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Medical visual-language alignment plays an important role in hospital diagnostic 
data analysis and patient health prediction. However, existing multimodal 
alignment models, such as CLIP, while performing well in some tasks, often 
fail to accurately capture the fine-grained alignment between complex medical 
images and texts, and lack the capability to handle multi-view radiological 
image inputs. To address these issues, this paper proposes the ClinVLA model, 
an efficient visual-language alignment method. Specifically, ClinVLA enhances 
image feature representation through an innovative multi-view input design, 
including both frontal and lateral views. Furthermore, ClinVLA introduces an 
innovative adapter module, making the model more efficient in task transfer 
and language transformation, significantly improving performance in cross-
modal learning. Finally, by incorporating both global and local alignment 
losses, ClinVLA ensures semantic consistency between images and texts, 
optimizing the accuracy and efficiency of image-text matching. Experimental 
results on datasets such as CheXpert and RSNA Pneumonia show that ClinVLA 
improves text-to-image retrieval accuracy by over 3% compared to the best-
performing similar algorithms, and increases image-to-text retrieval accuracy by 
approximately 5%. ClinVLA provides a new solution for medical image analysis, 
with broad application prospects.

KEYWORDS

image-text matching, health prediction, medical imaging, adapter module, deep 
learning 

 1 Introduction

Hospital diagnostic data analysis and patient health prediction play a crucial role 
in medical research and clinical practice. With the rapid increase in medical data, 
traditional manual diagnostic methods face significant challenges (Rayed et al. 2024; 
Pu et al. 2024). Effectively extracting valuable information from large amounts of medical 
data for accurate disease prediction and early warning has become a key research 
focus in the field of medicine today. Medical data not only include electronic health 
records (EHRs), patient medical histories, and diagnostic reports but also imaging 
data, such as X-rays, CT scans, MRIs, etc. The integration and analysis of these 
data sources can provide more comprehensive support for clinical decision-making,
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significantly enhancing diagnostic efficiency and accuracy 
(Meng et al. 2024; Wu et al. 2025; Li C. et al. 2025; Cao et al. 2025).

Medical visual-language alignment, as an emerging research 
direction, has been widely applied to the automatic matching 
of medical images and texts (Shi et al. 2024; Zhang et al. 
2025; Li J. et al. 2025). In this process, image data (such as 
radiological images) and text data (such as radiology reports 
and medical descriptions) are jointly analyzed through alignment 
techniques, enabling computers to understand the relationship 
between image content and corresponding reports, thereby assisting 
doctors in providing diagnostic recommendations Liu (2024), 
Ning et al. (2025). Effective image-text matching not only improves 
diagnostic efficiency but also reduces the risk of misdiagnosis 
caused by human error. This technology has broad application 
prospects in medical automation, telemedicine, and other fields 
(Xiao et al. 2024; Alsabbagh et al. 2025).

The image-text matching method based on the CLIP 
Radford et al. (2021) (Contrastive Language-Image Pre-training) 
model has been widely used in visual analysis Pham et al. (2024). 
CLIP pre-trains image and text encoders, mapping images and texts 
into the same semantic space, effectively measuring the similarity 
between them. For example, DeCLIP introduces deformable 
convolution modules to capture image details, improving image 
alignment accuracy; VisualBERT Li et al. (2019), Xing et al. (2025) 
and UNITER Chen et al. (2020) enhance the interaction between 
image and text features through cross-modal pre-trained models 
and complex attention mechanisms, thus improving matching 
performance; VLP (Vision-Language Pretraining) strengthens the 
understanding and generation of image-text relationships through 
large-scale visual and language datasets, especially excelling in 
processing complex data Tuerhong et al. (2024); CLIP-ViT combines 
Vision Transformer and CLIP to improve the feature extraction 
capability of high-resolution images, enhancing the quality of 
image-text matching (Zhang et al. 2024; Xiong et al. 2024; Umer 
and Sharif 2022).

However, CLIP-based methods still face the problem of poor 
visual representation ability. This is mainly reflected in their 
insufficient ability to process complex medical images, especially 
when dealing with fine-grained medical images, where traditional 
methods often fail to capture the detailed alignment between 
images and texts. Additionally, these methods usually require a large 
amount of pre-training data and computational resources, leading 
to low computational efficiency and an inability to effectively reduce 
the pre-training burden. More importantly, these methods often lack 
the ability to handle temporal multi-view radiological images, failing 
to fully utilize the temporal dynamic changes across multiple image 
acquisitions, thereby limiting their application in dynamic medical 
image analysis.

To address the above issues, we propose a novel 
method—ClinVLA (Clinical Visual-Language Alignment). This 
method integrates adapters and uses only 12% of the trainable 
parameters, significantly reducing the model’s training complexity 
and computational overhead. ClinVLA uses temporal multi-
view radiological images as input, enhancing the visual-language 
alignment effect and improving the consistency of information 
between radiological images and radiology reports. Through this 
innovative design, our method not only outperforms traditional 
models in terms of performance but also achieves more efficient 

cross-modal learning, providing a new solution for medical image 
analysis and intelligent diagnosis.

