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Introduction: Digital twins of the respiratory system have shown promise in 
predicting the patient-specific response of lungs connected to mechanical 
ventilation. However, modeling the spatiotemporal response of the lung tissue 
through high-fidelity numerical simulations involves computing times that 
largely exceed those required in clinical applications. In this work, we present 
a multi-fidelity deep learning surrogate model to efficiently and accurately 
predict the poromechanical fields that arise in lungs connected to mechanical 
ventilation.
Methods: We generate training datasets with two fidelity levels from non-
linear finite-element simulations on coarse (low-fidelity) and fine (high-
fidelity) discretizations of the lungs domain. Further, we reduce the output 
spatiotemporal dimensionality using singular value decomposition, capturing 
over 99% of the variance in both displacement and alveolar pressure fields 
with only a few principal components. Based on this procedure, we learn 
both the input-output mappings and fidelity correlations by training a reduced-
order multi-fidelity neural network model (rMFNN) that leverages the abundant 
low-fidelity data to enhance predictions from scarce high-fidelity simulations.
Results: Compared to a reduced-order single-fidelity neural network (rSFNN) 
surrogate, the rMFNN achieves superior predictive accuracy in predicting 
spatiotemporal displacement and alveolar pressure fields (R2 ≥ 93% (rMFNN) 
vs R2 ≥ 75% (rSFNN)). In addition, we show that rMFNN outperforms rSFNN in 
terms of accuracy for the same level of training cost. Further, the rMFNN model 
provides inference times of less than a minute, offering speed-ups up to 462× 
when compared to finite-element numerical simulations.
Discussion: These results demonstrate the potential of the rMFNN lung model 
to enable patient-specific predictions in acceptable computing times that can 
be used to personalize mechanical ventilation therapy in critical patients.
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lung poromechanics, multi-fidelity neural networks, reduced order modeling, 
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 1 Introduction

Mechanical ventilation (MV) is the standard-of-care therapy for patients suffering 
from acute respiratory distress syndrome, as it ensures adequate gas exchange in critical
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conditions (Agrawal et al., 2021). MV played a vital role during 
the recent COVID-19 pandemic, which affected over 700 million 
people globally (Dong et al., 2020), with many hospitalized 
individuals requiring ventilatory support in intensive care units 
(ICUs) (Petrilli et al., 2020; Grasselli et al., 2020). Despite 
its massive use, determining optimal, patient-specific ventilator 
settings remains a major challenge in clinical practice. Suboptimal 
configurations can lead to adverse outcomes, such as ventilator-
induced lung injury, which can significantly worsen the prognosis 
of the patient (Madahar and Beitler, 2020).

A growing trend in medical translational research is the 
construction of digital twins, i.e., computational models of the 
human respiratory system to support the design of personalized 
ventilation therapies (Zhou et al., 2021; Sun et al., 2024). Finite 
element (FE) poromechanical models of the lungs, constructed 
from patient-specific medical images, have recently demonstrated 
the ability to reproduce the dynamic interplay between lung tissue 
and airflow during MV. These models can accurately simulate the 
spatiotemporal mechanical behavior of lung tissue and predict 
respiratory mechanics within clinically observed ranges (Avilés-
Rojas and Hurtado, 2022; Hurtado et al., 2023). Despite their 
promise, the substantial computational demands of such high-
fidelity simulations hinder their practical adoption in time-sensitive 
clinical settings. Therefore, a key challenge is to accelerate lung 
model predictions without compromising their accuracy.

A common approach to accelerating computational predictions 
of complex models is the creation of surrogate models, i.e., 
computationally-efficient models capable of approximating 
quantities of interest of high-fidelity simulations. Recent advances 
in machine learning (ML) have enabled the creation of increasingly 
powerful surrogate models or emulators in applications ranging 
from predicting material behavior (Wei et al., 2019) to weather 
forecasting (Chen et al., 2023) and fluid dynamics (Brunton et al., 
2020). However, the effectiveness of ML-based surrogate models 
heavily relies on the availability of large, high-quality datasets 
for training and validation—a condition that is often unmet 
in biomedical and biomechanical applications, where data are 
typically limited, heterogeneous, and challenging to acquire. 
Furthermore, for complex physical models, especially those with 
high dimensionality and computational cost, assembling such 
datasets can be prohibitively expensive.

To address the previous limitation, multi-fidelity (MF) surrogate 
modeling has emerged as a promising strategy. By combining 
the scarce and expensive high-fidelity simulations with a vast 
number of lower quality but fast to compute simulations, MF 
models can exploit correlations between these fidelity levels 
to efficiently approximate the high-fidelity response of complex 
systems (Fernández-Godino, 2016). In the biomechanical field, 
Gaussian Processes (GPs) models have pioneered in MF surrogate 
modeling, with applications in drug response modeling (Sahli-
Costabal et al., 2019), tissue growth dynamics (Lee et al., 2020; 
Han et al., 2022), arrhythmia prediction (Gander et al., 2022), and 
global respiratory mechanics estimation (Barahona et al., 2024). 
However, traditional GP models are generally limited to low-
dimensional output predictions and do not scale well for high-
dimensional problems (Liu et al., 2018; Gilboa et al., 2013).

Recent deep learning-based (DL) surrogate models via neural 
networks (NN s) offer a more scalable alternative for learning 

the solution fields of high-dimensional problems. Multi-fidelity 
neural networks (MFNNs) have recently been proposed to 
approximate complex, high-dimensional outputs arising from 
finite element models (Aydin et al., 2019; Meng and Karniadakis, 
2020; Meng et al., 2021; Guo et al., 2022; Pawar et al., 2022a). 
Nevertheless, emulating physical systems with millions of degrees 
of freedom—especially when accounting for multiphysics or 
time-dependent behavior—remains computationally demanding. 
This has led to the adoption of dimensionality reduction 
techniques, which compress large-scale simulation data into 
compact representations. In physics problems, these methods 
have been successfully applied in surrogate modeling across 
spatial (Lee et al., 2018; Eivazi et al., 2020; Conti et al., 2024; 
Tong et al., 2024), temporal (Bellamine and Elkamel, 2008; Liu et al., 
2021), and spatiotemporal domains (Greve and van de Weg, 2022; 
Fresca and Manzoni, 2022; Schneider et al., 2024). Recent efforts 
have combined dimensionality reduction with MFNNs to model 
wind turbine wake flows (Pawar et al., 2022b) and monitor 
structural health (Torzoni et al., 2023). Despite these advances, 
the use of multi-fidelity, reduced-order deep learning techniques 
in modeling complex physiological systems with translational 
applications in medicine remains underexplored.

