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Background: Chronic mountain sickness (CMS), driven by chronic hypoxia, 
features erythrocytosis, cardiovascular impairment, and systemic oxidative 
stress. Current studies focus on haematological and cardiopulmonary changes, 
but multidimensional features like sleep disturbances, quality of life, and 
oxidative stress remain underexplored.
Methods: The cross-sectional study included 47 adult Tibetan residents living 
at 4,500 m and diagnosed with CMS using Qinghai criteria. Blood samples 
were collected, and questionnaires assessed quality of life, fatigue, and sleep. 
Multivariate logistic regression was used to explore associations between 
variables, using CMS comorbid with high-altitude polycythemia (HAPC) or sleep 
disturbance as endpoints.
Results: The mean age of patients was 40.57 ± 6.21 years (29 males, 18 females). 
Males had higher RBC, HGB, HCT, UA, and T-AOC levels (all P < 0.001). A 
moderate to strong positive correlation was observed between these markers. 
91.67% of patients with comorbid HAPC were males with severe CMS. Lower 
MCHC (OR = 0.80, P = 0.02) and higher T-AOC (OR = 1.47, P = 0.02) were 
associated with HAPC. Males (OR = 0.11, P = 0.03), higher 8-OHdG levels (OR 
= 0.95, P = 0.03), higher body pain scores (OR = 0.91, P < 0.01), and higher 
general health scores (OR = 0.90, P = 0.02) were more likely to report good
sleep quality.
Conclusion: Males with CMS had higher T-AOC and better sleep 
quality than females. Good sleep quality was associated with 
better quality of life and less fatigue. Oxidative stress indicators 
correlated with clinical phenotypes, but causality requires further
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investigation. This trial was registered at Chinese Clinical Trial Registry 
(ChiCTR2400082685).

KEYWORDS

chronic mountain sickness, high-altitude polycythemia, oxidative stress, sleep quality, 
fatigue scale 

Introduction

Millions of people travel to high-altitude regions annually, and 
over 80 million people live permanently above 2,500 m (Tremblay 
and Ainslie, 2021). Chronic exposure to high-altitude hypoxia can 
cause chronic mountain sickness (CMS), clinically characterised 
by excessive erythrocytosis, hypoxic pulmonary hypertension and 
multisystem dysfunction (Gatterer et al., 2024). The prevalence of 
CMS ranges from 5% to 33% across populations, with the highest 
rates documented in the Andean region (León-Velarde et al., 2005), 
and varies with altitude, age and genetic factors. Patients with 
CMS experience impaired quality of life and increased morbidity 
and mortality, attributable to marked arterial hypoxaemia and 
haemodynamic abnormalities. These haemodynamic abnormalities 
may drive the progression of pulmonary hypertension, cor 
pulmonale, left ventricular dysfunction, and thromboembolic 
complications (Swenson, 2022). Despite having evolved unique 
hypoxic adaptation mechanisms through genetic selection 
(Liu et al., 2020; Buroker et al., 2012) (e.g., variants in EPAS1 
and EGLN1), Tibetan populations exhibit inter-individual 
susceptibility to CMS, reflecting a complex balance between 
adaptive compensation and pathophysiological dysregulation
(Hsieh et al., 2016).

The pathological mechanisms of CMS are fundamentally 
linked to hypoxia-induced multisystem maladaptation. Studies 
demonstrate that both acute and chronic hypoxia elevate levels 
of oxidative stress biomarkers (Jefferson et al., 2004). Comparative 
analyses of high-altitude populations show significantly elevated 
levels of markers of oxidative stress (e.g., ascorbate free radicals) 
in CMS patients compared with non-CMS high-altitude residents 
(Bailey et al., 2013). Bailey et al. have further elucidated systemic 
oxidative stress (OS) characteristics in high-altitude populations, 
manifested through an imbalance between free radical generation 
and antioxidant defense mechanisms that sustains chronic 
oxidative stress. This pathological state interacts synergistically 
with inflammatory mediators, potentially accelerating cognitive 
deterioration and elevating depression susceptibility (Shanjun et al., 
2020; Kong et al., 2011). In addition, high-altitude populations 
exhibit a significantly higher prevalence of sleep-disordered 
breathing (SDB) compared to sea-level populations. Recent studies 
have demonstrated that Andean high-altitude residents show a 
two-fold higher in the apnea-hypopnea index (AHI) compared to 
sea-level counterparts, primarily manifested by increased central 
sleep apnea events (Pham et al., 2017). Notably, the study by Ana 
Sanchez-Azofra’s team revealed no significant association between 
the progression of CMS and alterations in sleep architecture or the 
severity of SDB (Sanchez-Azofra et al., 2022). While these findings 
have significantly advanced our understanding of hypoxia-driven 
oxidative stress and sleep-related pathophysiology in CMS, the 
complex interplay remains underexplored.

