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Hematological characteristics,
oxidative stress, and
patient-reported symptoms in
Tibetan patients with chronic
mountain sickness at 4500 m
altitude
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(Hospital.C.X.), Chengdu, China, “*Medicine College of Tibet University, Lhasa, China, *Research
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Background: Chronic mountain sickness (CMS), driven by chronic hypoxia,
features erythrocytosis, cardiovascular impairment, and systemic oxidative
stress. Current studies focus on haematological and cardiopulmonary changes,
but multidimensional features like sleep disturbances, quality of life, and
oxidative stress remain underexplored.

Methods: The cross-sectional study included 47 adult Tibetan residents living
at 4,500 m and diagnosed with CMS using Qinghai criteria. Blood samples
were collected, and questionnaires assessed quality of life, fatigue, and sleep.
Multivariate logistic regression was used to explore associations between
variables, using CMS comorbid with high-altitude polycythemia (HAPC) or sleep
disturbance as endpoints.

Results: The mean age of patients was 40.57 + 6.21 years (29 males, 18 females).
Males had higher RBC, HGB, HCT, UA, and T-AOC levels (all P < 0.001). A
moderate to strong positive correlation was observed between these markers.
91.67% of patients with comorbid HAPC were males with severe CMS. Lower
MCHC (OR = 0.80, P = 0.02) and higher T-AOC (OR = 147, P = 0.02) were
associated with HAPC. Males (OR = 0.11, P = 0.03), higher 8-OHdG levels (OR
= 0.95, P = 0.03), higher body pain scores (OR = 0.91, P < 0.01), and higher
general health scores (OR = 0.90, P = 0.02) were more likely to report good
sleep quality.

Conclusion: Males with CMS had higher T-AOC and better sleep
quality than females. Good sleep quality was associated with
better quality of life and less fatigue. Oxidative stress indicators
correlated with clinical phenotypes, but causality requires further

01 frontiersin.org


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1661738
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1661738&domain=pdf&date_stamp=2025-09-08
mailto:wu_yunhong@163.com
mailto:wu_yunhong@163.com
mailto:bscr8868@qq.com
mailto:bscr8868@qq.com
https://doi.org/10.3389/fphys.2025.1661738
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1661738/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1661738/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1661738/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1661738/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1661738/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1661738/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Zhong et al.

10.3389/fphys.2025.1661738

investigation. This trial was registered at Chinese Clinical Trial Registry
(ChiCTR2400082685).

chronic mountain sickness, high-altitude polycythemia, oxidative stress, sleep quality,

fatigue scale

Introduction

Millions of people travel to high-altitude regions annually, and
over 80 million people live permanently above 2,500 m (Tremblay
and Ainslie, 2021). Chronic exposure to high-altitude hypoxia can
cause chronic mountain sickness (CMS), clinically characterised
by excessive erythrocytosis, hypoxic pulmonary hypertension and
multisystem dysfunction (Gatterer et al., 2024). The prevalence of
CMS ranges from 5% to 33% across populations, with the highest
rates documented in the Andean region (Ledn-Velarde et al., 2005),
and varies with altitude, age and genetic factors. Patients with
CMS experience impaired quality of life and increased morbidity
and mortality, attributable to marked arterial hypoxaemia and
haemodynamic abnormalities. These haemodynamic abnormalities
may drive the progression of pulmonary hypertension, cor
pulmonale, left ventricular dysfunction, and thromboembolic
complications (Swenson, 2022). Despite having evolved unique
hypoxic adaptation mechanisms through genetic selection
(Liu et al., 2020; Buroker et al., 2012) (e.g., variants in EPASI
and EGLNI1), Tibetan populations exhibit
susceptibility to CMS, reflecting a complex balance between

inter-individual

adaptive compensation and pathophysiological dysregulation
(Hsieh et al., 2016).