In this work, we develop a framework that leverages a state-
of-the-art- multi-fidelity neural network with a dimensionality 
reduction technique to efficiently train and predict the 
spatiotemporal poromechanical response of human lungs under 
MV. We evaluate the model performance in predicting displacement 
and alveolar pressure fields throughout the lung domain. In 
Section 2, we revisit a continuum poromechanical formulation 
of the lungs suitable for patient-specific simulation and generate 
FE simulations at two fidelity levels using fine and coarse mesh 
discretizations. We then apply a dimensionality reduction technique 
to transform the high-dimensional spatiotemporal responses into 
low-dimensional representations via principal components. Based 
on this, we train a reduced-order multi-fidelity neural network 
(rMFNN) using both high- and low-fidelity data collected across 
a range of physiological and mechanical parameters. In Section 3, 
we assess the accuracy of the dimensionality reduction and the 
predictive capabilities of the proposed multi-fidelity model, and 
compare its performance with that of a single-fidelity neural network 
model. Finally, in Section 4, we discuss the benefits and limitations of 
the proposed framework and outline directions for future research. 

2 Materials and methods

2.1 Lung poromechanical modeling

To represent the mechanical interaction between airflow 
and tissue deformation, we follow a continuum poromechanical 
formulation for continuum lung dynamic simulations (Avilés-Rojas 
and Hurtado, 2022). This framework considers the lung parenchyma 
as a continuum deformable porous medium subject to displacement, 
traction, flux, and airway pressure boundary conditions. Let Ω0 ∈ ℝ3

be the lung domain in the reference configuration, and Ωt ∈ ℝ3 its 
current configuration at the time instant t ∈ ℝ, which is uniquely 
determined by the deformation mapping φ:Ω0 ×ℝ→ℝ3 such that 
Ωt = φ(Ω0, t). The deformation gradient is given by F ≔ ∇φ(X, t) and 
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the Jacobian is defined as J≔ det (F). We assume that alveolar gas 
and tissue colocate in the lung domain and that their interaction 
is governed by conservation laws. Neglecting inertial terms and 
viscous stresses, and assuming incompressibility of both gas and 
tissue phases, one can show that the material formulation of mass 
and linear momentum balance read.

Div (P) +B = 0, inΩ0 ×ℝ, (1)

∂φ
∂t
+Div (Q) = 0, inΩ0 ×ℝ, (2)

respectively, where in Equation 1, P is the first Piola-Kirchhoff 
stress tensor, and in Equation 2, Q corresponds to the material 
airflow field. Further, we assume that airflow follows Darcy’s law,

Q = 1
η

JF−1κF−T [−grad(Palv) + ρaF
TB] , (3)

where Palv in Equation 3 is the material alveolar pressure field, κ =
κI  is the intrinsic permeability tensor for an isotropic medium with 
permeability κ, and η represents the gas dynamic viscosity. The 
term B represents the material body (gravity) force density field. 
Although gravity is known to influence regional lung mechanics 
(e.g., dependent vs non-dependent regions), we neglected body 
forces in this work to simplify the formulation and isolate the effects 
of ventilator settings on the poromechanical response.

To represent the mechanical behavior of lung parenchyma, we 
considered a Blatz-Ko type hyperelastic model with strain energy 
function (Birzle et al., 2019) given by

W (C) = c (I1 ⁢ (C) − 3) + c
β
⁢ (I3 ⁢(C)−β − 1) + c1

⁢(I1 (C) I3(C)−1/3 − 3)d1 + c3 ⁢(I3(C)1/3 − 1)d3 , (4)

where in Equation 4 C is the right Cauchy-Green tensor, and I1(C), 
I3(C) are the corresponding invariants of C. The parameters c and 
β are related to the Young’s modulus E and Poisson’s ratio ν by E =
4c(1+ ν) and ν = β/(1+ 2β), respectively. 

2.2 Finite element modeling of high-fidelity 
and low-fidelity lung poromechanics

Using the described poromechanical formulation, we 
constructed low-fidelity and high-fidelity finite element models 
of human lungs under mechanical ventilation. The anatomical 
domain was extracted from 3D computed tomography (CT) images 
of human subjects at end-of-expiration, previously reported by our 
group (Hurtado et al., 2017), see Figure 1A. To create anatomical 
tetrahedral models, we performed image segmentation and mesh 
generation following the procedures detailed in (Hurtado et al., 
2016). The high-fidelity model resulted in left and right lungs 
with 45,288 and 59,355 elements, respectively, see Figure 1B). In 
the case of the low-fidelity model, the left and right lung meshes 
comprised 2,499 and 3,282 elements, respectively, see Figure 1C). 
We partitioned each model surface into two boundaries: the 
airway inlet surface and the visceral pleural surface, whose union 
comprises the entire lung surface. Based on this boundary partition, 
we simulated a pressure-controlled ventilation (PCV) mode by 
prescribing a pressure P̄ at the airway inlet boundary, denoted Γaw. 

We highlight that for the high-fidelity model, we prescribed the 
pressure in three disconnected airway boundary surfaces, which we 
determined by considering the surface encompassing bifurcations 
from the mediastinal surface down to the lobar bronchi (Figure 1B). 
For the low-fidelity model, we prescribed the airway pressure only 
on one surface, due to the proximity of airways in the coarser mesh 
discretization (Figure 1C). To model the interaction of the lung 
with the chest wall, we considered spring elements with stiffness 
coefficient Ks to apply a Robin condition of the form T̄(X) =
Ks {φ(X) −X} (Figures 1B,C).

We represented the PCV mode with a time-dependent pressure 
function P̄(t) on the airway boundary that resembles the ventilator 
square wave pressure signals employed in clinical applications. 
At the onset of inspiration, this function linearly increased until 
reaching and maintaining a peak inspiratory pressure (PIP), such 
that P̄ = PIP. Then, the pressure returned to zero during the 
expiratory phase (P̄ = 0), after which the respiratory cycle repeats. 
We considered 2 respiratory cycles. To simulate a normal lung at rest, 
each respiratory cycle considered 1 s of inspiration followed by 2 s 
of expiration, which is equivalent to a respiratory rate of 20 breaths 
per minute (Bellani, 2022).

Table 1 shows the baseline values for all of the lung model 
parameters, which have been shown to deliver a mechanical 
and global physiological response that is in the range of those 
reported for normal human lungs (Avilés-Rojas and Hurtado, 
2022; Barahona et al., 2024). These parameters encompass the 
PIP pressure value (P̄PIP) set on the mechanical ventilator, the 
tissue constitutive model, the porous medium permeability, and 
the chest wall boundary condition. We also considered a ±50% 
range around these baseline values to define a parameter space 
from which sampling points are randomly drawn during the dataset 
generation for training the surrogate. As shown in (Barahona et al., 
2024), the lung mechanical response is not sensitive to variations 
in parameters d1 and d3, and thus we kept these parameters fixed 
to avoid redundancy. For simplicity, we define the parameter vector 
ξ = [P̄PIP,c,β,c1,c3,k,Ks]

⊤, which will take values on the parameter 
space Ξ ∈ ℝ7 defined by the cartesian product of the intervals 
defined in Table 1.