Current research predominantly focuses on traditional 
domains including hypoxic erythrocytosis (Haase, 2013; 
Yang et al., 2024), pulmonary hypertension (Ye et al., 2023; 
El Alam et al., 2022; Naeije, 2019), and cardiovascular complications 
(Savina et al., 2024; Abondio et al., 2024), whereas systematic 
investigations into multidimensional characteristics of CMS 
patients - particularly oxidative stress regulatory mechanisms, 
sleep disorder phenotypes, fatigue severity, and quality of life - 
remain substantially understudied. There is an imperative need 
for enhanced clinical evidence to advance the pathophysiological 
understanding framework.

Therefore, we conducted a study screening Tibetan permanent 
residents living at 4,500 m for chronic mountain sickness 
(CMS). We systematically collected data on haematological 
parameters, blood biochemical profiles, oxidative stress biomarkers, 
and multidimensional clinical phenotypes (including sleep 
quality, fatigue level, and quality of life scores). By assessing 
correlations between these parameters, we aimed to elucidate the 
pathophysiological features of CMS and to establish a scientific basis 
for developing prevention and treatment strategies.

Materials and methods

Participants

The study recruited 47 Tibetan patients with chronic mountain 
sickness (CMS) from Nagqu City (altitude 4,500 m), Tibet 
Autonomous Region, using convenience sampling. Inclusion criteria 
were: (1) Tibetan ethnicity; (2) aged 18–60 years; (3) body mass 
index (BMI) 18–28 kg/cm2; (4) permanent residents (residing 
locally for ≥6 months in the past year); (5) meeting the Qinghai 
diagnostic criteria for CMS (León-Velarde et al., 2005); and (6) non-
smokers and non-drinker. Exclusion criteria were: (1) polycythemia 
vera or secondary polycythemia; (2) organic sleep disorders; (3) 
pregnancy or lactation; and (4) severe hepatic or renal dysfunction. 
The study protocol was approved by the Ethics Review Committee 
of the Hospital of Chengdu Office of People’s Government of Xizang 
Autonomous Region (2024-EC-073). The clinical trial was registered 
at the China Clinical Trial Registry (ChiCTR2400082685). The 
design and data collection for this study were based on the baseline 
survey conducted within that registered trial. All participants 
provided written informed consent.

Measures

Blood biochemistry and physical measurements
Following an overnight fasting period, venous blood samples 

were collected from all participants between 08:00 and 10:00. 
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TABLE 1  Basic characteristics of 47 Tibetan patients with chronic mountain sickness.

Variable Total (N = 47) Sex P

Males (n = 29) Females (n = 18)

Age, years 40.57 ± 6.21 41.86 ± 5.89 38.50 ± 6.32 0.078

HAPC 0.017

   Yes 12 (25.53) 11 (37.93) 1 (5.56)

   No 35 (74.47) 18 (62.07) 17 (94.44)

CMS 0.012

   Mild 2 (4.26) 1 (3.45) 1 (5.56)

   Moderate 20 (42.55) 8 (27.59) 12 (66.67)

   Severe 25 (53.19) 20 (68.97) 5 (27.78)

BMI, kg/m2 25.10 ± 2.32 25.55 ± 2.25 24.37 ± 2.30 0.094

SBP, mmHg 116.00 (106.00, 122.50) 118.00 (109.00, 128.00) 110.00 (106.00, 116.75) 0.120