The pathological mechanisms of CMS are fundamentally
linked to hypoxia-induced multisystem maladaptation. Studies
demonstrate that both acute and chronic hypoxia elevate levels
of oxidative stress biomarkers (Jefferson et al., 2004). Comparative
analyses of high-altitude populations show significantly elevated
levels of markers of oxidative stress (e.g., ascorbate free radicals)
in CMS patients compared with non-CMS high-altitude residents
(Bailey et al., 2013). Bailey et al. have further elucidated systemic
oxidative stress (OS) characteristics in high-altitude populations,
manifested through an imbalance between free radical generation
and antioxidant defense mechanisms that sustains chronic
oxidative stress. This pathological state interacts synergistically
with inflammatory mediators, potentially accelerating cognitive
deterioration and elevating depression susceptibility (Shanjun et al.,
2020; Kong et al., 2011). In addition, high-altitude populations
exhibit a significantly higher prevalence of sleep-disordered
breathing (SDB) compared to sea-level populations. Recent studies
have demonstrated that Andean high-altitude residents show a
two-fold higher in the apnea-hypopnea index (AHI) compared to
sea-level counterparts, primarily manifested by increased central
sleep apnea events (Pham et al., 2017). Notably, the study by Ana
Sanchez-Azofra’s team revealed no significant association between
the progression of CMS and alterations in sleep architecture or the
severity of SDB (Sanchez-Azofra et al., 2022). While these findings
have significantly advanced our understanding of hypoxia-driven
oxidative stress and sleep-related pathophysiology in CMS, the
complex interplay remains underexplored.
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research predominantly focuses on traditional
domains including hypoxic erythrocytosis 20135
Yang et al, 2024), pulmonary hypertension (Ye et al, 2023;

Current
(Haase,

El Alam et al., 2022; Naeije, 2019), and cardiovascular complications
(Savina et al,, 2024; Abondio et al., 2024), whereas systematic
investigations into multidimensional characteristics of CMS
patients - particularly oxidative stress regulatory mechanisms,
sleep disorder phenotypes, fatigue severity, and quality of life -
remain substantially understudied. There is an imperative need
for enhanced clinical evidence to advance the pathophysiological
understanding framework.

Therefore, we conducted a study screening Tibetan permanent
residents living at 4,500 m for chronic mountain sickness
(CMS). We systematically collected data on haematological
parameters, blood biochemical profiles, oxidative stress biomarkers,
and multidimensional clinical phenotypes (including sleep
quality, fatigue level, and quality of life scores). By assessing
correlations between these parameters, we aimed to elucidate the
pathophysiological features of CMS and to establish a scientific basis
for developing prevention and treatment strategies.

Materials and methods
Participants

The study recruited 47 Tibetan patients with chronic mountain
sickness (CMS) from Nagqu City (altitude 4,500 m), Tibet
Autonomous Region, using convenience sampling. Inclusion criteria
were: (1) Tibetan ethnicity; (2) aged 18-60 years; (3) body mass
index (BMI) 18-28 kg/cm?; (4) permanent residents (residing
locally for >6 months in the past year); (5) meeting the Qinghai
diagnostic criteria for CMS (Leon-Velarde et al., 2005); and (6) non-
smokers and non-drinker. Exclusion criteria were: (1) polycythemia
vera or secondary polycythemia; (2) organic sleep disorders; (3)
pregnancy or lactation; and (4) severe hepatic or renal dysfunction.
The study protocol was approved by the Ethics Review Committee
of the Hospital of Chengdu Office of People’s Government of Xizang
Autonomous Region (2024-EC-073). The clinical trial was registered
at the China Clinical Trial Registry (ChiCTR2400082685). The
design and data collection for this study were based on the baseline
survey conducted within that registered trial. All participants
provided written informed consent.

Measures
Blood biochemistry and physical measurements

Following an overnight fasting period, venous blood samples
were collected from all participants between 08:00 and 10:00.
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TABLE 1 Basic characteristics of 47 Tibetan patients with chronic mountain sickness.