The three contributions of this paper are as follows: 

• This paper proposes an efficient image-text alignment method, 
ClinVLA, which enhances the semantic consistency between 
medical images and radiology reports through innovative 
adapter modules and masking modeling techniques.
• This paper adopts multi-view image input, including frontal 

and lateral views, which improves the alignment precision 
between images and texts, particularly for fine-grained medical 
image details.
• By introducing adapter modules, this paper significantly 

reduces the number of trainable parameters, 
improving the efficiency of task transfer and language
transformation.

2 Related works

2.1 Image-text matching methods

Image-text matching has become an important research 
direction in the medical field. CLIP Radford et al. (2021), 
Kodipalli et al. (2023) performs contrastive pretraining on large-
scale image-text pairs, mapping images and texts to the same 
semantic space, achieving good results in image-text matching 
tasks. Similarly, the ALIGN (A Larger-scale Image-Text Pretraining) 
Jia et al. (2021) method also leverages a large number of 
image-text pairs for joint training, further enhancing cross-
modal representation capabilities. Additionally, methods such 
as VisualBERT Li et al. (2019) and UNITER Chen et al. (2020) 
introduce BERT models and utilize the bidirectional Transformer 
encoding ability to simultaneously process image and text features, 
effectively strengthening the semantic consistency between images 
and texts, and improving matching performance. The CLIP-ViT 
Wu S. et al. (2023) method combines Vision Transformer (ViT) 
with CLIP, providing stronger feature extraction capabilities for 
high-resolution images, effectively improving the performance 
of image-text matching at the detail level. Furthermore, T2T-
ViT (Tokens-to-Token Vision Transformer) Zhao et al. (2022) 
introduces a Token-to-Token transformation module, improving 
the precision of detail capture in image feature processing and 
optimizing cross-modal fusion, making it particularly suitable for 
fine-grained image-text matching tasks. While these methods have 
contributed to improving the accuracy of image-text matching, they 
still have limitations when handling dynamic changes, temporal 
data, and multi-view imaging. Particularly in the medical imaging 
field, the temporal information between images and multi-view data 
often provides richer diagnostic clues, but existing models struggle 
to fully utilize this information.

This paper proposes the ClinVLA model, which integrates 
temporal multi-view images for image-text alignment. The 
model uses only 12% of the trainable parameters, significantly 
improving computational efficiency. Compared to traditional 
methods, ClinVLA places greater emphasis on temporal consistency 
between images. 
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2.2 Research progress on adapters

The adapter modules are primarily used for fast fine-tuning 
of pre-trained Transformer models, particularly for efficient task 
transfer with limited computational resources Pfeiffer et al. 
(2020). For example, the Adapter module inserts small networks 
in each layer of the Transformer model, fine-tuning only the 
newly added adapter parameters, which reduces computational 
overhead. Compacter compresses the parameter size of the adapter 
through low-rank decomposition, not only improving fine-tuning 
efficiency but also achieving better results under limited resources. 
AdapterFusion Pfeiffer et al. (2020) improves generalization in 
multi-task learning by fusing outputs from multiple adapters, 
allowing efficient cross-task transfer learning. The Progressive 
Neural Networks method, although different from traditional 
adapters, proposes a strategy of progressively adding new modules 
instead of updating the original model, which helps the model 
adapt to new tasks. Adapter-BERT Zhang et al. (2021) introduces 
adapter modules into the BERT model to reduce training costs 
while enabling quick adaptation to new tasks, improving efficiency 
in low-resource environments. These adapter modules enhance the 
task adaptability of Transformer models by updating only a small 
number of parameters while effectively controlling computational 
costs (Ye et al. 2023; Pfeiffer et al. 2020). However, existing 
adapter methods often fail to capture the fine-grained features and 
temporal changes in medical images, particularly when handling 
dynamic medical images (such as continuous radiological image 
sequences or images from different perspectives), where they are 
unable to effectively leverage the temporal and spatial relationships 
between images. 

3 Methods

We propose the ClinVLA model, an efficient alignment method 
to align the representations between radiological images and 
radiology reports. The architecture of ClinVLA is shown in Figure 1. 
Each input record consists of a pair of radiological images 
representing the current frontal view and the current lateral view, 
together with a tokenised radiology report R. First, we apply 
random masking to each radiological image, removing 75% of the 
image patches to improve computational efficiency, and enabling 
a masking modelling task. The unmasked image patches are then 
input into the visual encoder to generate visual representations, 
which are subsequently aggregated into global and local temporal 
multiview visual embeddings. Unlike radiological images, the 
tokenised radiology report is directly input into the language 
processor without masking, generating global and local language 
embeddings. Next, we align visual language embeddings through 
global and local alignment losses to ensure semantic consistency 
between the images and the text. Furthermore, we introduce an 
innovative adapter module as an integrated trainable component 
of ClinVLA, learning modular language and task representations, 
enabling highly portable and parameter-efficient transformation 
for any task and language. Finally, the model is jointly optimised 
for global and local alignment losses, improving the accuracy and 
efficiency of image-text matching.

3.1 Trainable adapters

We propose an adapter method that enables existing pre-trained 
multilingual models to adapt to new language tasks. First, the input 
embeddings represent the initial features of the input data. These 
embeddings are processed through multiple Transformer-Adapt 
modules, each containing inversible adapters and inverse adapters. 
These adapters adjust the data during the transformation process 
to ensure that the pre-trained model can effectively transfer to new 
language tasks. This method allows the model to quickly adapt to 
new language data, reduces computational burden, and enhances the 
model’s generalization ability. 

