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Medical visual-language alignment plays an important role in hospital diagnostic
data analysis and patient health prediction. However, existing multimodal
alignment models, such as CLIP, while performing well in some tasks, often
fail to accurately capture the fine-grained alignment between complex medical
images and texts, and lack the capability to handle multi-view radiological
image inputs. To address these issues, this paper proposes the ClinVLA model,
an efficient visual-language alignment method. Specifically, ClinVLA enhances
image feature representation through an innovative multi-view input design,
including both frontal and lateral views. Furthermore, ClinVLA introduces an
innovative adapter module, making the model more efficient in task transfer
and language transformation, significantly improving performance in cross-
modal learning. Finally, by incorporating both global and local alignment
losses, ClinVLA ensures semantic consistency between images and texts,
optimizing the accuracy and efficiency of image-text matching. Experimental
results on datasets such as CheXpert and RSNA Pneumonia show that ClinVLA
improves text-to-image retrieval accuracy by over 3% compared to the best-
performing similar algorithms, and increases image-to-text retrieval accuracy by
approximately 5%. ClinVLA provides a new solution for medical image analysis,
with broad application prospects.

image-text matching, health prediction, medical imaging, adapter module, deep
learning

1 Introduction

Hospital diagnostic data analysis and patient health prediction play a crucial role
in medical research and clinical practice. With the rapid increase in medical data,
traditional manual diagnostic methods face significant challenges (Rayed et al. 2024;
Pu et al. 2024). Effectively extracting valuable information from large amounts of medical
data for accurate disease prediction and early warning has become a key research
focus in the field of medicine today. Medical data not only include electronic health
records (EHRs), patient medical histories, and diagnostic reports but also imaging
data, such as X-rays, CT scans, MRIs, etc. The integration and analysis of these
data sources can provide more comprehensive support for clinical decision-making,
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significantly enhancing diagnostic efficiency and accuracy
(Meng et al. 2024; Wu et al. 2025; Li C. et al. 2025; Cao et al. 2025).

Medical visual-language alignment, as an emerging research
direction, has been widely applied to the automatic matching
of medical images and texts (Shi et al. 2024; Zhang et al
2025; LiJ. et al. 2025). In this process, image data (such as
radiological images) and text data (such as radiology reports
and medical descriptions) are jointly analyzed through alignment
techniques, enabling computers to understand the relationship
between image content and corresponding reports, thereby assisting
doctors in providing diagnostic recommendations Liu (2024),
Ning et al. (2025). Effective image-text matching not only improves
diagnostic efficiency but also reduces the risk of misdiagnosis
caused by human error. This technology has broad application
prospects in medical automation, telemedicine, and other fields
(Xiao et al. 2024; Alsabbagh et al. 2025).

The image-text matching method based on the CLIP
Radford et al. (2021) (Contrastive Language-Image Pre-training)
model has been widely used in visual analysis Pham et al. (2024).
CLIP pre-trains image and text encoders, mapping images and texts
into the same semantic space, effectively measuring the similarity
between them. For example, DeCLIP introduces deformable
convolution modules to capture image details, improving image
alignment accuracy; VisualBERT Li et al. (2019), Xing et al. (2025)
and UNITER Chen et al. (2020) enhance the interaction between
image and text features through cross-modal pre-trained models
and complex attention mechanisms, thus improving matching
performance; VLP (Vision-Language Pretraining) strengthens the
understanding and generation of image-text relationships through
large-scale visual and language datasets, especially excelling in
processing complex data Tuerhong et al. (2024); CLIP-ViT combines
Vision Transformer and CLIP to improve the feature extraction
capability of high-resolution images, enhancing the quality of
image-text matching (Zhang et al. 2024; Xiong et al. 2024; Umer
and Sharif 2022).

However, CLIP-based methods still face the problem of poor
visual representation ability. This is mainly reflected in their
insufficient ability to process complex medical images, especially
when dealing with fine-grained medical images, where traditional
methods often fail to capture the detailed alignment between
images and texts. Additionally, these methods usually require a large
amount of pre-training data and computational resources, leading
to low computational efficiency and an inability to effectively reduce
the pre-training burden. More importantly, these methods often lack
the ability to handle temporal multi-view radiological images, failing
to fully utilize the temporal dynamic changes across multiple image
acquisitions, thereby limiting their application in dynamic medical
image analysis.