For the spatiotemporal discretization of the poromechanics 
formulation, we employed a backward Euler time-integration 
scheme and a standard Galerkin multi-field FE discretization 
(Avilés-Rojas and Hurtado, 2022; Hurtado and Zavala, 2021). This 
numerical scheme was implemented using the FEniCS library 
(Alnæs et al., 2015), running all simulations in Python 3.8. We 
denote the FE simulator as S(ξ), where ξ is the input parameter 
vector (Figure 2A). Once a high- or low-fidelity FE lung simulation 
is completed, we obtain the spatiotemporal response Y = S(ξ). This 
response consists of a time series of 4 quantities: the displacement 
field components ux,uy,uz and the alveolar pressure palv for each 
node of the mesh. Therefore, for each lung and fidelity level, the 
response is a 3-D array with shape Y ∈ ℝ4×K×T, where K is the total 
number of mesh nodes and T is the number of simulated time steps. 
Each simulation covered 2 respiratory cycles encompassing T = 120
time steps. Once the FE simulations are carried out, we can further 
compute the lung tidal volume, flow, and airway pressure signals as.

Vsim (t) ≔ ∫
Ω0

J (t)dΩ0 −Vlung,0, (5)
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FIGURE 1
Construction of high-fidelity and low-fidelity lung finite element models. (A) From a patient-specific chest computed tomography image, we 
determine the lung domain, from which we generate finite element tetrahedral meshes for (B) the high-fidelity model (fine mesh), and for the (C)
low-fidelity model (coarse mesh). Red element surfaces denote the regions where boundary conditions are prescribed. The remaining boundary is 
subject to linear springs to represent the stiffness of the chest wall that surrounds the lung.

TABLE 1  Lung model parameters, baseline values, and intervals for the 
parameter space considered in lung simulations.

Parameter Units Baseline 
value

±50% range

P̄PIP cm H20 6 [3,9]

c kPa 0.3567 [0.1784,0.5351]

β − 1.075 [0.5375,1.6125]

c1 kPa 0.2782 [0.1391,0.4173]

c3 kPa 5.766 ⋅ 103 [2.8830,8.6490] ⋅
103

d1 − 3 fixed parameter

d3 − 6 fixed parameter

k mm2/kPa ⋅ s 1 ⋅ 104 [0.5,1.5] ⋅ 104

Ks kPa/mm 80 ⋅ 10−3 [40,120] ⋅ 10−3

V̇sim (t) =
∂Vsim (t)
∂t
, (6)

Paw,sim (t) ≔ P̄ (t) , (7)

where in Equation 5 Vlung,0 is the lung volume in the reference 
configuration (end-of-expiration) and in Equation 6 Vsim(t) is 
the lung volume at time t. Using these signals, we estimate lung 
mechanics parameters such as the respiratory-system compliance 
Crs and airway resistance R from least-squares regression. We refer 
the interested reader to (Avilés-Rojas and Hurtado, 2022) for further 
details of the parameter estimation procedure.

2.3 Dimensionality reduction of 
spatiotemporal datasets

We reduce the dimensionality of the simulation datasets via 
singular value decomposition (SVD). Let F ∈ {H,L} denote the 

fidelity label, where H and L correspond to a high or low-fidelity 
simulation, respectively. To construct the datasets, we sampled 
NF parameter vectors {ξF

n}n=1,…,NF
 from the parameter domain 

Ξ (Figure 2B). For each parameter vector ξF
n we run a lung 

simulation (S(ξF
n)), obtaining the corresponding spatiotemporal 

response YF
n . We denote by q any of the four simulated quantities 

in YF
n (ux,uy,uz,palv). For each q ∈ ℝK×T we apply a flatten 

operation to produce a horizontally concatenated vector zF,q
n =

{zF,q
t1,n,z

F,q
t2,n,z

F,q
t3,n,…,z

F,q
tT,n}, where zF,q

ti,n ∈ ℝ
K contains the nodal 

solutions of q at time instant ti. We note that zF
n ∈ ℝM, with M =

K ⋅T. By doing a vertical stack of all the concatenated vectors from 
the NF simulations, {zF

n}n=1,…,NF
, we obtain for q an output matrix 

ZF,q ∈ ℝNF×M

ZF,q =

[[[[[[[

[

zF,q
1

zF,q
2

⋮

zF,q
NF

]]]]]]]

]

=

[[[[[[[

[

zF,q
t1,1

zF,q
t2,1

zF,q
t3,1
… zF,q

tT,1

zF,q
t1,2

zF,q
t2,2

zF,q
t3,2
… zF,q

tT,2

⋮ ⋮ ⋮ ⋱ ⋮

zF,q
t1,NF

zF
t2,NF

zF,q
t3,NF
… zF,q

tT,NF

]]]]]]]

]

. (8)

From Equation 8, we note that, since four separate output 
matrices are generated for each lung and each fidelity level, this 
leads to a total of 4× 2× 2 = 16 distinct datasets. We also emphasize 
that each sampled parameter vector ξF

n implies running a simulation 
for both the left and right lungs. The high dimensionality of M
makes it unfeasible to train a neural network to directly predict the 
output array ZF,q. Nevertheless, we assume that the simulated lung 
response should be highly correlated. Spatially, the displacement 
and alveolar pressure fields in lung tissue are expected to exhibit 
smooth and coherent variations across adjacent/neighbor nodes 
Xi,Xj. Temporally, the values of the simulated fields in a certain 
nodal location Xi between consecutive time steps tn, tn+1 should also 
exhibit a high correlation. These observations motivate us to apply a 
dimensionality reduction technique in order to efficiently train the 
surrogate model. Performing an SVD on each dataset matrix ZF,q

(Figure 2C) results in

ZF,q = UF,qΣF,qWF,q⊤, (9)

where in Equation 9, UF,q ∈ ℝNF×NF  is an orthogonal matrix whose 
columns are called the left singular vectors of ZF,q, ΣF,q ∈ ℝNF×M is 
a rectangular diagonal matrix whose values are the singular values 
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FIGURE 2
Dataset generation to train the multi-fidelity surrogate model. (A) We refer to FE lung simulation as S, which takes as input the parameter vector ξ and 
produces a spatiotemporal response of the lungs (displacement and alveolar pressure fields) during the respiratory cycle, i.e., z = S(ξ). (B) For each 
fidelity level F, we perform NF simulations to generate an output dataset matrix ZF, with NH ≪NL. (C) We then perform an SVD to reduce the high 
dimensionality of the spatiotemporal response in both datasets. This process yields a scores matrix YF

k ∈ ℝ
NF×M of k principal components. We utilize this 

reduced dataset to efficiently train a multi-fidelity neural network.