DBP, mmHg 78.36 ± 10.91 79.34 ± 11.23 76.78 ± 10.49 0.432

RBC, 10^12/L 6.27 (5.65, 6.91) 6.64 (6.27, 7.77) 5.58 (5.20, 5.85) <0.001

HGB, g/L 189.77 ± 32.02 207.69 ± 25.30 160.89 ± 17.00 <0.001

HCT, % 55.60 (50.65, 61.25) 59.50 (56.00, 70.90) 48.10 (45.35, 51.08) <0.001

MCV, fL 88.79 ± 4.82 89.64 ± 4.63 87.42 ± 4.93 0.133

MCH, pg 29.60 (28.55, 31.00) 30.10 (29.10, 31.00) 28.70 (28.40, 30.78) 0.158

MCHC, g/L 334.00 (329.00, 338.00) 334.00 (329.00, 339.00) 333.00 (328.25, 337.75) 0.554

RDWcv, % 13.90 (13.40, 14.55) 13.80 (13.40, 14.40) 13.90 (13.10, 15.17) 0.93

RDWsd, fL 46.90 (45.50, 49.10) 47.60 (45.70, 49.30) 46.50 (45.25, 48.10) 0.255

PLT, 10^9/L 237.81 ± 71.75 223.83 ± 66.07 260.33 ± 76.61 0.104

MPV, fL 10.37 ± 1.07 10.31 ± 1.02 10.47 ± 1.16 0.622

PDW, fL 16.31 ± 0.39 16.46 ± 0.34 16.09 ± 0.36 0.002

CHOL, mmol/L 3.95 (3.50, 4.58) 4.16 (3.80, 4.78) 3.52 (3.27, 4.11) 0.014

TG, umol/L 0.89 (0.65, 1.36) 1.23 (0.85, 1.46) 0.61 (0.54, 0.84) <0.001

HDLc, umol/L 1.24 (0.92, 1.49) 1.21 (0.92, 1.49) 1.31 (0.92, 1.48) 0.431

LDLc, umol/L 3.12 (2.60, 3.62) 3.39 (2.94, 4.01) 2.62 (2.13, 3.08) 0.001

ApoA1, g/L 1.49 ± 0.18 1.45 ± 0.14 1.56 ± 0.21 0.063

ApoB, g/L 0.92 ± 0.31 1.02 ± 0.31 0.75 ± 0.25 0.002

BUN, mmol/L 4.72 ± 1.50 5.16 ± 1.55 4.01 ± 1.14 0.006

(Continued on the following page)
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TABLE 1  (Continued) Basic characteristics of 47 Tibetan patients with chronic mountain sickness.

Variable Total (N = 47) Sex P

Males (n = 29) Females (n = 18)

Cr, mmol/L 77.76 ± 12.87 83.56 ± 8.78 68.42 ± 13.09 <0.001

UA, umol/L 387.78 ± 115.19 436.72 ± 110.31 308.94 ± 72.09 <0.001

GLU, mmol/L 4.62 ± 0.59 4.61 ± 0.64 4.65 ± 0.51 0.773

T-AOC, U/mL 14.77 ± 6.15 17.67 ± 4.71 10.10 ± 5.31 <0.001

CAT, U/mL 120.80 (87.66, 171.82) 127.07 (82.87, 182.60) 118.79 (90.23, 142.40) 0.753

GSH, umol/L 22.48 (20.17, 29.68) 23.05 (20.75, 29.39) 21.90 (18.88, 29.54) 0.751

MDA, umol/L 3.54 ± 1.54 3.82 ± 1.71 3.09 ± 1.11 0.085

SOD, umol/L 48.04 (45.80, 52.08) 47.75 (45.21, 50.59) 49.46 (47.90, 54.10) 0.120

8-OHdG, ng/mL 23.03 (17.38, 37.35) 24.59 (17.96, 36.53) 22.61 (14.81, 37.44) 0.686

Data were expressed as mean ± standard deviation, median (quartiles), or n (percentage). Comparisons between groups were made using t-test or Wilcoxon test. Abbreviations: HAPC (high 
altitude polycythemia; Yes/No), CMS (chronic mountain sickness; Mild/Moderate/Severe), BMI (body mass index), SBP/DBP (systolic/diastolic blood pressure), RBC (red blood cells), HGB 
(hemoglobin), HCT (hematocrit), MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), MCHC (MCH, concentration), RDWcv/RDWsd (red cell distribution width, 
coefficient of variation/standard deviation), PLT (platelet count), MPV (mean platelet volume), PDW (platelet distribution width), CHOL (total cholesterol), TG (triglycerides), HDLc/LDLc 
(high/low-density lipoprotein cholesterol), ApoA1/ApoB (apolipoprotein A1/B), BUN (blood urea nitrogen), Cr (creatinine), UA (uric acid), GLU (glucose), T-AOC (total antioxidant 
capacity), CAT (catalase), GSH (glutathione), MDA (malondialdehyde), SOD (superoxide dismutase), and 8-OHdG (8-hydroxy-2′-deoxyguanosine).