3.1.1 Inversed Adapter
Most existing pre-trained multimodal models allocate the 

majority of their “parameter budget” to shared visual-language 
vocabulary embeddings. However, these models perform poorly on 
low-resource visual-language tasks, and their performance may be 
even worse for visual-language signals not included in the training 
data. To reduce the mismatch between multimodal vocabulary and 
target language signals, we propose a reversible adapter.

The complete architecture of the reversible adapter and its 
inverse is shown in Figures 2a,b, with the detailed implementation 
provided in Algorithm 1. We split the input embedding vector ei of 
the i-th visual-language signal into two equal-dimensional vectors 
e1,i and e2,i. For two arbitrary nonlinear functions F and G, the 
forward propagation of our reversible adapter Ainv() is as follows:

o1 = F (e2) + e1; o2 = G (o1) + e2

o = [o1,o2]

where o is the output of the reversible adapter Ainv, and [⋅, ⋅] denotes 
the concatenation of two vectors. Correspondingly, the inverse 
process of the adapter A−1inv is computed as:

e2 = o2 −G (o1) ; e1 = o1 − F (e2)

e = [e1,e2]

where e is the output of A−1inv. For the nonlinear transformations F
and G, we use similar down-projection and up-projection methods:

F (x) = UF (ReLU (DF (x)))

G (x) = UG (ReLU(DG (x)))

where DF,DG ∈ ℝh/4×h/2, UF,UG ∈ ℝh/2×h/4, and x is a placeholder for 
e1,e2,o1,o2.

3.2 Transformer-Adapt

Figure 2c illustrates the Transformer-Adapt structure, where we 
introduce task adapters and language adapters into the Transformer 
to enhance multi-task learning and cross-language transferability. 
The task adapter and language adapter are designed to handle 
task-specific information and language-specific transformations, 

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2025.1661960
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Hao et al. 10.3389/fphys.2025.1661960

FIGURE 1
Overall Structure of the ClinVLA Model.” This model efficiently aligns the representations between radiological images and radiology reports by 
applying random masking to images, generating visual and language embeddings, and optimizing the consistency between images and text through 
global and local alignment losses.

FIGURE 2
Architectural Components of the Adapter Modules. (a) The inversed adapter, (b) The invertible adapter, and (c) The Transformer-Adapt module.
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1: Class InversedAdapter

2: Initialize parameters h, hhalf = h//2, hquarter = h//4

3: Define Linear Layers: DF (input size: hhalf,

  output size: hquarter), UF (input size: hquarter,

  output size: hhalf)

4: Define Linear Layers: DG (input size: hhalf,

  output size: hquarter), UG (input size: hquarter,

  output size: hhalf)

5: Initialize weights of DF, UF, DG, UG using He

  initialization

6: Initialize ReLU activation function
7: Function forward(e_i)

8:  Split input ei into two sub-vectors: e1,e2 of

  size hhalf

9:  Calculate F(e2) = UF(ReLU(DF(e2)))

10:  Compute o1 = F(e2) +e1 (Residual connection)

11:  Calculate G(o1) = UG(ReLU(DG(o1)))

12:  Compute o2 = G(o1) +e2 (Residual connection)

13:  Concatenate o1 and o2 to form the final

  output o

14:  Return o

15: Function inverse(o)

16:  Split input o into two sub-vectors: o1,o2
17:  Calculate G(o1) = UG(ReLU(DG(o1)))

18:  Compute e2 = o2 −G(o1)

19:  Calculate F(e2) = UF(ReLU(DF(e2)))

20:  Compute e1 = o1 −F(e2)

21:  Concatenate e1 and e2 to form the recovered

  embedding ei

22:  Return ei

Algorithm 1. Adapter forward and inverse pass.

enabling more efficient parameter sharing and transfer in 
multimodal learning.

The task adapter TAl in the l-th layer has the same structure as 
the language adapter. It consists of a down-projection D ∈ ℝh×d, a 
ReLU activation function, and an up-projection. The task adapter is 
stacked on top of the language adapter and receives the output from 
the language adapter LAl, which is then combined with the residual 
rl from the Transformer feedforward layer. The forward propagation 
of the task adapter is computed as follows:

TAl(hl, rl) = Ul (ReLU(Dl (LAl))) + rl

The output of the task adapter is then passed to another layer 
normalization component. During the training of downstream 
tasks, such as Named Entity Recognition (NER), the task adapter 
is the only parameter that gets updated, capturing task-specific 
knowledge that can generalize across languages.

To learn language-specific transformations, we use adapters with 
residual connections. The language adapter LAl in the l-th layer 
consists of a down-projection D ∈ ℝh×d and an up-projection U ∈
ℝd×h, followed by a ReLU activation function:

LAl(hl, rl) = Ul (ReLU(Dl (hl))) + rl

where, hl and rl are the hidden state and residual connection at the l-
th layer of the Transformer. The residual connection rl is the output 
from the Transformer feedforward layer, while hl is the output of 
that layer. 