Total (N = 47)

Variable

Males (n = 29)

10.3389/fphys.2025.1661738

Females (n = 18)

Age, years 40.57 £ 6.21 41.86 +£5.89 38.50 £ 6.32 0.078
HAPC 0.017

Yes 12 (25.53) 11 (37.93) 1(5.56)

No 35 (74.47) 18 (62.07) 17 (94.44)
CMS 0.012

Mild 2(4.26) 1(3.45) 1(5.56)

Moderate 20 (42.55) 8(27.59) 12 (66.67)

Severe 25 (53.19) 20 (68.97) 5(27.78)
BMI, kg/m? 25.10 £2.32 25.55+2.25 24.37 +2.30 0.094
SBP, mmHg 116.00 (106.00, 122.50) 118.00 (109.00, 128.00) 110.00 (106.00, 116.75) 0.120
DBP, mmHg 78.36 + 10.91 79.34+11.23 76.78 + 10.49 0.432
RBC, 10" 12/L 6.27 (5.65, 6.91) 6.64 (6.27,7.77) 5.58 (5.20, 5.85) <0.001
HGB, g/L 189.77 +32.02 207.69 +25.30 160.89 + 17.00 <0.001
HCT, % 55.60 (50.65, 61.25) 59.50 (56.00, 70.90) 48.10 (45.35, 51.08) <0.001
MCV, fL 88.79 +4.82 89.64 +4.63 87.42+4.93 0.133
MCH, pg 29.60 (28.55, 31.00) 30.10 (29.10, 31.00) 28.70 (28.40, 30.78) 0.158
MCHC, g/L 334.00 (329.00, 338.00) 334.00 (329.00, 339.00) 333.00 (328.25, 337.75) 0.554
RDWcv, % 13.90 (13.40, 14.55) 13.80 (13.40, 14.40) 13.90 (13.10, 15.17) 0.93
RDWsd, fL 46.90 (45.50, 49.10) 47.60 (45.70, 49.30) 46.50 (45.25, 48.10) 0.255
PLT, 10"9/L 237.81 £71.75 223.83 + 66.07 260.33 + 76.61 0.104
MPV, fL 10.37 £ 1.07 10.31 £ 1.02 10.47 £ 1.16 0.622
PDW, fL 16.31 £ 0.39 16.46 £ 0.34 16.09 + 0.36 0.002
CHOL, mmol/L 3.95 (3.50, 4.58) 4.16 (3.80, 4.78) 3.52(3.27,4.11) 0.014
TG, umol/L 0.89 (0.65, 1.36) 1.23 (0.85, 1.46) 0.61 (0.54, 0.84) <0.001
HDLc, umol/L 1.24 (0.92, 1.49) 1.21 (0.92, 1.49) 1.31 (0.92, 1.48) 0.431
LDLc, umol/L 3.12 (2.60, 3.62) 3.39 (2.94, 4.01) 2.62(2.13,3.08) 0.001
ApoAl, g/L 1.49 £0.18 1.45+0.14 1.56 +0.21 0.063
ApoB, g/L 0.92 +£0.31 1.02£0.31 0.75+0.25 0.002
BUN, mmol/L 4.72 £ 1.50 5.16 £ 1.55 4.01 +£1.14 0.006

(Continued on the following page)
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TABLE 1 (Continued) Basic characteristics of 47 Tibetan patients with chronic mountain sickness.

Variable

Total (N = 47)

Males (n = 29)

10.3389/fphys.2025.1661738

Females (n = 18)

Cr, mmol/L 77.76 +12.87 83.56 + 8.78 68.42 +13.09 <0.001
UA, umol/L 387.78 £115.19 436.72 £110.31 308.94 £ 72.09 <0.001
GLU, mmol/L 4.62 +0.59 4.61 +£0.64 4.65+0.51 0.773
T-AOC, U/mL 14.77 £ 6.15 17.67 +4.71 10.10 + 5.31 <0.001
CAT, U/mL 120.80 (87.66, 171.82) 127.07 (82.87, 182.60) 118.79 (90.23, 142.40) 0.753
GSH, umol/L 2248 (20.17, 29.68) 23.05 (20.75, 29.39) 21.90 (18.88, 29.54) 0.751
MDA, umol/L 3.54+1.54 382+1.71 3.09+1.11 0.085
SOD, umol/L 48.04 (45.80, 52.08) 47.75 (45.21, 50.59) 49.46 (47.90, 54.10) 0.120
8-OHdG, ng/mL 23.03 (17.38, 37.35) 24.59 (17.96, 36.53) 22.61 (14.81, 37.44) 0.686