Whole blood was drawn into EDTA-coated tubes for complete 
blood count (CBC) analysis (BC-6100 automated hematology 
analyser, Mindray, Shenzhen, China), including: red blood cell count 
(RBC, 1012/L), haemoglobin concentration (HGB, g/L), haematocrit 
(HCT, %), mean corpuscular volume (MCV, fL), mean corpuscular 
haemoglobin (MCH, pg), mean corpuscular haemoglobin 
concentration (MCHC, g/L), red blood cell distribution width - 
coefficient of variation (RDW-CV, %), red blood cell distribution 
width - standard deviation (RDW-SD, fL), platelet count (PLT, 
109/L), mean platelet volume (MPV, fL), and platelet distribution 
width (PDW, fL). Blood was also drawn into serum-separating 
tubes for biochemical profiling (BS-800 M automated biochemistry 
analyser, Mindray, Shenzhen, China). Serum was obtained by 
centrifugation (3,000 g for 15 min at 4 °C) and stored at −80 °C 
until analysis. Biochemical assays included: total cholesterol 
(CHOL, mmol/L), triglycerides (TG, µmol/L), high-density 
lipoprotein cholesterol (HDL-C, µmol/L), low-density lipoprotein 
cholesterol (LDL-C, µmol/L), apolipoprotein A1 (ApoA1, g/L), 
apolipoprotein B (ApoB, g/L), blood urea nitrogen (BUN, mmol/L), 
creatinine (Cr, mmol/L), uric acid (UA, µmol/L), and glucose
(GLU, mmol/L).

Trained staff conducted anthropometric measurements using 
calibrated instruments: standing height and weight were measured 
with a stadiometer and digital scale (IPR-scale 02), from which body 
mass index (BMI) was calculated. Blood pressure was measured 
using an automated sphygmomanometer (Omron HEM-1000) after 
participants had rested in the seated position for 5 min, with 
triplicate measurements taken at 2-min intervals.

Oxidative stress biomarkers
Oxidative stress was measured by centrifuging 2 mL of whole 

blood (instruments used for sample pretreatment are detailed 
in the Supplementary Table S6) and storing the serum at −80 °C
until the samples were tested. All colorimetric assays were 
performed using a μQuant microplate spectrophotometer (BioTek, 
Winooski, VT, United States). Reduced glutathione (GSH, umol/L) 
was estimated using GSH colorimetric assay kit (E-BC-K030-M, 
Elabscience, Houston, TX, United States) according to the method 
described by Beutler et al. (1963), with absorbance measured at 
405 nm. Lipid peroxidation was estimated using a malondialdehyde 
(MDA, umol/L) colorimetric assay kit (E-BC-K025-M, Elabscience, 
Houston, TX, United States) by measuring thiobarbituric acid 
reactive substance (TBARS) and expressed in terms of MDA 
content according to Ohkawa et al. (1979). MDA, the final 
product of fatty acid peroxidation, reacts with thiobarbituric acid 
(TBA) to form a colored complex, the absorbance of which was 
measured at 532 nm in the supernatant. Superoxide dismutase 
(SOD, umol/L) activity using SOD typed activity assay kit (E-BC-
K020-M, Elabscience, Houston, TX, United States) was determined 
according to Giannopolitis and Ries (Giannopolitis and Ries, 1977). 
The color reaction was measured at 550 nm. Catalase (CAT, U/mL) 
activity was determined using a CAT activity assay kit (E-BC-
K031-M, Elabscience, Houston, TX, United States) according to 
the method of Aebi (Aebi, 1984). Total antioxidant capacity (T-
AOC, U/mL) was measured using a colorimetric assay kit (E-BC-
K136-M, Elabscience, Houston, TX, United States), and one unit 
of total antioxidant capacity was assigned for each 0.01 increase in 

Frontiers in Physiology 04 frontiersin.org

https://doi.org/10.3389/fphys.2025.1661738
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhong et al. 10.3389/fphys.2025.1661738

FIGURE 1
Correlation analysis of measured parameters.

the absorbance of the reaction system per millilitre of sample per 
minute at 37 °C. 8-OHdG was determined using an ELISA technique 
(E-EL-0028, Elabscience, Houston, TX, United States) performed 
according to the kit instructions and the absorbance values were 
measured at 450 nm using an enzyme marker and the results were 
expressed in ng/mL. 