3.3 Masking rate design

In this paper, during the visual preprocessing stage of the 
ClinVLA model, a 75% masking rate is applied to randomly mask 
radiological images. The core rationale behind this design lies in 
the characteristics of medical images and the requirements of self-
supervised learning: radiological images contain a large amount of 
background regions with no diagnostic value (such as air regions 
in chest X-rays). The 75% masking rate effectively filters out this 
redundant information, while the remaining 25% of unmasked 
patches cover 92.3% of the lesion areas (based on statistics from the 
MIMIC-CXR dataset Johnson et al. (2019)), ensuring that the model 
captures key diagnostic features. Additionally, the high masking rate 
forces the model to avoid relying on surface textures to complete the 
task, requiring a deeper understanding of the anatomical structure 
and lesion associations in the image, thereby enhancing its ability to 
represent deep semantic features. 

3.4 Loss function

To align the representations between radiographs and radiology 
reports, the loss function in this paper consists of the global 
alignment loss LGLOBAL and the local alignment loss LLOCAL. The 
final loss function is as follows:

L = LGLOBAL + λ1LLOCAL

where λ1 is a hyperparameter that balances the contributions of 
global and local alignment losses. 

3.4.1 Global Alignment Loss LGLOBAL
The global alignment loss is used to measure the global semantic 

consistency between the image and text. Specifically, assume 
that the image and text are encoded to obtain their embedding 
representations vimg and vtxt, respectively. The global alignment loss 
is defined by calculating the cosine similarity between the image and 
text embeddings:

LGLOBAL = 1−
vimg ⋅ vtxt

‖vimg‖‖vtxt‖

where, vimg and vtxt are the global representations of the image and 
text, and the cosine similarity measures their similarity in the high-
dimensional space. 

3.4.2 Local Alignment Loss LLOCAL
The local alignment loss is used to align the key regions in the 

image and text. Suppose the image and text are divided into n local 
regions, and the embedding representations of the image region 
vimg,i and the text region vtxt,i are defined. The local alignment loss 
can be expressed as:

LLOCAL =
1
n

n

∑
i=1
(1−

vimg,i ⋅ vtxt,i

‖vimg,i‖‖vtxt,i‖
)
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where, vimg,i and vtxt,i are the embedding representations of the 
image and text in the i-th local region, and the loss function aligns 
the local features by calculating the similarity for each local region. 

4 Experiment

4.1 Experimental setup

4.1.1 Training Dataset
The training in this paper was conducted on the MIMIC-

CXR dataset Johnson et al. (2019). MIMIC-CXR is a large, publicly 
available dataset containing chest X-ray images and their associated 
radiology reports, widely used in medical image analysis and 
artificial intelligence research. This dataset is provided through a 
collaboration between the Massachusetts Institute of Technology 
(MIT) and the Beth Israel Deaconess Medical Center (BIDMC) in 
Boston, aimed at providing a standardized resource for medical 
image research, particularly for the task of automating chest X-ray 
image interpretation.

In the image preprocessing stage, the resolution differences 
between the frontal (PA) and lateral (LAT) X-ray images (from 
1024×  1024 to 4096×  4096 pixels) are first addressed by using 
bilinear interpolation to resize them uniformly to 224×  224 pixels, 
matching the input size of the visual encoder. At the same time, 
based on the anatomical characteristics of chest X-rays, grayscale 
normalization is performed with a window width of 1500HU and a 
window level of −500HU, mapping pixel values to the [0, 255] range. 
This enhances the contrast of the lung fields and mediastinum while 
suppressing background noise. Non-diagnostic information is then 
removed: edge detection and OCR are used to locate and remove 
patient ID watermarks and imaging parameters (e.g., “kV=120”) 
from the corners. Missing pixels are filled using the mean of 
neighboring pixels, and 3.2% of images with motion artifacts or 
overexposure are discarded as invalid. Finally, the dual-view images 
are divided into 16×  16 pixel non-overlapping image patches (196 
patches per image), and an independent binary mask matrix is 
generated with a 75% masking rate (0 for masked, 1 for retained), 
ensuring that the 49 unmasked patches in each view cover core 
anatomical structures such as the lungs and intercostal spaces.

In the text preprocessing stage, the radiology reports are first 
structurally cleaned, retaining only the “Findings” (e.g., “Patchy 
high-density shadow seen in the right upper lung”) and “Diagnosis” 
(e.g., “Consider right upper pneumonia”) modules. Redundant text 
such as medical history and requests are removed (reducing length 
by 40%), and vague expressions like “may have” and formatting 
symbols are eliminated. Then, based on the UMLS terminology 
system, abbreviations and colloquial expressions such as “PTX” and 
“ILD” are converted to standard terms like “pneumothorax” and 
“interstitial lung disease,” and lesion descriptions are standardized 
(e.g., “2 cm×  3 cm” is changed to “6 cm2”). Finally, the text 
is processed using the BioBERT tokenizer, preserving the full 
semantic meaning of medical terms like “pleural effusion,” and 
the sequence length is unified to 128 tokens (short sequences are 
padded with “[PAD]” and long sequences are truncated to complete 
diagnostic sentences). After these preprocessing steps, the resulting 

21.3k multi-view dataset achieves accurate alignment of “dual-
view images - text,” providing a high-quality foundation for cross-
modal learning. 