of ZF,q, and WF,q ∈ ℝM×M is an orthogonal matrix whose columns 
are the right singular vectors (principal directions) of ZF,q, with ⊤ as 
the transpose operator. It can be shown that a scores matrix YF,q ∈
ℝNF×M of the SVD can be written as

YF,q = ZF,qWF,q, (10)

= UF,qΣF,q, (11)

where in Equations 10, 11, the columns of YF,q are the scores or 
principal components. This matrix represents the original high-
dimensional data transformed into the new low-dimensional space 
defined by the principal components. We can obtain a truncated 
score matrix YF,q

k ∈ ℝ
NF×k by considering the first k principal 

components that capture the majority of the variability (upon a 
certain threshold) of the original spatiotemporal data, with k≪M

YF,q
k = U

F,q
k ΣF,q

k , (12)

= ZF,qWF,q
k . (13)

We note that Equations 12, 13 represent a reduced or comprised 
form of the dataset ZF,q. Consequently, each row yF,q

n  of YF,q
k  contains 

the k principal components (PCs) for the n-th sample, i.e., yF,q
n =

[PCF,q
1,n,…,PCF,q

k,n] Given the reduced response YF,q
k , we can expect to 

obtain an accurate reconstruction ZF,q ≈ ZF,q
R  by applying the inverse 

transform in Equation 14:

ZF,q
R = Y

F,q
k WF,q⊤ (14)

 

2.4 Construction of multi-fidelity neural 
network surrogate models

The primary goal of this work is to develop a DL surrogate 
model that can take advantage of multi-fidelity data to quickly 
emulate and predict the spatiotemporal response of patient-specific 
FE lungs under MV. Specifically, we aim to predict the temporal 
evolution of displacement and alveolar pressure fields given a 
specific configuration of the ventilator setting, constitutive model 
parameters, tissue permeability, and chest wall stiffness (Figure 3). 
We assume that due to their much lower computational cost, we 
have considerably more observations from low-fidelity simulations 
than their high-fidelity counterpart, resulting in NH ≪ NL. The 
multi-fidelity approach builds on the observation that the abundant 
low-fidelity data, while computationally inexpensive, capture the 
dominant parametric trends of the system response but introduce 
systematic errors due to coarse spatial discretization. High-fidelity 
simulations, while limited in numbers, provide accurate reference 
solutions of the spatiotemporal response and help correct the 
biases present in low-fidelity data. Furthermore, we expect that the 
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FIGURE 3
Architecture of the reduced-order Multi-Fidelity Neural Network (rMFNN) surrogate model. The model combines three neural networks to learn the 
correlation structures between the reduced low- and high-fidelity data: a LF NN  trained with abundant low-fidelity data, followed by two HF NN s to 
capture linear and nonlinear correlations between the reduced-order responses yL and yH. The inputs for NNH1 and NNH2 is a concatenation (‖) of 
input parameters xH and the LF output yL. Given a new input, the rMFNN predicts the HF principal components yH, which are then mapped back 
(reconstructed) to the original space ([zH

t1
,zH

t2
,zH

t3
,…,zH

tT
]) by applying the inverse SVD transform. Dashed boxes and lines indicate that separate rMFNNs 

are constructed and trained for each output quantity (ux, uy, uz, and palv) and for each lung independently.

principal components of the reduced lung responses from high- and 
low-fidelity datasets (YH,q

k  and YL,q
k ) present a certain correlation to 

be determined by the multi-fidelity neural network. For simplicity, 
in this section, we denote the parameter vector ξ as x, thus ξF = xF. 
We also refer to a single observation of YH,q

k  and YL,q
k  simply as yH

and yL, respectively. Therefore, we assume that we have high- and 
low-fidelity datasets of the form DH = {(xHi

,yHi
)NH

i=1
} = {XH,YH

k } and 
DL = {(xLi

,yLi
)NL

i=1
} = {XL,YL

k}, respectively. For clarity, from now on, 
we will refer to low-fidelity as LF and high-fidelity as HF.

In the following, we adopt a multi-fidelity architecture 
specifically developed for physics-based problems Meng and 
Karniadakis (2020). To find and leverage the relation between low- 
and high-fidelity data, we consider a generalized autoregressive 
scheme (Perdikaris et al., 2017) between the LF (yL) and the HF 
(yH) principal components described by

yH = F(yL) + δ (x) . (15)

In Equation 15, F represents a linear/non-linear mapping from yL
to yH, and δ(x) is an additive correction surrogate. Furthermore, the 
equation can be written as

yH = F (x,yL) , (16)

from which we decompose F in

F = Fl +Fnl, (17)

where Fl and Fnl are the linear and nonlinear components, 
respectively. Therefore, Equations 16, 17 can be written as

yH = Fl (x,yL) +Fnl (x,yL) , (18)

which combines both linear and nonlinear mappings in the final 
prediction of HF data. To emulate Equation 18, we employ a 
composite architecture of three neural networks: a LF NN  to 
learn the low-fidelity data, followed by two HF NN s to capture 
both linear and nonlinear correlations between low- and high-
fidelity data (Meng and Karniadakis, 2020). We summarize this 
framework as follows. 

• The first neural network, NNL(xL,θL), is trained using 
abundant LF data to capture broad trends and features, acting 
as a baseline learner in our multi-fidelity setup. Thus, we 
obtain an approximation for the LF response of the form yL ≈
NNL(xL,θL).
• The second neural network, NNH1(xH,yL,θH1) does not 

include an activation function in order to learn a linear 
mapping from the outputs of NNL to the HF targets, thus Fl =
NNH1.
• The third neural network, NNH2(xH,yL,θH2) is designed to 

identify and model any nonlinear relationships between the LF 
and HF outputs, thus Fnl =NNH2.

In this architecture, θL, θH1, and θH2 are the unknown 
parameters (weights and biases) to be learned by each network. 
Figure 3 shows a diagram with the proposed reduced-order Multi-
Fidelity Neural Network (rMFNN). We note that the input for 
NNH1 and NNH2 is a concatenation of their corresponding input 
parameters xH and the LF output yL. Furthermore, we highlight that 
the approximate HF response of the neural network is given by yH ≈
NNH1 +NNH2. To learn the network parameters, we optimize the 
following loss function (Equations 19–21), which aims to minimize 
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the errors across all fidelity levels:

L =MSEL +MSEH + λLΣθ2
L + λH1Σθ2

H1 + λH2Σθ2
H2, (19)

where in Equation 19 we define

MSEL =
1

NL

NL

∑
i=1
(ŷL − yL)

2, (20)

MSEH =
1

NH

NH

∑
i=1
(ŷH − yH)

2, (21)

i.e., mean squared errors (MSE) from which ŷL and ŷH are the NNL
and NNH predictions, and λL, λH1 and λH2 are the L2 regularization 
rates for θL, θH1, and θH2. 

