratory-to-inspiratory ratio
and signal skewness. Although the precise physiological mechanism
underlying these intra-thoracic associations remains unclear, one
possible explanation involves cardiopulmonary interactions or
the transmission of thoracic vibrations that influence regional
ventilation dynamics. These high-frequency components may
reflect compensatory or pathological processes related to dyspnea
perception, gas exchange, and respiratory function. While causality
cannot be established from the present data, our findings offer a
novel perspective on inter-lobar relationships in obstructive lung
disease and underscore the need for further research to explore
these complex interactions. The EIT-derived perfusion signal,
which is influenced by the cardiac rate, was found to correlate

with Jacobian and ADI values—metrics that reflect the degree of
lung deformation. It is known that in asthma, complex processes
involving hypoxia, sympathetic nervous system activation, and
bronchoconstriction contribute to ventilation-perfusion mismatch.
Our observed correlation between the EIT perfusion signal and
deformation metrics could potentially be a reflection of these
underlying processes. However, we must state clearly that this is a
hypothesis. Our study was not designed to establish a mechanistic
link, and further investigation is required to understand the precise
relationship between cardiac-related EIT signals and regional
lung mechanics in asthma (Bhandary, 2015; Gayen et al., 2024;
Tanabe et al., 2024; Hopkins, 2020).

Furthermore, exhalation-to-inhalation ratio (E:I), a breathing
hysteresis variable derived from EIT, consistently correlated with
the structural variable Dh from CT across the both main and sub-
branches. It was found that the larger the E:I variable obtained
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FIGURE 9
(Continued).
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FIGURE 9
(Continued). Spearman correlation of EIT-based (A) breathing frequency, (B) breathing hysteresis (E: I ratio and skewness) with CT parenchymal
functional metrics.

throughEIT, the smaller hydraulic diameter. For respiratory patterns
in normal subjects, the ratio of E:I is relatively shorter. The normal
E:I for spontaneously breathing patients is typically about 3:1 to
5:1, i.e., the expiratory time ratio is 3–5 times longer than the
intake time ratio (F. L. MD). The correlation between CT and EIT
was reconfirmed by the PFT results. The FEV1/FVC results are
consistent with functional parameters observed in high-frequency
vibrations of the upper lobes. Furthermore, an elevated U-skewness
variable indicates impaired lung function, as evidenced by the
PFT results. This finding consistently correlates with a reduced Dh,
increased fSAD, and decreased ADI values. These results suggest
that the skewness variables derived from EIT may reflect both the
structural and functional characteristics observed in CT imaging
and Pulmonary function tests.

This study has several limitations. The most significant is the
small sample size of six participants, which inherently limits the
statistical power and the generalizability of our findings. This study
was conceived as a pilot or hypothesis-generating study, with the

primary goal of assessing the feasibility of integrating two complex
imaging modalities—EIT and qCT—and generating preliminary
data for future, larger-scale validation studies. The small cohort
was a result of the practical constraints of a 1-year institutional
research project. To address the limitations of the sample size
and to aid in the interpretation of the strength and precision
of the associations, we have reported 95% confidence intervals
for all correlation coefficients. Consequently, all interpretations
and conclusions are presented cautiously within the exploratory
nature of this research. We emphasize that these preliminary results
require rigorous verification through future studies with sufficient
statistical power.

A key limitation of our study is the lack of correction formultiple
comparisons.Given the large number of correlations performed, this
increases the risk of Type I errors. However, due to the exploratory
nature and very small sample size of this pilot study (N = 6), we
prioritized the exploration of potential trends over the strict control
of false positives, which could have masked important signals due
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to low statistical power. Therefore, the findings presented here
should be interpretedwith caution as preliminary results that require
validation in future, larger-scale studies.

A second limitation pertains to the spatial correspondence
between the three vertical EIT electrode planes and the actual
lung lobes. We acknowledge that assuming a direct, one-to-one
mapping is an oversimplification, dictated by the inherently low
spatial resolution of EIT as a functional imaging modality. This
simplification introduces a potential for spatial misregistration,
where signals from one lung region could be attributed to an
adjacent measurement plane. As stated in the Methods, our primary
goal was to assess broad functional gradients along the vertical axis
rather than to achieve precise lobar segmentation. Nevertheless,
we have added this assumption as a key limitation, as it may
compromise the spatial accuracy of signal attribution.