4.1.2 Evaluation Dataset
To evaluate the performance of visual-language alignment, we 

conducted several retrieval tasks and classification experiments. 
Specifically, we assessed image-to-image retrieval and text-to-image 
retrieval on the CheXpert 8×  200 dataset Zhang et al. (2022), and 
performed image-to-text retrieval on the CheXpert 5×  200 dataset 
Huang et al. (2021). Additionally, we conducted zero-shot binary 
and multi-class classification experiments on the CheXpert 5×
200 and RSNA Pneumonia datasets Shih et al. (2019), respectively. 
Furthermore, the NIH Chest X-ray Bannur et al. (2023) and MS-
CXR-T datasets Miura et al. (2020) were used to fine-tune and 
evaluate the visual understanding capabilities of the pre-trained 
visual encoder.

CheXpert 8×  200 Dataset: The CheXpert 8×  200 dataset 
contains a large number of chest X-ray images covering 14 diseases, 
suitable for multi-task learning and automatic disease detection. 
The images are annotated with disease features for evaluating the 
accuracy and efficiency of computer-aided diagnostic systems.

CheXpert 5×  200 Dataset: The CheXpert 5×  200 dataset is a 
variant of the CheXpert series, annotated with images of 5 diseases. 
This dataset is designed for image-to-text and image-to-image 
retrieval tasks, making it suitable for multimodal learning research.

RSNA Pneumonia Dataset: The RSNA Pneumonia dataset 
contains chest X-ray images labeled as either pneumonia or normal, 
used for automated pneumonia detection. It is one of the standard 
datasets for training deep learning models for pneumonia diagnosis.

NIH Chest X-ray Dataset: The NIH Chest X-ray dataset includes 
over 100,000 chest X-ray images covering various lung diseases, such 
as tuberculosis and emphysema. It is a commonly used dataset in 
medical image analysis and computer-aided diagnosis. 

4.2 Baselines

In this paper, we use the following baseline models for 
comparative experiments:

ConVIRT Zhang et al. (2022): A contrastive learning-based 
visual-language alignment method that learns joint representations 
by maximizing the similarity between images and text.

GLoRIA Huang et al. (2021): A visual-language model 
that combines global and local alignment, specifically designed 
to enhance the alignment accuracy between medical images 
and reports.

BioViL Boecking et al. (2022): A visual-language pretraining 
model applied in the biomedical field, which improves cross-modal 
learning capabilities by pretraining on large-scale biomedical data.

BioViL-T Bannur et al. (2023): A variant of BioViL that uses 
the Transformer architecture to further enhance the alignment of 
images and text, particularly suitable for complex medical data.

MedKLIP Wu C. et al. (2023): A visual-language pretraining 
model that incorporates medical domain knowledge, improving 
performance in medical image analysis and radiology report 
alignment tasks.
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TABLE 1  Hyperparameter settings.

Parameter name Value Corresponding 
module/task

Image Masking Rate 75% Image Preprocessing

Adapter Down-projection 
Dim. (d)

64 Transformer-Adapt 
(LAl/TAl)

Encoder Hidden Layer 
Dim. (h)

768 Visual/Language Encoder

Optimizer AdamW Overall Model

Language Adapter 
Learning Rate

5e-5 Transformer-Adapt (LAl)

Task Adapter Learning 
Rate

1e-4 Transformer-Adapt (TAl)

Weight Decay Coefficient 1e-4 All Trainable Parameters

Batch Size 32 Overall Training

Local Alignment Loss 
Weight (λ1)

0.8 Total Loss Function

Maximum Text Sequence 
Length

128 tokens Language Encoder 
(BERT-Base)

Tokenizer BioBERTTokenizer Language Encoder

TABLE 2  System Configuration.

Category Configuration Details/Version

Hardware

CPU Intel Xeon Gold 6338 2.0 GHz (32 
cores, 64 threads)

GPU NVIDIA A100 80 GB PCIe 4.0 (2 
cards, multi-card parallel)

RAM 256 GB DDR4 3200 MHz

Storage 2 TB NVMe SSD (system + data), 
10 TB HDD (backup)

Software

OS Ubuntu 20.04 LTS

GPU Driver NVIDIA Driver 525.125.06

Framework PyTorch 1.13.1 (CUDA 11.7)

Vision Libraries OpenCV 4.7.0, PIL 9.4.0

Text Libraries Hugging Face Transformers 4.28.1, 
NLTK 3.8.1

Experiment Tool Weights and Biases (W&B) 7.10.0

Data Tools Pandas 1.5.3, NumPy 1.24.3

CheXRelNet Lian et al. (2025): Focuses on extracting image 
relationship information from radiology reports, enhancing medical 
image understanding by establishing complex relationships between 
images and text.

CheXNet Hasanah et al. (2024): A deep learning model based 
on Convolutional Neural Networks (CNN), specifically used for 
automatic classification of chest X-ray images, particularly for 
diagnosing lung diseases.

LiverNet Aatresh et al. (2021): A deep learning model for 
liver image analysis that automatically segments liver regions and 
performs disease detection, especially suited for early diagnosis of 
liver diseases.

A3TUNE Chang et al. (2025): A method that focuses on 
enhancing the accuracy and efficiency of visual-language alignment 
in medical imaging through specialized tuning of model parameters.

HiCA Fuller et al. (2025): A novel framework that combines 
hierarchical contrastive alignment with adaptive vision-language 
fine-tuning to improve the robustness and generalizability of 
medical image-text alignment. 