2.5 Dataset generation, surrogate model 
training, and validation

We generated spatiotemporal datasets from FE simulations 
using the Latin hypercube sampling technique (LHS) to select 
sampling points from the parameter space Ξ (Table 1). Sampling 
points were drawn independently for the LF and HF datasets. We ran 
NH = 25 HF simulations and NL = 300 LF simulations. Thus, for each 
simulated quantity q (ux, uy, uz, palv) we obtained the corresponding 
output matrix ZF,q ∈ ℝNF×M, from which we recall that M = K ⋅T. For 
the HF datasets, K = 4566 and K = 5796 in the left and right lungs, 
respectively. For the LF datasets, K = 318 and K = 403 in the left 
and right lungs, respectively. For each output matrix, we performed 
SVD in order to obtain the truncated score matrices YF,q

k ∈ ℝ
NF×k

that represent the reduced-order dataset of quantity q. We consider 
the first k principal components that capture at least 99% of the 
cumulative variance.

In constructing the rMFNN surrogate model, we tuned the 
following hyperparameters: regularization rate (λ), number of 
hidden layers (Nlayers), and number of neurons per layer (Nneurons). 
Based on preliminary experiments, we observed that relatively 
compact architectures already achieved satisfactory performance. 
To balance model expressiveness and computational feasibility, we 
fixed the LF network NNL with the following values {λL:1e−
3, Nneurons:60, Nlayers:5}, and for both HF networks NNH1 and 
NNH2 we conducted a simultaneous grid-search for the values 
{λH1,H2:[1e− 1,1e− 3], Nneurons:[30,60], Nlayers:[3,6]}. To bound the 
cost of the grid-search, we constrained both HF networks to share 
the same regularization value, i.e., λH1 = λH2. For all three networks, 
we considered two activation functions: [Tanh, ReLU]. Therefore, 
we look for the architecture with the best performance among 
16 possible combinations. We emphasize that we build separate 
surrogates for each quantity q (ux, uy, uz, palv), i.e., 4 for each lung 
(Figure 3). To implement the composite architecture we use the 
PyTorch library (Paszke et al., 2019). To minimize the loss function, 
we used the Adam optimizer (Kingma and Ba, 2014) with an initial 
learning rate α = 1e− 3 and 5,000 epochs, which was found to be 
sufficient to ensure convergence without signs of overfitting across 
the tested configurations.

To train and evaluate the rMFNN, we split the HF reduced 
dataset into 15 observations for training and 10 for testing. We 
used all 300 LF samples for training, resulting in a ratio of LF/HF 
training data of 20:1. We standardized all input values by subtracting 

the mean and dividing by their standard deviation. To assess the 
performance of the rMFNN, we compared it against a reference 
model trained solely on the reduced-order HF data, referred to as 
the single-fidelity neural network (rSFNN). We note that this model 
is equivalent to only keep NNH2 in the composite architecture. For 
this rSFNN, we conducted the same grid-search configuration as 
the rMFNN counterpart. For model training and evaluation, we 
performed 3-fold cross-validation on the training HF data, using a 
train/validation split of 10/5 samples per fold. We trained, evaluated, 
and chose the model with the best performance in terms of the R2

score. Since separate networks were trained for each output field 
(ux, uy, uz, palv), performance was evaluated using the R2 score 
of the first principal component (PC1) of ux in the right lung, 
chosen as a representative output to enable consistent comparison 
between models

R2 = 1−
RSSPC1,ux

TSSPC1,ux

, (22)

with 

RSSPC1,ux
= 1

N

N

∑
i=1
(y− ŷ)2, (23)

TSSPC1,ux
= 1

N

N

∑
i=1
(y− ̄y)2. (24)

In Equations 22–24, y are the HF ground truth PC1 values of the 
ux, ̄y is the mean, ŷ are the predicted PC1 values of the ux (by either 
the rSFNN or rMFNN model), and N is the number of evaluated 
samples. We note that the best possible R2 score is 1.0 and it may 
take negative values since the model can be arbitrarily worse. We 
chose the evaluation on PC1 since it is the most relevant in terms of 
the explained variance. We remark that the best model architecture 
for ux is also used for the other networks (uy, uz, palv).

Then, we assessed the predictions of the optimal rSFNN and 
rMFNN architectures for (ux, uy, uz, palv) with respect to their 
corresponding HF testing data on both lungs. In addition to the R2

score, we reported the mean absolute error (MAE), defined as

MAE = 1
N

N

∑
i=1
|y− ŷ|, (25)

In addition to Equation 25, we evaluated the reconstructed 
spatial response at peak of inspiration instant for both 
surrogates by means of the relative error (in percentage), defined
in Equation 26.

ϵ = |
ztPIP
− ẑtPIP

ztPIP

| ⋅ 100%, (26)

To compare the effect of the HF dataset size on the performance 
of both rSFNN and rMFNN models, we introduce the equivalent 
high-fidelity training cost, denoted as Ceq in Equation 27. This metric 
expresses the combined computational expense of using both HF 
and LF data (in rMFNN models) in terms of an equivalent number 
of HF samples. We define it as

Ceq = CH +CL, (27)

where CH = NH is the number of HF samples used for 
training, and CL represents the additional cost contribution 

Frontiers in Physiology 07 frontiersin.org

https://doi.org/10.3389/fphys.2025.1661418
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Barahona Yáñez and Hurtado 10.3389/fphys.2025.1661418

FIGURE 4
Numerical simulation of lung finite element models using the baseline values of model parameters. (A) Displacement field of the right lung at peak 
volume/end of inspiration time during PCV mode. (B) Frequency of the mesh nodes by their displacement value. (C) Computed signals over two 
respiratory cycles during the PCV mode: the physiological signals describe the time evolution of the prescribed airway pressure, airflow, and lung 
volume, which are shown for the HF (dashed) and LF models (dotted). The top and bottom rows in (A,B) correspond to HF and LF models, respectively.

from obtaining LF samples, expressed in Equation 28 as the
HF equivalent

CL =
NLTL

TH
, (28)

with NL denoting the number of LF samples and TL and TH the 
average computational time required by one LF and HF simulation, 
respectively. For rSFNN models, we note that CL = 0 since only HF 
samples are used for training.

All nonlinear finite element simulations and neural networks 
training were performed using a single Intel Core i7 processor 
with 16 Gb RAM. 