Data were expressed as mean + standard deviation, median (quartiles), or n (percentage). Comparisons between groups were made using t-test or Wilcoxon test. Abbreviations: HAPC (high
altitude polycythemia; Yes/No), CMS (chronic mountain sickness; Mild/Moderate/Severe), BMI (body mass index), SBP/DBP (systolic/diastolic blood pressure), RBC (red blood cells), HGB
(hemoglobin), HCT (hematocrit), MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), MCHC (MCH, concentration), RDWcv/RDWsd (red cell distribution width,
coefficient of variation/standard deviation), PLT (platelet count), MPV (mean platelet volume), PDW (platelet distribution width), CHOL (total cholesterol), TG (triglycerides), HDLc/LDLc
(high/low-density lipoprotein cholesterol), ApoA1/ApoB (apolipoprotein A1/B), BUN (blood urea nitrogen), Cr (creatinine), UA (uric acid), GLU (glucose), T-AOC (total antioxidant
capacity), CAT (catalase), GSH (glutathione), MDA (malondialdehyde), SOD (superoxide dismutase), and 8-OHdG (8-hydroxy-2'-deoxyguanosine).

Whole blood was drawn into EDTA-coated tubes for complete
blood count (CBC) analysis (BC-6100 automated hematology
analyser, Mindray, Shenzhen, China), including: red blood cell count
(RBC, 10'?/L), haemoglobin concentration (HGB, g/L), haematocrit
(HCT, %), mean corpuscular volume (MCV, fL), mean corpuscular
haemoglobin (MCH, pg), mean corpuscular haemoglobin
concentration (MCHC, g/L), red blood cell distribution width -
coeflicient of variation (RDW-CV, %), red blood cell distribution
width - standard deviation (RDW-SD, fL), platelet count (PLT,
109/L), mean platelet volume (MPYV, fL), and platelet distribution
width (PDW, fL). Blood was also drawn into serum-separating
tubes for biochemical profiling (BS-800 M automated biochemistry
analyser, Mindray, Shenzhen, China). Serum was obtained by
centrifugation (3,000 g for 15 min at 4 °C) and stored at —80 °C
until analysis. Biochemical assays included: total cholesterol
(CHOL, mmol/L), triglycerides (TG, umol/L), high-density
lipoprotein cholesterol (HDL-C, pumol/L), low-density lipoprotein
cholesterol (LDL-C, pmol/L), apolipoprotein Al (ApoAl, g/L),
apolipoprotein B (ApoB, g/L), blood urea nitrogen (BUN, mmol/L),
creatinine (Cr, mmol/L), uric acid (UA, umol/L), and glucose
(GLU, mmol/L).

Trained staff conducted anthropometric measurements using
calibrated instruments: standing height and weight were measured
with a stadiometer and digital scale (IPR-scale 02), from which body
mass index (BMI) was calculated. Blood pressure was measured
using an automated sphygmomanometer (Omron HEM-1000) after
participants had rested in the seated position for 5min, with
triplicate measurements taken at 2-min intervals.

Frontiers in Physiology

Oxidative stress biomarkers

Oxidative stress was measured by centrifuging 2 mL of whole
blood (instruments used for sample pretreatment are detailed
in the Supplementary Table S6) and storing the serum at —80 °C
until the samples were tested. All colorimetric assays were
performed using a pQuant microplate spectrophotometer (BioTek,
Winooski, VT, United States). Reduced glutathione (GSH, umol/L)
was estimated using GSH colorimetric assay kit (E-BC-K030-M,
Elabscience, Houston, TX, United States) according to the method
described by Beutler et al. (1963), with absorbance measured at
405 nm. Lipid peroxidation was estimated using a malondialdehyde
(MDA, umol/L) colorimetric assay kit (E-BC-K025-M, Elabscience,
Houston, TX, United States) by measuring thiobarbituric acid
reactive substance (TBARS) and expressed in terms of MDA
content according to Ohkawa et al. (1979). MDA, the final
product of fatty acid peroxidation, reacts with thiobarbituric acid
(TBA) to form a colored complex, the absorbance of which was
measured at 532 nm in the supernatant. Superoxide dismutase
(SOD, umol/L) activity using SOD typed activity assay kit (E-BC-
K020-M, Elabscience, Houston, TX, United States) was determined
according to Giannopolitis and Ries (Giannopolitis and Ries, 1977).
The color reaction was measured at 550 nm. Catalase (CAT, U/mL)
activity was determined using a CAT activity assay kit (E-BC-
K031-M, Elabscience, Houston, TX, United States) according to
the method of Aebi (Aebi, 1984). Total antioxidant capacity (T-
AOC, U/mL) was measured using a colorimetric assay kit (E-BC-
K136-M, Elabscience, Houston, TX, United States), and one unit
of total antioxidant capacity was assigned for each 0.01 increase in
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FIGURE 1
Correlation analysis of measured parameters.