Clinical phenotypes
The Pittsburgh Sleep Quality Index (PSQI) is a widely used 

and validated questionnaire for assessing sleep quality across 
diverse populations (Buysse et al., 1989; Cole et al., 2006). As a 
subjective measure, the PSQI evaluates self-reported sleep quality 
and disturbances over a 1-month period. In this study, the 19 self-
rated items of the PSQI were combined into seven component 
scores: subjective sleep quality, sleep latency, sleep duration, habitual 
sleep efficiency, sleep disturbances, use of sleep medication, and 
daytime dysfunction (Buysse et al., 1989). Each component is 
scored from 0 to 3 (except subjective sleep quality, which is 
scored from 1 to 3), with higher scores indicating poorer sleep 

outcomes. The global PSQI score, calculated by summing all seven 
components, provides a comprehensive measure of overall sleep 
quality. For Chinese populations, a global PSQI score >7 identifies 
individuals with poor sleep quality, with a sensitivity of 98.3% and a 
specificity of 90.2% (Liu, 1996).

The fatigue severity was assessed using the FS-14, a 
standardised 14-item questionnaire. Each item provides a 
binary response (Yes/No), scored as 0 or 1, yielding total 
scores ranging from 0 to 14 (Chalder et al., 1993; Jing et al., 
2016). Higher total scores indicate greater severity of
chronic fatigue.

Health-related quality of life (HRQoL) was assessed using 
the SF-36®questionnaire, a widely utilized instrument with 
demonstrated validity, reliability, and appropriateness for HRQoL 
measurement (Brazier et al., 1992; McHorney et al., 1994; Ware, 
2000). The SF-36® score comprises eight domains: physical 
functioning (PF), role limitations due to physical problems (RP), 
bodily pain (BP), vitality (VT), general health perceptions (GH), 
mental health (MH), social functioning (SF), and role limitations 
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FIGURE 2
Differences between the groups (HAPC vs non-HAPC) in indicators of oxidative stress. Comparisons between groups were made using t-test or 
Wilcoxon test.

due to emotional problems (RE). Each domain score ranges from 0 
to 100, with lower scores indicating greater severity of physical or 
mental disability.

Professionally trained investigators (proficient in both 
Tibetan and Chinese) administered all questionnaires to 
participants via structured interviews, using the official Tibetan 
language versions. The scoring criteria for each scale were 
detailed in Supplementary Table S7. The entire data collection 
process underwent audio-recorded quality control, with random 
verification checks conducted daily post-survey to ensure data 
integrity. 

Sample size

The required sample size was calculated based on reports in the 
literature that CMS patients typically exhibit HGB levels >210 g/L 
in males and >190 g/L in females. Assuming a standard deviation 
(SD) of 20 g/L, an allowable error) of 10 g/L, a significance level (α) 
of 0.05, and a power (1-β) of 0.80, the minimum required sample 
size was estimated as 34 participants using PASS software (version 
15.0; Power Analysis and Sample Size). To account for an anticipated 

20% data loss rate, the final sample size was set at a minimum of 43 
participants. 

Statistical analysis

For continuous variables, we assessed normality using the 
Shapiro-Wilk test. Based on the normality test results, data are 
presented as mean ± standard deviation or median (interquartile 
range), as appropriate. Between-group comparisons were made 
using the Student’s t-test or the Wilcoxon rank-sum test. Categorical 
variables are presented as number (%) and compared using 
the χ2 test or Fisher’s exact test, as appropriate. Correlation 
analysis was performed using Pearson’s or Spearman’s correlation 
coefficient, depending on the distribution of the variables. To 
identify independent associations, we constructed multivariable 
logistic regression models. The outcome variables were the presence 
of high-altitude polycythemia (HAPC) or the presence of a sleep 
disorder (defined as PSQI >7). Variables for inclusion in the final 
models were selected using a stepwise selection method (forward 
and backward), with a significance level of P < 0.05 for entry and 
P > 0.10 for removal.
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TABLE 2  Multivariate logistic regression analysis of factors associated 
with HAPC in Tibetan patients with chronic mountain sickness.