3 Results

3.1 Numerical simulations of high- and 
low-fidelity lung poromechanical models

Figure 4A shows the displacement magnitude field at the 
end of inspiration for HF and LF FE models using baseline 
parameter values. The lowest displacement values are located 
around the entrance of the airway. The frequency distributions 
for both models are shown in Figure 4B, where differences are 
readily observed: the LF distribution is more skewed to the 
left than the HF distribution. The airway pressure, airway flow, 
and lung volume signals postprocessed from simulations are 
reported in Figure 4C. The LF model resulted in lower amplitudes 
for volume and flow rate compared to the HF model response. 
In terms of computational cost, HF simulations took TH ∼2.7 h, 
whereas LF simulations typically required TL ∼2.9 min, resulting
in a 55×  speedup.

3.2 Singular value decomposition of 
spatiotemporal datasets

SVD resulted in principal components whose accumulated 
explained variance for each spatiotemporal dataset for fields (ux, uy, 
uz, and palv) are reported in Figure 5A for both fidelity levels and for 
the right lung. For left lung analysis, see Supplementary Figure S1. 
For the displacement field components of the HF and LF 
datasets, 99% of the cumulative explained variance (dashed line 
threshold) was reached when considering the first three principal 
components. For the case of the alveolar pressure field, only two 
principal components were required to achieve the same level of 
cumulative explained variance. Incremental variance associated to 
each principal component, displayed as colored bars in Figure 5A, 
shows that the first principal component (PC1) roughly explains 
90% of the variance in the response of all fields. This trend is 
shared by both the left and right lung models. In addition, an 
asymptotic behavior after the fifth principal component YF

5  is 
observed in all cases. Figure 5B shows the spatial displacement and 
alveolar pressure fields that result from reconstructing them based 
on PC1 alone.

3.3 Hyperparameter tuning and 
performance assessment of surrogate 
models

Table 2 reports the results for the hyperparameter tuning 
step for both trained rSFNN and rMFNN models. The optimal 
rMFNN model has twice as many neurons and hidden layers as 
its rSFNN counterpart, and a lower regularization value λ. We 
note that this step results in the same value for the activation 
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FIGURE 5
Analysis of variance from principal component analysis of HF and LF models. (A) For each quantity subplot (ux, uy, uz, palv), the left y-axis indicates the 
cumulative explained variance (line with markers), while the right y-axis shows the explained variance per individual component (bars). The 99% 
cumulative threshold is marked with a dashed line for reference. (B) Reconstructed spatial fields ux, uy, uz, and palv using the first principal 
component alone.

function for both models. The R2 score was determined from a 
3-fold cross-validation procedure using the training dataset and 
evaluated on the right lung first principal component (PC1) of 
ux, as described above. The rMFNN model resulted in a higher 
mean R2 than the rSFNN model (90.6% vs. 71.6%). Dispersion 
of the R2 score was smaller for the rMFNN model than for 
the rSFNN model. The training time considers the entire cross-
validation process for each network. The rMFNN model takes 
roughly 3 times longer to train than the rSFNN counterpart. The 
inference time considers both the prediction time of each neural 
network and the reconstruction time of the response to have the 
same format as the simulation outputs. Both models present similar 
inference times.

Principal component predictions from the surrogate models 
were evaluated against HF ground truth on the test set using R2 and 
MAE (Table 3). For rSFNN, R2 scores were generally higher in the 
left lung, with the lowest performance observed in palv predictions 
(∼83%). This pattern was mirrored in the MAE values across lungs. 
In contrast, the rMFNN model achieved R2 scores above 93% across 
all cases and lungs, with consistently lower MAE than the rSFNN.

Figure 6 shows the predicted displacement magnitude and 
alveolar pressure fields at peak inspiration instant for a case of 
the test set, using rSFNN and rMFNN models. Visually, rMFNN 
exhibits smaller absolute errors than rSFNN for both quantities, 
with predictions that are similar to the ground-truth fields. To 
quantify spatial prediction accuracy, we analyze pointwise errors 
at 100 randomly selected nodes (test landmarks) from the high-
fidelity lung domain (Figure 7A). Relative error distributions for 
the left and right lungs are presented in Figure 7B, C for u and 
palv, respectively. Both subplots show consistently lower errors with 

TABLE 2  Hyperparameter tuning of single-fidelity (rSFNN) and 
multi-fidelity (rMFNN) neural networks, training and inference times, and 
R2 scores (mean and std. deviation) after the 3-fold cross-validation 
procedure on the right lung first principal component (PC1) predictions 
of ux.

rSFNN rMFNN

λ 1e-1 1e-3

Nneurons 30 60

Nlayers 3 6

Activation ReLU ReLU

Training time [s] 547.2 1648.9

Inference timea [s] 17.3 21.1

R2 [%] R2 [%]

Validation (ux) 71.6 ± 16.9 90.6 ± 9.2

aThe inference time considers both the prediction time of the neural network and the 
reconstruction time of the response to have the same format as the simulation outputs.

the rMFNN model. A full error analysis across the test set is 
provided in Supplementary Figure S2.

3.4 Lung mechanics from surrogate models

Figure 8A presents the temporal evolution of airway flow 
and lung volume for a representative test case, computed from 
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TABLE 3  Performance metrics of principal components predictions of the single-fidelity (rSFNN) and multi-fidelity (rMFNN) neural networks 
surrogate models.

rSFNN rMFNN

R2[%] MAE∗ R2[%] MAE∗

Left – Right Left – Right Left – Right Left – Right

Test

ux 90.5–85.4 58.4–52.8 97.3–98.0 25.5–24.1

uy 87.6–81.9 46.4–88.8 97.2–93.7 23.9–28.4

uz 90.6–75.2 90.8–91.2 94.5–95.3 44.2–39.6

palv 83.4–88.8 21.9–19.7 99.6–99.7 3.3–3.9

aFor clarity and given that these are principal component predictions, we do not include the units in the MAE columns.

FIGURE 6
Performance analysis of displacement and alveolar pressure field predictions by the single-fidelity (rSFNN) and multi-fidelity (rMFNN) surrogate models. 
Ground truth fields are values obtained from a high-fidelity FE lung simulation. (A) Displacement magnitude fields on the surface of lung domains, (B)
Displacement magnitude field on a coronal plane, and (C) Alveolar pressure field on a coronal plane. The last two rightmost columns show the 
absolute error between ground truth and surrogate model predictions.

rMFNN predictions (dashed line) using Equations 5, 6, alongside 
ground truth from FE simulations (solid line). The surrogate 
closely matches the ground truth, with RMSE values of 4.369L/min
for flow and 0.002L for volume. RMSE results across the full 
test set are provided in Supplementary Table S1. Figure 8B 
shows displacement and alveolar pressure fields on coronal 
slices at peak inspiratory flow, peak expiratory flow, and
mid-expiration.