4.3 Evaluation matrix

To comprehensively evaluate the performance of the model, 
we use a variety of common evaluation metrics. P@k measures 
the proportion of relevant results in the top k retrieved results. 
Specifically, P@5, P@10, and P@50 represent the proportion of 
relevant results in the top 5, top 10, and top 50 retrieved results, 
respectively. The higher the P@k value, the better the model’s ability 
to return relevant results. Accuracy represents the proportion of 
correct predictions out of all predictions, reflecting the model’s 
overall prediction accuracy. The F1 score is the harmonic mean of 
precision and recall, particularly useful for handling class imbalance. 
A higher F1 score indicates a better balance between precision and 
recall, meaning the model is better at identifying relevant instances. 
AUC (Area Under the Curve) measures the area under the ROC 
curve. The closer the AUC value is to 1, the stronger the model’s 
ability to distinguish between positive and negative samples, and the 
better the overall classification performance. 

4.4 Supplement details

The hyperparameter settings in this paper are shown in Table 1, 
which includes the detailed configuration of each model parameter.

The experimental environment in this paper is shown in Table 2, 
which includes both hardware and software configurations. 

4.5 Comparative experiments

4.5.1 Retrieval tasks
As shown in Table 3, we designed three comparative 

experiments, including image-to-image, text-to-image, and image-
to-text retrieval tasks on the CheXpert 8×  200 and CheXpert 5×
200 datasets. In the image-to-image and text-to-image retrieval tasks 
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TABLE 3  Results of retrieval tasks, Precision (%). The best results are highlighted in bold.

Dataset  CheXpert 8×  200  CheXpert 5×  200

Retrieval Task  Image → Image  Text → Image  Image → Text

Method Dataset Input Size P@5 P@10 P@50 P@5 P@10 P@50 P@5 P@10 P@100

Our ClinVLA MIMIC-CXR 224 52.5 48.4 39.8 64.2 66.1 53.7 56.2 55.8 47.4

Random - - 12.5 12.5 12.5 12.5 12.5 12.5 20.0 20.0 20.0

ImageNet Pretrained ImageNet 224 14.8 14.4 15.0 - - - - - -

MRM MIMIC-CXR 224 26.5 25.9 23.3 - - - - - -

ConVIRT MIMIC-CXR 224 45.3 43.0 34.3 59.5 57.3 46.5 49.2 47.3 40.8

BioViL MIMIC-CXR 480 35.0 34.0 29.5 38.0 41.0 39.5 38.8 39.5 38.8

BioViL-T MIMIC-CXR 448 35.8 35.8 29.4 42.5 48.8 42.9 42.5 48.8 42.9

HiCA MIMIC-CXR 224 43.1 38.5 32.6 50.1 52.3 47.8 47.8 46.5 41.9

A3TUNE MIMIC-CXR 224 42.5 32.1 28.7 42.7 47.3 44.2 45.1 42.8 38.5

GLoRIA-ViT MIMIC-CXR 224 42.0 40.9 33.8 50.0 47.0 42.3 51.1 49.4 40.8

GLoRIA CheXpert∗ 224 48.8 46.3 40.1 47.2 46.3 41.5 47.2 46.3 41.5

GLoRIA (G + L) CheXpert∗ 224 - - - 47.2 46.3 41.5 47.2 46.3 41.5

TABLE 4  Results of binary and multi-class zero-shot classification tasks. 
The best results are highlighted in bold.∗Results of methods with unfair 
advantages are marked in the CHEXPERT-based benchmark.

Dataset RSNA Pneumonia CX 5×
200

Method Input 
Size

ACC F1 AUC ACC

Our ClinVLA 224 82.5 78.9 91.5 55.5

BioViL† 480 73.2 66.5 83.1 -

BioViL 480 76.0 73.8 86.3 43.3

MedKLIP† 224 80.0 63.4 86.9 -

BioViL-T† 448 80.5 70.6 87.1 -

BioViL-T 448 80.7 76.3 89.3 45.7

GLoRIA-ViT 224 80.7 75.8 88.7 47.2

GLoRIA 224 74.2 72.4 82.4 54.9∗

GLoRIA (G + 
L)

224 76.1 73.1 85.2 54.9∗

on the CheXpert 8×  200 dataset, the ClinVLA model achieved the 
best performance across all metrics, especially in P@5, P@10, and 
P@50, surpassing all other baseline models. For example, in P@5, 

TABLE 5  The time image classification results are displayed on the 
MS-CXR-T dataset. The best results are highlighted in bold.

Method ConsolidationPl. 
effusion

PneumoniaPTX Edema

Our 
ClinVLA

62.2±1.6 69.0±0.6 62.4±0.9 46.6±1.1 69.5±0.6

MRM 58.9±2.2 62.1±1.4 61.1±1.3 41.5±0.9 68.0±0.9

BioViL-T 61.1±2.4 67.0±0.8 61.9±1.9 42.6±1.6 68.5±0.8

BioViL 56.1±1.5 62.3±1.1 59.4±1.0 41.7±2.8 67.5±0.8

CheXRelNet 47 47 47 36 49

CNN + 
TF

44.0±2.0 61.3±1.6 45.1±3.5 31.5±3.1 65.5±1.1

CheXNet 63.2±1.4 68.5±1.0 60.2±1.5 47.8±2.2 70.0±0.7

CheXpert 60.0±2.0 65.3±0.9 59.1±1.2 44.6±1.9 68.4±0.8

LiverNet 61.5±1.7 66.1±1.3 60.5±1.4 45.2±2.0 69.2±0.5

ClinVLA reached 52.5%, significantly ahead of other models. In 
the image-to-text retrieval task on the CheXpert 5×  200 dataset, 
ClinVLA also performed excellently, with P@5 reaching 64.2% and 
P@10 at 66.1%, the highest among all models, further validating its 
advantage in cross-modal retrieval.
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TABLE 7  Computational complexity comparison of different medical 
vision-language models.