Variable β SE Wald X2 P OR 
(95%CI)

Intercept 51.98 32.21 2.6 0.1066

Sex

   Males 0.84 1.79 0.22 0.6413 2.31 
(0.07,77.64)

   Females 1

MCHC, g/L −0.23 0.09 5.8 0.016 0.80 (0.66, 
0.96)

RDWsd, fL 0.31 0.21 2.05 0.1525 1.36 (0.89, 
2.06)

T-AOC, U/mL 0.38 0.17 5.25 0.0219 1.47 (1.06, 
2.04)

No-HAPC, as reference. Abbreviations: MCHC (mean corpuscular hemoglobin 
concentration), RDWsd (red cell distribution width standard deviation), and T-AOC (total 
antioxidant capacity).

All analyses were performed using R software (version 4.4.3). A 
P value of <0.05 was considered statistically significant.

Results

Characteristics of the sample population

The 47 patients with CMS had a mean age of 40.57 ± 6.21 
years and a mean BMI of 25.10 ± 2.32 kg/m2, comprising 29 males 
(61.70%) and 18 females (38.30%). Forty-five patients (95.74%) 
had moderate to severe CMS (Table 1). The proportion of severe 
CMS was significantly higher in males than females (68.97% 
vs 27.78%). Males also had significantly higher levels of RBC, 
HGB, HCT, PDW, CHOL, TG, LDLc, and UA (all P < 0.05). 
Among oxidative stress markers, T-AOC levels were significantly 
higher in males than females (17.67 ± 4.71 U/mL vs 10.10 ± 
5.31 U/mL, P < 0.001). No significant differences were found 
between males and females in fatigue or quality of life scores, except 
for sleep quality (Supplementary Table S1). 

Correlation analysis of measured 
parameters

Among haematological parameters, RBC, HGB and HCT 
demonstrated moderate positive correlations with UA (r = 0.55, 0.55 
and 0.54, respectively; all P < 0.001). These parameters also showed 
strong positive correlations with T-AOC (r = 0.66, 0.75, and 0.72, 
respectively; all P < 0.001).

The PSQI index was negatively correlated with RBC, HGB, HCT, 
PDW, UA and T-AOC, and positively correlated with HDLc and 
ApoA1 (all P < 0.05, Figure 1). 

Factors associated with high altitude 
polycythemia

Among the 47 patients with chronic altitude sickness, 12 
had HAPC. Eleven (91.67%) of these 12 patients were male 
and had severe chronic altitude sickness. Both systolic blood 
pressure (SBP) and diastolic blood pressure (DBP) were higher 
in patients with HAPC compared to those without HAPC (P < 
0.05, Supplementary Table S2). Levels of T-AOC and GSH were 
also higher in patients with HAPC compared to those without 
HAPC (all P < 0.05, Figure 2). Other measures of sleep quality, 
fatigue and quality of life showed no statistically significant 
differences (Supplementary Table S3).

Multivariate analysis showed that after adjustment for sex, 
MCHC and RDWsd, showed that higher T-AOC levels were 
positively associated with the risk of HAPC (OR = 1.47, 95% CI: 
1.06–2.04, Table 2). 

Factors associated with sleep quality

In the overall study population, individuals with good sleep 
quality had higher RBC, HGB and HCT levels and lower HDLc and 
ApoA1 levels compared to those with sleep problems (all P < 0.05, 
Figure 3). Levels of 8-OHdG were significantly elevated in the group 
with good sleep quality (P = 0.024, Supplementary Table S4). These 
subjects also exhibited lower fatigue scores and higher BP, GH and 
RE scores (all P < 0.05, Figure 4; Supplementary Table S5).

In multivariate logistic regression analysis (Table 3), male 
subjects was significantly associated with lower odds of poor sleep 
quality (OR = 0.11, 95% CI: 0.01–0.81). Furthermore, each 1-unit 
increase in 8-OHdG was associated with a 5% reduction in the odds 
of poor sleep quality (OR = 0.95, 95% CI: 0.90–0.99). Similarly, better 
PSQI scores for BP (OR = 0.91, 95% CI: 0.85–0.97) and GH (OR 
= 0.90, 95% CI: 0.83–0.98) were significantly associated with lower 
odds of poor sleep quality.