the absorbance of the reaction system per millilitre of sample per
minute at 37 °C. 8-OHdG was determined using an ELISA technique
(E-EL-0028, Elabscience, Houston, TX, United States) performed
according to the kit instructions and the absorbance values were
measured at 450 nm using an enzyme marker and the results were
expressed in ng/mL.

Clinical phenotypes

The Pittsburgh Sleep Quality Index (PSQI) is a widely used
and validated questionnaire for assessing sleep quality across
diverse populations (Buysse et al.,, 1989; Cole et al., 2006). As a
subjective measure, the PSQI evaluates self-reported sleep quality
and disturbances over a 1-month period. In this study, the 19 self-
rated items of the PSQI were combined into seven component
scores: subjective sleep quality, sleep latency, sleep duration, habitual
sleep efficiency, sleep disturbances, use of sleep medication, and
daytime dysfunction (Buysse et al., 1989). Each component is
scored from 0 to 3 (except subjective sleep quality, which is
scored from 1 to 3), with higher scores indicating poorer sleep
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outcomes. The global PSQI score, calculated by summing all seven
components, provides a comprehensive measure of overall sleep
quality. For Chinese populations, a global PSQI score >7 identifies
individuals with poor sleep quality, with a sensitivity of 98.3% and a
specificity of 90.2% (Liu, 1996).

The fatigue severity was assessed using the FS-14, a
standardised 14-item questionnaire. Each item provides a
binary response (Yes/No), scored as 0 or 1, yielding total
scores ranging from 0 to 14 (Chalder et al, 1993; Jing et al,
2016). Higher total
chronic fatigue.

scores indicate greater severity of

Health-related quality of life (HRQoL) was assessed using
the SE-36® questionnaire, a widely utilized instrument with
demonstrated validity, reliability, and appropriateness for HRQoL
measurement (Brazier et al., 1992; McHorney et al., 1994; Ware,
2000). The SF-36®score comprises eight domains: physical
functioning (PF), role limitations due to physical problems (RP),
bodily pain (BP), vitality (VT), general health perceptions (GH),

mental health (MH), social functioning (SF), and role limitations
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FIGURE 2

Differences between the groups (HAPC vs non-HAPC) in indicators of oxidative stress. Comparisons between groups were made using t-test or

Wilcoxon test.

due to emotional problems (RE). Each domain score ranges from 0
to 100, with lower scores indicating greater severity of physical or
mental disability.

in both
to

Professionally trained (proficient
Tibetan and Chinese) all
participants via structured interviews, using the official Tibetan

investigators
administered questionnaires
language versions. The scoring criteria for each scale were
detailed in Supplementary Table S7. The entire data collection
process underwent audio-recorded quality control, with random
verification checks conducted daily post-survey to ensure data

integrity.

Sample size

The required sample size was calculated based on reports in the
literature that CMS patients typically exhibit HGB levels >210 g/L
in males and >190 g/L in females. Assuming a standard deviation
(SD) of 20 g/L, an allowable error) of 10 g/L, a significance level (a)
of 0.05, and a power (1-f) of 0.80, the minimum required sample
size was estimated as 34 participants using PASS software (version
15.0; Power Analysis and Sample Size). To account for an anticipated
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20% data loss rate, the final sample size was set at a minimum of 43

participants.

Statistical analysis

For continuous variables, we assessed normality using the
Shapiro-Wilk test. Based on the normality test results, data are
presented as mean * standard deviation or median (interquartile
range), as appropriate. Between-group comparisons were made
using the Student’s t-test or the Wilcoxon rank-sum test. Categorical
variables are presented as number (%) and compared using
the x* test or Fisher's exact test, as appropriate. Correlation
analysis was performed using Pearson’s or Spearman’s correlation
coefficient, depending on the distribution of the variables. To
identify independent associations, we constructed multivariable
logistic regression models. The outcome variables were the presence
of high-altitude polycythemia (HAPC) or the presence of a sleep
disorder (defined as PSQI >7). Variables for inclusion in the final
models were selected using a stepwise selection method (forward
and backward), with a significance level of P < 0.05 for entry and
P > 0.10 for removal.
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TABLE 2 Multivariate logistic regression analysis of factors associated
with HAPC in Tibetan patients with chronic mountain sickness.