A third limitation pertains to the methodological interpretation
of the EIT frequency components. We acknowledge the inherent
complexities and potential for spectral overlap in this technique.
Crucially, the perfusion-related signal is an indirect surrogate and
does not represent a direct measurement of absolute blood flow.
The validity of this signal as a quantitative perfusion metric is an
area of ongoing research, as it can be influenced by factors other
than blood flow, such as vascular tone, airway pressure, and the
mechanical motion of the heart itself. However, while recognizing
this ambiguity, we maintain that investigating the correlation
between these frequency-separated signals and structural changes
seen on CT is a valid and valuable exploratory approach. It allows us
to generate novel hypotheses about how ventilation and perfusion
patterns relate to the underlying pathophysiology in asthma.

Additionally, this study utilized fixed frequency thresholds to
separate signal components without a formal sensitivity analysis.
While our qualitative visual inspection confirmed clear signal
separation in our cohort, we recognize that these fixed thresholds
may not be universally optimal for all patients, especially in
diverse diseased populations with significant variability in heart
and respiratory rates. This represents a methodological limitation,
and future studies could be improved by implementing patient-
specific adaptive filtering techniques to more robustly account for
such inter-individual variability.

These findings offer a perspective on how EIT-derived temporal
signals can provide complementary insights into pulmonary
dynamics, which are not captured by static quantitativeCT variables.
By highlighting the relationship between regional EIT metrics and
both structural (CT) and global functional (PFT) assessments, this
work suggests that EIT may be a useful tool alongside established
methods, potentially paving the way for a deeper, more integrated
understanding of the respiratory system in asthma.
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Glossary

qCT quantitative Computed Tomography

EIT Electrical Impedance Tomography

PFTs Pulmonary Function Tests

Emph Emphysema

fSAD functional Small Airway Disease

ADI Anisotropic Deformation Index

WT Wall Thickness

Dh hydraulic Diameter

Dout outer Diameter

Dave average Diameter

LA Luminal Area

Pe Perimeter of the luminal area

FEV1 Forced Expiratory Volume in one second

FVC Forced Vital Capacity

FEF25%-75% Forced Expiratory Flow between 25% and 75% of vital capacity

IC Inspiratory Capacity

SVC Slow Vital Capacity

U-High Upper lung High frequency

U-Low Upper lung Low frequency

U-perfusion Upper lung perfusion rate

M-High Middle lung High frequency

M-Low Middle lung Low frequency

M-perfusion Middle lung perfusion rate

L-High Lower lung High frequency

L-Low Lower lung Low frequency

L-perfusion Lower lung perfusion rate

U-E:I Upper lung ratio of Expiratory to Inspiratory

M-E:I Middle lung ratio of Expiratory to Inspiratory

L-E:I Lower lung ratio of Expiratory to Inspiratory

U-skew Upper lung skewness

M-skew Middle lung skewness

L-skew Lower lung skewness

FFT Fast Fourier Transform

RUL Right Upper Lobe

RML Right Middle Lobe

RLL Right Lower Lobe

LUL Left Upper Lobe

LLL Left Lower Lobe

BronInt Bronchus Intermedius

RMB Right Main Bronchus

LMB Left Main Bronchus

TriRUL Trifurcation of Right Upper Lobe

TriLUL Trifurcation of Left Upper Lobe

sRUL subgroupedRightUpper Lobe including branches of RB1 toRB3

sRML subgrouped Right Middle Lobe including branches of

RB4 and RB5

sRLL subgrouped Right Lower Lobe including branches of

RB6 to RB10

sLUL subgrouped Left Upper Lobe including branches of LB1 to LB5

sLLL subgrouped Left Lower Lobe including branches of LB6 to LB10

BMI Body Mass Index

LAMA Long-Acting Muscarinic Antagonists

LABA Long-Acting β2-adrenergic Agonists

SABA Short-Acting β2-adnergic Agonists

ICS Inhaled Corticosteroids

OCS Oral Corticosteroids

WBC White Blood Cell

IgE Immunoglobulin E

FeNO Fraction of exhaled Nitric Oxide
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