3.5 Computational cost and effect of the 
dataset size in model performance

Figure 9 shows the RMSE of the principal components 
predictions of ux versus computational training cost for rSFNN 
and rMFNN models. We visualize the errors of models trained with 
five different HF training sizes: from a reduced set of 10 up to the 
original 15 samples used in the surrogates presented throughout this 
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FIGURE 7
Nodal error assessment of predictions by the rSFNN and rMFNN surrogate models. (A) Landmark nodes inside the lung domains. Relative error 
distributions in the prediction of nodal values are shown for the displacement (B) and alveolar pressure fields (C) at landmark nodes.

work. The rMFNN cost accounts for the combined computational 
time of HF and LF data in terms of the equivalent high-fidelity 
training cost (Ceq). Given that each HF simulation takes TH ∼ 162
minutes and each LF simulation TL ∼ 2.9 minutes, the additional 
cost contribution from the obtained 300 LF samples are equivalent 
to CL = 300× 2.9/162 = 5.37 HF simulations. This consideration 
results in a positive (right) shift in the equivalent HF training cost 
axis for the rMFNN case. Across all five cases, rMFNN consistently 
outperformed rSFNN. With 10 HF samples (i.e., equivalent HF 
training cost Ceq = 15.37 samples), the rMFNN achieved a ∼61%
reduction in the RMSE when compared to the rSFNN trained with 
the same number of samples (43.9± 13.2[cm] vs. 112.1± 17.5[cm]). 
An analysis of the training cost interval where both model intersect 
(shaded area between 15.37–18), we note that the rMFNN model 
always achieves a lower RMSE compared with the rSFNN model. We 
further note that the rMFNN model does not significantly decrease 
its RMSE as the HF training dataset size increases. In addition, we 
explore the effect of the LF dataset size on rMFNN performance, 
comparing models trained with 50 (CL = 0.89), 100 (CL = 1.79), and 
the original 300 LF samples. To improve readability, for the 50 and 
100 LF cases we only report the mean RMSE. In general, the rMFNN 
RMSE decreased as the LF dataset size increased.

4 Discussion

In this work, we leverage multi-fidelity deep learning and 
dimensionality reduction to construct efficient and accurate 
surrogate models of the spatiotemporal poromechanical response 
of lungs connected to mechanical ventilation. A crucial component 
of our framework is the dimensionality reduction of spatiotemporal 
datasets used to train NN models. We found that as few as 5 
principal components are sufficient to capture over 99% of the 
cumulative variance in both the displacement and alveolar pressure 
fields (Figure 5). This reduced set of principal components translates 
into a convenient complexity reduction that has also been reported 
in the literature when modeling other physical systems. Indeed, 

the optimal number of principal components ranged between 3 
and 11 in the prediction of stress fields in patient-specific skull 
geometries (Lee et al., 2018), in the numerical simulation of fluid 
velocity fields in wake models (Pawar et al., 2022b), in the prediction 
of soft tissue deformation in childbirth simulation (Nguyen-Le et al., 
2023), and in the construction of temperature and pressure fields 
in thermomechanical simulations of clutches (Schneider et al., 
2024). We remark that these contributions focus on reducing the 
dimensionality of the spatial domain only, which highlights the 
novelty of our work in incorporating the temporal dimension into 
datasets that are analyzed using SVD.

A key objective of our work is the construction of a reduced 
multi-fidelity surrogate model, which we have shown delivers 
more accurate spatial predictions of the displacement and alveolar 
pressure fields than the single-fidelity model using the same 
number of HF samples for training (Figure 6). The rMFNN model 
consistently achieved test R2 scores above 93% and in average 
97% for all cases (ux, uy, uz, and palv), outperforming the rSFNN 
model 3. Further, the rMFNN results in a MAE reduction of 
56% and 83% in the prediction of displacements and alveolar 
pressure principal components. Further, the rMFNN achieved an 
average reduction of the median relative error on the test set of 
roughly 15% and 8% in the displacement and alveolar pressure 
fields, respectively (Figure 7; Supplementary Figure S2). However, 
in some cases, there are outliers with high errors in the nodal 
predictions, which we argue is due to the inevitable loss of SVD 
information, as well as the fact that the HF dataset is very small. 
These results highlight the benefit of considering a multi-fidelity 
architecture that benefits from adding LF data to the training step 
of the surrogate model. This trend is shared by other contributions 
in the literature. Gaussian Process surrogate models trained to 
predict spatial growth during tissue expansion have achieved relative 
errors below 1% between the single- and multi-fidelity models 
(Lee et al., 2020), on domains discretized with at most 100 regions. 
Multi-fidelity convolutional neural networks have been proposed 
to predict temperature fields governed by a linear heat equation 
in 2D square domains, resulting in a 62% reduction in MAE with 
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FIGURE 8
(A) Lung mechanics from multi-fidelity neural network (rMFNN) predictions. Dashed line denotes flow and volume from the rMFNN model. Solid lines 
show ground truth values from lung FE poromechanical simulations. (B) Displacement and alveolar pressure fields predicted by the rMFNN model 
along the respiratory cycle.

only 10 HF data samples (Zhang et al., 2023). A long short-term 
memory architecture to predict fluid wake physics on rectangular 
2D domains results in relative error reductions of up to 15% 
compared to single-fidelity models when predicting velocity and 
pressure fields (Conti et al., 2024). For a similar physical problem, 
surrogate models that consider PCA and multi-fidelity NN have 
demonstrated high prediction capabilities (Pawar et al., 2022b). 
Relative errors below 1% have been reported when compared to 
direct numerical simulations of the 2D domain of a flow past a 
cylinder. Further, the lung mechanics response to MV computed 
from rMFNN predictions shows a very high agreement with 
HF simulations (Figure 8A), with RMSE values that are similar 
to those offered by ML models specifically trained to predict 

lung mechanics (Barahona et al., 2024). Related to our combined 
deep learning and dimensionality reduction approach is the PCA-
Net (Bhattacharya et al., 2021), an operator learning technique 
that uses PCA to reduce the dimensionality of both input and 
output spaces and then uses neural networks to approximate a map 
between the resulting finite-dimensional latent spaces. However, 
their implementation is in a single-fidelity setting. We conclude 
that our rMFNN model compares well to previously reported 
contributions while proving advantageous in that unstructured 
3D domains can be considered for surrogate modeling of highly 
non-linear spatiotemporal problems, all crucial features that 
enable personalized predictions that have not been addressed
in the past.
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FIGURE 9
Comparison of model errors against the equivalent high-fidelity 
training computational cost Ceq. Solid lines represent the mean RMSE 
of the predicted first principal components of ux for rSFNN and rMFNN 
models, trained with an increasing number of HF samples (from 10 to 
15). Shaded regions indicate the standard deviation. The vertical gray 
box is the region where both models are comparable in terms of the 
training cost. The effect of low-fidelity dataset size on the rMFNN 
performance is shown for NL = 50, NL = 100, and NL = 300 training 
samples; for the first two, only the mean RMSE is shown for 
clarity.∗corresponds to the multi-fidelity model used 
throughout this work.