Variable B SE Waldx® P OR
(95%Cl)
Intercept 51.98 32.21 2.6 0.1066
Sex
Males 0.84 1.79 0.22 0.6413 2.31
(0.07,77.64)
Females 1
MCHC, g/L -0.23 0.09 5.8 0.016 0.80 (0.66,
0.96)
RDWsd, fL 0.31 0.21 2.05 0.1525 1.36 (0.89,
2.06)
T-AOC, U/mL 0.38 0.17 5.25 0.0219 1.47 (1.06,
2.04)

No-HAPC, as reference. Abbreviations: MCHC (mean corpuscular hemoglobin
concentration), RDWsd (red cell distribution width standard deviation), and T-AOC (total
antioxidant capacity).

All analyses were performed using R software (version 4.4.3). A
P value of <0.05 was considered statistically significant.

Results
Characteristics of the sample population

The 47 patients with CMS had a mean age of 40.57 + 6.21
years and a mean BMI of 25.10 + 2.32 kg/m?, comprising 29 males
(61.70%) and 18 females (38.30%). Forty-five patients (95.74%)
had moderate to severe CMS (Table 1). The proportion of severe
CMS was significantly higher in males than females (68.97%
vs 27.78%). Males also had significantly higher levels of RBC,
HGB, HCT, PDW, CHOL, TG, LDLc, and UA (all P < 0.05).
Among oxidative stress markers, T-AOC levels were significantly
higher in males than females (17.67 + 4.71 U/mL vs 10.10 *
531 U/mL, P < 0.001). No significant differences were found
between males and females in fatigue or quality of life scores, except
for sleep quality (Supplementary Table S1).

Correlation analysis of measured
parameters

Among haematological parameters, RBC, HGB and HCT
demonstrated moderate positive correlations with UA (r = 0.55, 0.55
and 0.54, respectively; all P < 0.001). These parameters also showed
strong positive correlations with T-AOC (r = 0.66, 0.75, and 0.72,
respectively; all P < 0.001).

The PSQI index was negatively correlated with RBC, HGB, HCT,
PDW, UA and T-AOC, and positively correlated with HDLc and
ApoAl (all P < 0.05, Figure 1).
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Factors associated with high altitude
polycythemia

Among the 47 patients with chronic altitude sickness, 12
had HAPC. Eleven (91.67%) of these 12 patients were male
and had severe chronic altitude sickness. Both systolic blood
pressure (SBP) and diastolic blood pressure (DBP) were higher
in patients with HAPC compared to those without HAPC (P <
0.05, Supplementary Table S2). Levels of T-AOC and GSH were
also higher in patients with HAPC compared to those without
HAPC (all P < 0.05, Figure 2). Other measures of sleep quality,
fatigue and quality of life showed no statistically significant
differences (Supplementary Table S3).

Multivariate analysis showed that after adjustment for sex,
MCHC and RDWsd, showed that higher T-AOC levels were
positively associated with the risk of HAPC (OR = 1.47, 95% CI:
1.06-2.04, Table 2).

Factors associated with sleep quality

In the overall study population, individuals with good sleep
quality had higher RBC, HGB and HCT levels and lower HDLc and
ApoAl levels compared to those with sleep problems (all P < 0.05,
Figure 3). Levels of 8-OHdG were significantly elevated in the group
with good sleep quality (P = 0.024, Supplementary Table S4). These
subjects also exhibited lower fatigue scores and higher BP, GH and
RE scores (all P < 0.05, Figure 4; Supplementary Table S5).