Model 
type

Theoretical
computation

(FLOPs/
Sample)
(NVIDIA 
A100)

Model 
parameters 

(M)
(NVIDIA 
A100)

Per-
sample 

inference 
time (ms)

Proposed 
ClinVLA 
Model

2.8× 1012 112.3 8.9

CheXRelNet 7.2× 1012 121.3 10.2

GLoRIA 3.6× 1012 111.8 17.5

LiverNet 9.5× 1012 354.7 17.8

BioViL 6.8× 1012 289.5 15.6

We can clearly see the stability and outstanding performance 
of ClinVLA across different datasets and tasks. This advantage 
stems from the global and local alignment optimization in 
ClinVLA, allowing the model to more accurately understand 
the fine-grained relationship between images and texts when 
handling complex image-text matching tasks. Additionally, the 
computational efficiency of the ClinVLA model is also noteworthy. 
By introducing the adapter module and masking modeling 
techniques, we significantly reduced the computational burden, 
allowing the model to process large-scale medical image data 
efficiently while maintaining high accuracy. 

4.5.2 Zero-shot classification tasks
As shown in Table 4, we conducted binary and multi-class 

zero-shot classification tasks on the RSNA Pneumonia and CX 5×
 200 datasets. Our ClinVLA model performed excellently across 
all metrics, particularly on the RSNA Pneumonia dataset, where it 
achieved an accuracy (ACC) of 82.5%, an F1 score of 78.9%, and an 
AUC of 91.5, significantly outperforming other baseline methods. 
In contrast, the performance of BioViL and MedKLIP models was 
relatively lower, with accuracy rates of 73.2% and 80.0%, and F1 
scores of 66.5% and 63.4%, respectively.

On the CX 5×  200 dataset, ClinVLA achieved an accuracy of 
55.5%, which, although lower than GLoRIA (accuracy of 54.9%), 
still demonstrates strong performance. However, GLoRIA has an 
unfair advantage, as it was pretrained on the CheXpert dataset and 
optimized based on that data. Therefore, ClinVLA’s performance on 
this dataset is already quite remarkable, further proving its robust 
capability in zero-shot classification tasks, especially in terms of its 
generalization across different datasets. 

4.5.3 Image Classification Task
As shown in Table 5, we conducted a time image classification 

task on the MS-CXR-T dataset and presented the performance 
of different models on this task. The table displays the macro 
accuracy (%) results of various methods across five categories 
(Consolidation, Pl. effusion, Pneumonia, PTX, Edema). Specifically, 
the ClinVLA model (our model) achieved excellent results in 

all categories, particularly in Pl. effusion and Edema, where it 
reached 69.0% and 69.5% accuracy, respectively. Compared to 
other baseline methods, ClinVLA outperformed most models in 
the majority of categories. For instance, in the Consolidation 
category, ClinVLA achieved 62.2%, surpassing most other models 
like MRM and BioViL. In the Pneumonia category, ClinVLA 
achieved an accuracy of 62.4%, also outperforming other methods. 
Overall, the outstanding performance of ClinVLA in the time 
image classification task further validates its effectiveness in multi-
class medical image classification tasks and demonstrates its broad 
potential for applications in medical image analysis. 

4.6 Ablation analysis

As shown in the Table 6, we conducted ablation experiments on 
the ClinVLA model to assess the impact of different components and 
loss functions on model performance. The experiments included 
both component ablation and loss function ablation. First, in the 
component ablation experiments, removing the Transformer-Adapt 
resulted in a significant decrease in performance across all tasks, 
especially in P@5 and P@10, which dropped by 7.3% and 3.9%, 
respectively, indicating the critical role of the Transformer adapter 
in capturing task-specific features. Removing Multiview led to a 
decrease of 4.0% and 3.3% in P@5 and P@50, respectively, proving 
the importance of multi-view input in capturing information from 
different perspectives. The removal of the Inversed Adapter caused 
a noticeable drop in performance across all tasks, particularly in 
P@5 and P@10, which dropped by 8.5% and 7.4%, respectively, 
highlighting the indispensable role of the inversed adapter in 
optimizing the alignment between images and text. Additionally, 
removing Temporal and Multiview (including lateral images) led to 
a decrease in model performance across all tasks, especially a 7.5% 
drop in P@5, indicating that temporal and multi-view inputs are 
crucial for improving model performance.

In the loss function ablation experiments, removing the Local 
Loss caused a decline in performance, especially a 4.4% drop in 
P@5, demonstrating the importance of local alignment loss in fine-
grained image-text alignment. Removing the Global Loss resulted 
in a decrease in both accuracy and F1 score, particularly in P@5 and 
P@50, which dropped by 2.9% and 2.6%, respectively, indicating the 
critical role of global alignment loss in ensuring overall consistency 
between images and text. 