Discussion

CMS remains a significant health challenge for permanent 
residents at high altitudes. Current research on CMS at extreme 
altitudes (>4500 m) remains limited, predominantly focusing on 
migrant populations and males cohorts (Jiang et al., 2014; 
Champigneulle et al., 2022; Oberholzer et al., 2020). This study 
assessed long-term Tibetan residents (both sexes) living at 4500 m, 
analysing their oxidative stress, sleep quality, fatigue and quality 
of life. Key findings revealed that male CMS patients exhibited 
significantly higher RBC, HGB, HCT, UA and T-AOC compared 
with females. Analysis of the total population demonstrated 
significant positive correlations between RBC, HGB, HCT and T-
AOC. Notably, 91.67% of CMS patients with HAPC were male 
and presented with severe CMS. Multivariate analysis identified 
two independent factors associated with HAPC comorbidity: 
decreased MCHC (OR = 0.80) and increased T-AOC (OR = 1.47). 
Furthermore, better sleep quality was significantly associated with 
higher 8-OHdG (OR = 0.95), and better scores on the bodily pain 
(BP) (OR = 0.91) and general health (GH) (OR = 0.90) domains.
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FIGURE 3
Differences in CBC parameters between groups (PSQI >7 vs PSQI ≤7). Comparisons between groups were made using t-test or Wilcoxon test.

FIGURE 4
Differences in fatigue scales, SF-36 scales, and oxidative stress indicators between groups (PSQI >7 vs PSQI ≤7). Comparisons between groups were 
made using t-test or Wilcoxon test.

Oxidative stress is implicated in the pathogenesis of several 
human diseases, while antioxidants regulate redox homeostasis 
and signalling pathways. OS occurs when endogenous antioxidant 
defences are overwhelmed, leading to molecular, tissue and cellular 
damage (Silvestrini and Mancini, 2024). T-AOC is a biomarker 

measuring the antioxidant potential of body fluids (Manafikhi et al., 
2017). In this study, we observed positive correlations between 
HGB, UA, and T-AOC in CMS patients, with HGB, UA and T-
AOC levels being higher in males than in females. Epidemiological 
studies indicated that humans at high altitudes, characterised by low 
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TABLE 3  Multivariate logistic regression analysis of factors associated 
with sleep quality in Tibetan patients with chronic mountain sickness.

Variable β SE Wald X2 P OR 
(95%CI)

Intercept 12.3 3.82 10.34 0.001

Sex

   Males −2.25 1.04 4.67 0.031 0.11 (0.01,0.81)

   Females 1

8-OHdG, 
ng/mL

−0.06 0.03 4.98 0.026 0.95 (0.90, 0.99)

BP −0.09 0.03 7.32 0.007 0.91 (0.85, 0.97)

GH −0.1 0.04 5.84 0.016 0.90 (0.83, 0.98)

PSQI <7 as reference. Abbreviations: 8-OHdG (8-hydroxy-2′-deoxyguanosine), BP (bodily 
pain), and GH (general health perceptions).

pressure and low oxygen, experience elevated HGB and UA levels 
(Pu et al., 2024). Previous experimental studies demonstrated that 
uric acid influences T-AOC measurements by direct scavenging of 
free radicals, synergistic enhancing other antioxidant systems, and 
elevating of humoral antioxidant reserves (Cao and Prior, 1998). 
Consequently, the endogenous antioxidant system may exhibit 
responsiveness to oxidative stress during hypoxia. Uric acid, as 
an endogenous antioxidant, may play an important protective 
role against oxidative stress in the context of systemic hypoxia 
during high-altitude exposure, particularly when blood viscosity is 
increased (Baillie et al., 2007).

In patients with CMS complicated by HAPC, elevated levels 
of antioxidants (including T-AOC and GSH) were observed 
compared to those with CMS alone. This paradoxical phenomenon, 
characterized by an enhanced antioxidant response correlating 
with greater disease severity, contrasts with previous reports. For 
example, a study using chronic hypobaric hypoxia-induced CMS 
rat models (simulated 5,000 m altitude for 30 days) showed that the 
CMS group had significantly elevated MDA levels and decreased 
SOD and GSH levels compared to the normal control group 
(Ma et al., 2014). Additionally, Bailey et al. reported that CMS 
patients at high altitude had lower levels of GSH and higher levels 
of oxidised glutathione (GSSG) than non-CMS individuals, and 
that these oxidative and inflammatory responses were associated 
with cognitive decline and depressive symptoms (Bailey et al., 
2019). In this study, HGB influenced CMS disease severity and was 
positively correlated with UA and T-AOC, which may account for 
the observed higher antioxidant levels in more severe CMS. Future 
studies could investigate the relationship between CMS disease 
severity and antioxidant levels after controlling for HGB.