In multivariate logistic regression analysis (Table 3), male
subjects was significantly associated with lower odds of poor sleep
quality (OR = 0.11, 95% CI: 0.01-0.81). Furthermore, each 1-unit
increase in 8-OHdG was associated with a 5% reduction in the odds
of poor sleep quality (OR = 0.95, 95% CI: 0.90-0.99). Similarly, better
PSQI scores for BP (OR = 0.91, 95% CI: 0.85-0.97) and GH (OR
=0.90, 95% CI: 0.83-0.98) were significantly associated with lower
odds of poor sleep quality.

Discussion

CMS remains a significant health challenge for permanent
residents at high altitudes. Current research on CMS at extreme
altitudes (>4500 m) remains limited, predominantly focusing on
migrant populations and males cohorts (Jiang et al, 2014;
Champigneulle et al., 2022; Oberholzer et al., 2020). This study
assessed long-term Tibetan residents (both sexes) living at 4500 m,
analysing their oxidative stress, sleep quality, fatigue and quality
of life. Key findings revealed that male CMS patients exhibited
significantly higher RBC, HGB, HCT, UA and T-AOC compared
with females. Analysis of the total population demonstrated
significant positive correlations between RBC, HGB, HCT and T-
AOC. Notably, 91.67% of CMS patients with HAPC were male
and presented with severe CMS. Multivariate analysis identified
two independent factors associated with HAPC comorbidity:
decreased MCHC (OR = 0.80) and increased T-AOC (OR = 1.47).
Furthermore, better sleep quality was significantly associated with
higher 8-OHdG (OR = 0.95), and better scores on the bodily pain
(BP) (OR = 0.91) and general health (GH) (OR = 0.90) domains.
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Oxidative stress is implicated in the pathogenesis of several
human diseases, while antioxidants regulate redox homeostasis
and signalling pathways. OS occurs when endogenous antioxidant
defences are overwhelmed, leading to molecular, tissue and cellular
damage (Silvestrini and Mancini, 2024). T-AOC is a biomarker
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measuring the antioxidant potential of body fluids (Manafikhi et al.,
2017). In this study, we observed positive correlations between
HGB, UA, and T-AOC in CMS patients, with HGB, UA and T-
AOC levels being higher in males than in females. Epidemiological
studies indicated that humans at high altitudes, characterised by low
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TABLE 3 Multivariate logistic regression analysis of factors associated
with sleep quality in Tibetan patients with chronic mountain sickness.

Variable | B SE WaldX? P OR
(95%Cl)
Intercept 12.3 3.82 10.34 0.001
Sex
Males -2.25 | 1.04 4.67 0.031 0.11 (0.01,0.81)
Females 1
8-OHdG, -0.06 | 0.03 4.98 0.026 | 0.95(0.90, 0.99)
ng/mL
BP -0.09 | 0.03 7.32 0.007 | 0.91(0.85,0.97)
GH -0.1 0.04 5.84 0.016 | 0.90 (0.83,0.98)

PSQI <7 as reference. Abbreviations: 8-OHdG (8-hydroxy-2'-deoxyguanosine), BP (bodily
pain), and GH (general health perceptions).

pressure and low oxygen, experience elevated HGB and UA levels
(Pu et al., 2024). Previous experimental studies demonstrated that
uric acid influences T-AOC measurements by direct scavenging of
free radicals, synergistic enhancing other antioxidant systems, and
elevating of humoral antioxidant reserves (Cao and Prior, 1998).
Consequently, the endogenous antioxidant system may exhibit
responsiveness to oxidative stress during hypoxia. Uric acid, as
an endogenous antioxidant, may play an important protective
role against oxidative stress in the context of systemic hypoxia
during high-altitude exposure, particularly when blood viscosity is
increased (Baillie et al., 2007).

In patients with CMS complicated by HAPC, elevated levels
of antioxidants (including T-AOC and GSH) were observed
compared to those with CMS alone. This paradoxical phenomenon,
characterized by an enhanced antioxidant response correlating
with greater disease severity, contrasts with previous reports. For
example, a study using chronic hypobaric hypoxia-induced CMS
rat models (simulated 5,000 m altitude for 30 days) showed that the
CMS group had significantly elevated MDA levels and decreased
SOD and GSH levels compared to the normal control group
(Ma et al,, 2014). Additionally, Bailey etal. reported that CMS
patients at high altitude had lower levels of GSH and higher levels
of oxidised glutathione (GSSG) than non-CMS individuals, and
that these oxidative and inflammatory responses were associated
with cognitive decline and depressive symptoms (Bailey et al,
2019). In this study, HGB influenced CMS disease severity and was
positively correlated with UA and T-AOC, which may account for
the observed higher antioxidant levels in more severe CMS. Future
studies could investigate the relationship between CMS disease
severity and antioxidant levels after controlling for HGB.