One key concern about DL models is the training computing 
effort. Our rMFNN model naturally results in a higher training 
computational cost than the rSFNN model (Table 2), an aspect 
frequently reported in the development of multi-fidelity surrogate 
models (Lee et al., 2020; Zhang et al., 2023; Barahona et al., 2024). 
This higher cost is attributed to the additional effort in creating 
LF samples for the training dataset and the larger number of 
parameters involved in composite NN architectures (Figure 3). One 
of the key results of this work is that this additional computational 
cost is well rewarded in terms of higher accuracy of surrogate 
prediction. Indeed, for the same equivalent training cost, the 
rMFNN model results in a considerably lower RMSE than the 
rSFNN model, offering roughly a 50% reduction in error for the 
same training cost (Figure 9. We also remark that the LF training 
dataset size has a marked effect on reducing the prediction error. This 
trend is clearly observed when increasing the LF sample size from 
50 to 100. However, further increasing the LF sample size above 100 
may not efficiently decrease the prediction error. This observation 
suggests that the LF dataset has an optimal size, which is likely to be 
problem-dependent and deserves a case-by-case analysis.

When analyzing the computational cost of predicting the 
spatiotemporal poromechanical lung response, our rMFNN model 
offers inference times that roughly take 21 s, which represents 
a speed-up of 462×  when compared to HF (direct numerical) 
FE simulations. While we did not find other works on lung 
poromechanics, acceleration through DL surrogate modeling 

has been applied to other physiological systems of the human 
body. Speed-ups of 41×  have been achieved in predicting the 
spatiotemporal electrophysiological behavior of the left ventricle 
(Fresca et al., 2020), which shares similar problem complexity 
and dimensionality as our lung poromechanical model. Siamese 
neural networks of 3D breast models have achieved speed-ups of 
82.5×  in the prediction of the displacement fields when compared 
to FE models (Dang Vu et al., 2021). Random-forest regression 
combined with PCA dimensionality reduction delivers speed-ups 
of 18×  when predicting the 3D displacement fields in human liver 
geometries (Lorente et al., 2017). Higher speed-ups are obtained 
in static problems using shell models for predicting the mechanics 
of large vessels, where speed-ups up to 1800×  have been reported 
in surrogate models built using PCA and NNs (Liang et al., 2018). 
Based on these examples, we conclude that our rMFNN lung model 
offers an attractive speed-up for fully 3D non-linear time-dependent 
problems. Further, achieving full lung spatiotemporal predictions in 
less than a minute offers a computational tool that holds promise in 
meeting the time requirements of clinical applications.

Our results demonstrate that combining dimensionality 
reduction with deep learning can be an effective strategy for 
approximating spatiotemporal lung simulations. There are several 
opportunities for improvement that can further increase the 
potential of our rMFNN lung model. First, the dimensionality 
reduction may benefit from exploring recent techniques such as 
autoencoders, which find interesting applications in biomechanical 
modeling (Fresca et al., 2020; Conti et al., 2024; Deshpande et al., 
2025). Since an autoencoder is a neural network, it can provide 
greater flexibility and be easily adapted to the DL pipeline. Although 
autoencoders have shown an accuracy similar to that achieved 
by PCA and SVD (Bourlard and Kabil, 2022; Cacciarelli and 
Kulahci, 2023), their efficiency in speed-up with respect to the 
aforementioned techniques is still a relatively unexplored avenue 
of research (Fournier and Aloise, 2019). Second, while using only 
15 HF samples for training may lead to overfitting or underfitting, 
the multifidelity framework is designed precisely to mitigate this 
limitation by leveraging the abundance of LF data to guide learning. 
Increasing the number of HF samples would reduce the risk of 
overfitting, but would also diminish the computational advantage 
and the purpose behind the multifidelity approach. However, 
we acknowledge that a sufficient number of HF test samples is 
required to properly validate the model and ensure its generalization 
capability. Future efforts should aim to optimize the sampling 
strategy, particularly to minimize unnecessary evaluations of the 
computationally expensive high-fidelity model Lee et al. (2020); 
Gander et al. (2022). Third, our rMFNN framework operates with 
fixed lung geometries, necessitating retraining when a different lung 
anatomy is analyzed. This limitation can be addressed by considering 
DL architectures that embed the topology of the physical system, 
such as Graph Neural Networks (GNNs) (Scarselli et al., 2008). 
Current applications of GNNs to biological systems include 
modeling cardiac mechanics (Dalton et al., 2022), brain shift 
simulations (Salehi and Giannacopoulos, 2022), cartilage and soft 
tissue mechanics (Sajjadinia et al., 2022), and foot biomechanical 
simulations (Kang et al., 2025). We foresee that an extension to lung 
poromechanics can leverage the geometrical flexibility provided by 
GNN modeling. Alternatively, operator learning techniques such as 
neural operators (NOs) have shown potential to learn and emulate
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PDEs while being discretization-invariant, which could be explored 
with a multi-fidelity setting Azizzadenesheli et al. (2024). Fourth, 
we note that the rMFNN model needs to include more variables to 
better represent clinical conditions. In particular, respiratory rate, 
tidal volume, and positive end-expiratory pressure are all important 
variables in MV that change from patient to patient. Further, lungs 
can display mechanical heterogeneity, particularly in pathological 
cases, which is not represented by a single set of constitutive 
parameters. Gravity is another important parameter known to have 
effects on both regional and global lung response Bettinelli et al. 
(2002); Hurtado et al. (2017). Therefore, future contributions should 
increase the number of variables to adequately capture clinical 
scenarios and pulmonary conditions such as respiratory distress 
and pulmonary emphysema (Hurtado et al., 2020; Villa et al., 2024; 
Nelson et al., 2024). Lastly, we remark that the poromechanical 
framework considered in the generation of spatiotemporal datasets 
only considers the non-linear hyperelastic behavior of lung tissue 
through phenomenological constitutive models. This approach, 
while practical and effective, cannot directly account for alveolar 
structural features (Concha et al., 2018) nor for the hysteretic 
response of alveolar tissue (Avilés-Rojas and Hurtado, 2025). 
Future contributions will benefit from incorporating multiscale 
tissue models that address the inelastic response of alveolar tissue. 
These and other improvements will contribute to the construction 
of predictive surrogate models that can greatly impact clinical 
applications in respiratory medicine.
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