To address the above issues, we propose a novel
method—ClinVLA (Clinical Visual-Language Alignment). This
method integrates adapters and uses only 12% of the trainable
parameters, significantly reducing the model’s training complexity
and computational overhead. ClinVLA uses temporal multi-
view radiological images as input, enhancing the visual-language
alignment effect and improving the consistency of information
between radiological images and radiology reports. Through this
innovative design, our method not only outperforms traditional
models in terms of performance but also achieves more efficient
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cross-modal learning, providing a new solution for medical image
analysis and intelligent diagnosis.
The three contributions of this paper are as follows:

o This paper proposes an efficient image-text alignment method,
ClinVLA, which enhances the semantic consistency between
medical images and radiology reports through innovative
adapter modules and masking modeling techniques.

e This paper adopts multi-view image input, including frontal
and lateral views, which improves the alignment precision
between images and texts, particularly for fine-grained medical
image details.

e By introducing adapter modules, this paper significantly

trainable

improving the efficiency of task transfer and language

reduces the number  of parameters,

transformation.

2 Related works
2.1 Image-text matching methods

Image-text matching has become an important research
direction in the medical field. CLIP Radford et al. (2021),
Kodipalli et al. (2023) performs contrastive pretraining on large-
scale image-text pairs, mapping images and texts to the same
semantic space, achieving good results in image-text matching
tasks. Similarly, the ALIGN (A Larger-scale Image-Text Pretraining)
Jia et al. (2021) method also leverages a large number of
image-text pairs for joint training, further enhancing cross-
modal representation capabilities. Additionally, methods such
as VisualBERT Li et al. (2019) and UNITER Chen et al. (2020)
introduce BERT models and utilize the bidirectional Transformer
encoding ability to simultaneously process image and text features,
effectively strengthening the semantic consistency between images
and texts, and improving matching performance. The CLIP-ViT
Wu S. et al. (2023) method combines Vision Transformer (ViT)
with CLIP, providing stronger feature extraction capabilities for
high-resolution images, effectively improving the performance
of image-text matching at the detail level. Furthermore, T2T-
ViT (Tokens-to-Token Vision Transformer) Zhao et al. (2022)
introduces a Token-to-Token transformation module, improving
the precision of detail capture in image feature processing and
optimizing cross-modal fusion, making it particularly suitable for
fine-grained image-text matching tasks. While these methods have
contributed to improving the accuracy of image-text matching, they
still have limitations when handling dynamic changes, temporal
data, and multi-view imaging. Particularly in the medical imaging
field, the temporal information between images and multi-view data
often provides richer diagnostic clues, but existing models struggle
to fully utilize this information.

This paper proposes the ClinVLA model, which integrates
temporal multi-view images for image-text alignment. The
model uses only 12% of the trainable parameters, significantly
improving computational efficiency. Compared to traditional
methods, ClinVLA places greater emphasis on temporal consistency
between images.

frontiersin.org


https://doi.org/10.3389/fphys.2025.1661960
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Hao et al.

2.2 Research progress on adapters

The adapter modules are primarily used for fast fine-tuning
of pre-trained Transformer models, particularly for efficient task
transfer with limited computational resources Pfeiffer et al
(2020). For example, the Adapter module inserts small networks
in each layer of the Transformer model, fine-tuning only the
newly added adapter parameters, which reduces computational
overhead. Compacter compresses the parameter size of the adapter
through low-rank decomposition, not only improving fine-tuning
efficiency but also achieving better results under limited resources.
AdapterFusion Pfeiffer et al. (2020) improves generalization in
multi-task learning by fusing outputs from multiple adapters,
allowing efficient cross-task transfer learning. The Progressive
Neural Networks method, although different from traditional
adapters, proposes a strategy of progressively adding new modules
instead of updating the original model, which helps the model
adapt to new tasks. Adapter-BERT Zhang et al. (2021) introduces
adapter modules into the BERT model to reduce training costs
while enabling quick adaptation to new tasks, improving efficiency
in low-resource environments. These adapter modules enhance the
task adaptability of Transformer models by updating only a small
number of parameters while effectively controlling computational
costs (Ye et al. 2023; Pfeiffer et al. 2020). However, existing
adapter methods often fail to capture the fine-grained features and
temporal changes in medical images, particularly when handling
dynamic medical images (such as continuous radiological image
sequences or images from different perspectives), where they are
unable to effectively leverage the temporal and spatial relationships
between images.

3 Methods

We propose the ClinVLA model, an efficient alignment method
to align the representations between radiological images and
radiology reports. The architecture of ClinVLA is shown in Figure 1.
Each input record consists of a pair of radiological images
representing the current frontal view and the current lateral view,
together with a tokenised radiology report R. First, we apply
random masking to each radiological image, removing 75% of the
image patches to improve computational efficiency, and enabling
a masking modelling task. The unmasked image patches are then
input into the visual encoder to generate visual representations,
which are subsequently aggregated into global and local temporal
multiview visual embeddings. Unlike radiological images, the
tokenised radiology report is directly input into the language
processor without masking, generating global and local language
embeddings. Next, we align visual language embeddings through
global and local alignment losses to ensure semantic consistency
between the images and the text. Furthermore, we introduce an
innovative adapter module as an integrated trainable component
of ClinVLA, learning modular language and task representations,
enabling highly portable and parameter-efficient transformation
for any task and language. Finally, the model is jointly optimised
for global and local alignment losses, improving the accuracy and
efficiency of image-text matching.
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3.1 Trainable adapters