The present study observed that CMS patients with good sleep
quality exhibited lower levels of bodily pain, improved general health
perceptions and reduced fatigue indices, suggesting a potentially
optimal adaptive state. Notably, however, patients with good sleep
quality predominated in males and had significantly higher levels
of HGB and the oxidative stress marker 8-OHdG. Both the
greater propensity of males to self-report favourable health status
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compared to females (Meyer et al., 2014) and a possible association
between HGB concentrations and sleep quality parameters may
explain the observed males predominance and elevated HGB levels.
Sanchez-Azofra et al. demonstrated that isovolemic hemodilution
in patients with CMS resulted in decreased HGB levels, but
acutely exacerbated nocturnal oxygen saturation and aggravated
the severity of sleep apnea (Sanchez-Azofra et al, 2022). 8-
OHdG, a biomarker of RNA or DNA oxidation, is widely used in
disease mechanism research, environmental exposure assessment
and drug efficacy monitoring. Its levels are influenced by gender,
age, smoking and physical activity (Peres et al., 2020). On the
one hand, studies have shown that 8-OHAG is associated with a
variety of disease risks. Specifically, higher 8-OHdG levels show a
positive association with cardiovascular disease (CVD) incidence
in females, but a U-shaped association in males (Nagao et al.,
2020). Elevated plasma 8-OHdG is associated with increased motor
cognitive risk (MCR) in older adults, and Alzheimer’s disease
patients exhibit higher urinary 8-OHdG levels than healthy elderly
controls (Dai et al, 2024; Zengi et al., 2012). On the other
hand, previous studies have postulated that this phenomenon may
be related to inter-individual variations in DNA damage repair
capacity. When exposed to comparable levels of oxidative damage,
individuals with enhanced repair functionality may demonstrate
more efficient excision and subsequent repair of 8-OHdG adducts
on DNA strands, thereby exhibiting relatively elevated urinary
excretion levels of this oxidative damage biomarker (II'yasova et al.,
2012). However, a prospective epidemiological study by Loft et al.
found no significant association between lung cancer risk and
urinary 8-OHdAG excretion (Loft et al., 2006). Similarly, Peres et al.
showed in their cross-sectional study that the severity of obstructive
sleep apnoea (OSA) was not significantly associated with 8-OHdG
biomarkers (Peres et al., 2020). Therefore, whether the higher blood
8-OHdG levels observed in CMS patients with good sleep quality
reflect more severe DNA oxidative damage or enhanced DNA repair
capacity needs to be further investigated in prospective studies.

Although this study has strengths, the findings should be
interpreted considering several limitations. First, the absence of
a representative control group (e.g., individuals without CMS
matched for gender and age) limits the ability to directly compare
biomarker levels between CMS and non-CMS populations. Second,
convenience sampling method used in these high-altitude areas,
characterised by low population density and dispersed distribution,
may introduce selection bias, potentially limiting the generalizability
of the findings. Third, the assessment of sleep quality using the
PSQI questionnaire in CMS patients may be subject to participants’
subjective perceptions and cognitive biases. Fourth, as a small-
scale cross-sectional study, this research can only provide evidence
of associations rather than establish causal relationships. Further
validation through prospective studies with larger sample sizes is
warranted.

Conclusion

In summary, this study reveals sex-specific characteristics in
CMS patients, with males demonstrating elevated hematological
indices (RBC, HGB, HCT) and T-AOC compared to females.
Notably, HAPC comorbidity occurred primarily in severe male
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CMS cases and was associated with lower MCHC and higher AOC
levels. Paradoxically, male sex and elevated oxidative stress markers
(8-OHAG) coexisted with improved sleep quality, suggesting
complex compensatory mechanisms in chronic hypoxic adaptation.
These findings provide a scientific basis for understanding the
haematological, oxidative stress and patient-reported characteristics
of CMS patients at extreme altitudes.
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