The present study observed that CMS patients with good sleep 
quality exhibited lower levels of bodily pain, improved general health 
perceptions and reduced fatigue indices, suggesting a potentially 
optimal adaptive state. Notably, however, patients with good sleep 
quality predominated in males and had significantly higher levels 
of HGB and the oxidative stress marker 8-OHdG. Both the 
greater propensity of males to self-report favourable health status 

compared to females (Meyer et al., 2014) and a possible association 
between HGB concentrations and sleep quality parameters may 
explain the observed males predominance and elevated HGB levels. 
Sanchez-Azofra et al. demonstrated that isovolemic hemodilution 
in patients with CMS resulted in decreased HGB levels, but 
acutely exacerbated nocturnal oxygen saturation and aggravated 
the severity of sleep apnea (Sanchez-Azofra et al., 2022). 8-
OHdG, a biomarker of RNA or DNA oxidation, is widely used in 
disease mechanism research, environmental exposure assessment 
and drug efficacy monitoring. Its levels are influenced by gender, 
age, smoking and physical activity (Peres et al., 2020). On the 
one hand, studies have shown that 8-OHdG is associated with a 
variety of disease risks. Specifically, higher 8-OHdG levels show a 
positive association with cardiovascular disease (CVD) incidence 
in females, but a U-shaped association in males (Nagao et al., 
2020). Elevated plasma 8-OHdG is associated with increased motor 
cognitive risk (MCR) in older adults, and Alzheimer’s disease 
patients exhibit higher urinary 8-OHdG levels than healthy elderly 
controls (Dai et al., 2024; Zengi et al., 2012). On the other 
hand, previous studies have postulated that this phenomenon may 
be related to inter-individual variations in DNA damage repair 
capacity. When exposed to comparable levels of oxidative damage, 
individuals with enhanced repair functionality may demonstrate 
more efficient excision and subsequent repair of 8-OHdG adducts 
on DNA strands, thereby exhibiting relatively elevated urinary 
excretion levels of this oxidative damage biomarker (Il’yasova et al., 
2012). However, a prospective epidemiological study by Loft et al. 
found no significant association between lung cancer risk and 
urinary 8-OHdG excretion (Loft et al., 2006). Similarly, Peres et al. 
showed in their cross-sectional study that the severity of obstructive 
sleep apnoea (OSA) was not significantly associated with 8-OHdG 
biomarkers (Peres et al., 2020). Therefore, whether the higher blood 
8-OHdG levels observed in CMS patients with good sleep quality 
reflect more severe DNA oxidative damage or enhanced DNA repair 
capacity needs to be further investigated in prospective studies.

Although this study has strengths, the findings should be 
interpreted considering several limitations. First, the absence of 
a representative control group (e.g., individuals without CMS 
matched for gender and age) limits the ability to directly compare 
biomarker levels between CMS and non-CMS populations. Second, 
convenience sampling method used in these high-altitude areas, 
characterised by low population density and dispersed distribution, 
may introduce selection bias, potentially limiting the generalizability 
of the findings. Third, the assessment of sleep quality using the 
PSQI questionnaire in CMS patients may be subject to participants’ 
subjective perceptions and cognitive biases. Fourth, as a small-
scale cross-sectional study, this research can only provide evidence 
of associations rather than establish causal relationships. Further 
validation through prospective studies with larger sample sizes is 
warranted.

Conclusion

In summary, this study reveals sex-specific characteristics in 
CMS patients, with males demonstrating elevated hematological 
indices (RBC, HGB, HCT) and T-AOC compared to females. 
Notably, HAPC comorbidity occurred primarily in severe male
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CMS cases and was associated with lower MCHC and higher AOC 
levels. Paradoxically, male sex and elevated oxidative stress markers 
(8-OHdG) coexisted with improved sleep quality, suggesting 
complex compensatory mechanisms in chronic hypoxic adaptation. 
These findings provide a scientific basis for understanding the 
haematological, oxidative stress and patient-reported characteristics 
of CMS patients at extreme altitudes.
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