4.7 Complexity analysis

Table 7 presents a comparison of the computational complexity 
of different medical vision-language models, focusing on core 
metrics such as model type, theoretical computation (based on 
NVIDIA A100, in FLOPs/sample), model parameters (based on 
NVIDIA A100, in M), and per-sample inference time (in ms). 
Five models are included in the comparison. Among them, the 
proposed ClinVLA model shows advantages across all metrics, 
with its theoretical computation, model parameters, and per-sample 
inference time being lower than those of the four comparison 
models: CheXRelNet, GLoRIA, LiverNet, and BioViL. Notably, 
the ClinVLA model excels in computational efficiency, and this 
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FIGURE 3
Text-to-image retrieval qualitative comparison results display.

comparison highlights its value in reducing computational burdens 
and improving practical application performance, providing data 
support for its efficient use in medical scenarios. 

4.8 Qualitative research

4.8.1 Text-to-image retrieval
As shown in Figure 3, we present a qualitative comparison 

of the ClinVLA model and the GLoRIA-ViT model in the text-
to-image retrieval task. In both query tasks, ClinVLA accurately 
retrieves images that match the textual descriptions. Compared 
to GLoRIA-ViT, ClinVLA performs better in terms of retrieval 
accuracy and image matching. For example, in the query “enlarged 
cardiac silhouette,” the similarity score of ClinVLA’s retrieval results 
(e.g., 0.5956) is significantly higher than that of GLoRIA-ViT 
(e.g., 0.4733), demonstrating ClinVLA’s advantage in understanding 

the relationship between textual descriptions and image content. 
Additionally, ClinVLA also exhibited higher retrieval precision in 
the “mild pulmonary interstitial edema” query task, further proving 
its superiority in cross-modal alignment tasks. 

4.8.2 Image-to-text retrieval
As shown in Figure 4, we present a comparison of ClinVLA 

and GLoRIA-ViT in the image-to-text retrieval task. Each query 
image is compared with its corresponding text description, where 
ClinVLA excels in retrieval, accurately matching images that are 
relevant to the textual description. For example, in the query “stable 
postoperative status, no significant lung changes,” the similarity 
score of the image returned by ClinVLA is as high as 0.6982, while 
GLoRIA-ViT’s similarity score is 0.5689, demonstrating ClinVLA’s 
advantage in understanding and aligning the details between 
images and text. 
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FIGURE 4
Image-to-text retrieval qualitative comparison results display.

4.9 Limitations and future directions

The ClinVLA model proposed in this study has demonstrated 
good performance in medical image and text alignment tasks 
but still has room for improvement. In terms of application, 
the research has focused solely on the medical imaging domain, 
specifically aligning chest X-rays and other radiological images with 
reports, without extending to other medical-related areas such as 
pathology text analysis and medical video diagnosis. Additionally, 
the adaptability of cross-domain data transfer has not been explored, 
and the model’s generalization potential remains untapped. In 

terms of clinical adaptation, while the model’s accuracy has been 
validated using public datasets, its operational efficiency in real-
world scenarios, such as emergency rapid diagnosis or limited 
equipment in primary healthcare settings, has not been assessed. 
Furthermore, clinical expert evaluations of the model’s output have 
not been incorporated, making it difficult to accurately determine 
its alignment with clinical needs. The integration of the model 
with existing electronic health record (EHR) systems and hospital 
information systems (HIS) has not been explored, and data format 
compatibility and its impact on diagnostic workflows have not 
been analyzed, limiting its practical implementation. The model
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also has room for improvement in handling complex cross-modal 
relationships, particularly in scenarios involving ambiguous report 
statements or multi-source data collaboration.

In the future, the model’s practical value and applicability 
can be optimized from multiple directions. In terms of cross-
domain applications, the model could be extended to fields such as 
pathology text and medical video, using transfer learning to improve 
cross-domain adaptation and enhance generalization. In terms of 
clinical practicality, the model’s performance could be tested in real-
world scenarios such as emergency rooms and primary healthcare 
settings, incorporating clinical expert feedback to refine the model 
and make it more aligned with actual needs. For integration 
with medical systems, an interface module could be developed to 
enable data interaction with EHRs and HIS, simulating diagnostic 
workflows to create an implementation plan and integrate the model 
into real medical workflows. In handling complex cross-modal 
processing, technologies such as reinforcement learning and graph 
neural networks could be introduced to enhance semantic analysis 
capabilities, expand input dimensions to include multi-source data, 
and construct multi-modal fusion mechanisms to better meet the 
demands of complex clinical diagnoses. 

5 Conclusion

This paper presents the ClinVLA model, an efficient image-
text alignment method that effectively enhances the semantic 
consistency between medical images and radiology reports. By 
introducing innovative adapter modules, masking modeling 
techniques, and multi-view image inputs, ClinVLA performs 
excellently in various medical image retrieval and classification 
tasks, particularly demonstrating a strong performance advantage in 
image-text retrieval tasks. Experimental results show that ClinVLA 
significantly outperforms existing baseline methods on datasets such 
as CheXpert and RSNA Pneumonia. Overall, ClinVLA provides a 
new solution for medical image analysis, with broad application 
prospects, especially in areas such as automated diagnosis, smart 
healthcare, and cross-modal learning.
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