We propose an adapter method that enables existing pre-trained
multilingual models to adapt to new language tasks. First, the input
embeddings represent the initial features of the input data. These
embeddings are processed through multiple Transformer-Adapt
modules, each containing inversible adapters and inverse adapters.
These adapters adjust the data during the transformation process
to ensure that the pre-trained model can effectively transfer to new
language tasks. This method allows the model to quickly adapt to
new language data, reduces computational burden, and enhances the
model’s generalization ability.

3.1.1 Inversed Adapter

Most existing pre-trained multimodal models allocate the
majority of their “parameter budget” to shared visual-language
vocabulary embeddings. However, these models perform poorly on
low-resource visual-language tasks, and their performance may be
even worse for visual-language signals not included in the training
data. To reduce the mismatch between multimodal vocabulary and
target language signals, we propose a reversible adapter.

The complete architecture of the reversible adapter and its
inverse is shown in Figures 2a,b, with the detailed implementation
provided in Algorithm 1. We split the input embedding vector e; of
the i-th visual-language signal into two equal-dimensional vectors
e); and e,;. For two arbitrary nonlinear functions F and G, the

forward propagation of our reversible adapter A, () is as follows:

0,=F(e,)+e;; 0,=G(0)) +e,

0=10,0,]

where o is the output of the reversible adapter A, and [,-] denotes
the concatenation of two vectors. Correspondingly, the inverse
process of the adapter A;}V is computed as:

e, =0,—-G(0;); e =0,—F(e)

e=le;, 6]

. -1
where e is the output of A, .

and G, we use similar down-projection and up-projection methods:

For the nonlinear transformations F

F(x) = Up(ReLU (D; (x)))

G(x) = Ug (ReLU (D¢ (x)))

where Dy, D € RV#"2 U, U € R">4 and x is a placeholder for

€1,€5,01,0,.

3.2 Transformer-Adapt

Figure 2c¢ illustrates the Transformer-Adapt structure, where we
introduce task adapters and language adapters into the Transformer
to enhance multi-task learning and cross-language transferability.
The task adapter and language adapter are designed to handle
task-specific information and language-specific transformations,
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FIGURE 1
Overall Structure of the ClinVLA Model.” This model efficiently aligns the representations between radiological images and radiology reports by

applying random masking to images, generating visual and language embeddings, and optimizing the consistency between images and text through
global and local alignment losses.

—> Add & Norm
Vector splitting @ Element-wise addition @ Element-wise subtraction @ Concatenation of vectors T

Task NER Adapt

f

——
Lang En Adapt
T

— Add & Norm
FF Up FF Up T
FF Down FF Down

Y
d
A

Feed
Forward

B

FF Up —> Add & Norm

Y

FF Up

FF Down EEDown)

Multi-Head
Attention

¥ ¥ B

(b) The invertible adapter (¢) Tansformer-Adapt

(a) The inversed adapter

FIGURE 2
Architectural Components of the Adapter Modules. (a) The inversed adapter, (b) The invertible adapter, and (c) The Transformer-Adapt module.

Frontiers in Physiology 04 frontiersin.org


https://doi.org/10.3389/fphys.2025.1661960
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Hao et al.

1: Class InversedAdapter
2: Initialize parameters h, hpa¢=h//2, hquarter =h//4
3: Define

Linear Layers: Dy (input size: hpaif,

output size: hgareer), Ur (input size: hguarcer,

output size: hyaif)

. Define Linear Layers: Dg; (input size: hy.is,

output size: Ngareer), Us (Input size: hgiarter,

output size: hyaif)

5: Initialize weights of Dp, Ur, Dg, Ug using He
initialization

6: Initialize RelU activation function

7: Function forward(e_i)

8: Split input e; into two sub-vectors: e;e, of

size hyaif

9: Calculate F(e,)=Ur(ReLU(Dx(e,)))

10: Compute o0, =F(e,)+e; (Residual connection)

11: Calculate G(0q)=Ug(ReLU(Dg(04)))

12: Compute 0,=0G(0;)+e, (Residual connection)

13: Concatenate o, and o, to form the final
output o

14: Return o

15: Function inverse(0)

16: Split input o into two sub-vectors: 04,0,

17: Calculate G(0q)=Ug(ReLU(Dg(04)))

18: Compute e, =0,-G6(04)

19: Calculate F(e,)=Ur(ReLU(Dg(e,)))

20: Compute e;=0;-F(ey)

21: Concatenate e; and e, to form the recovered
embedding e;

22: Return e;

Algorithm 1. Adapter forward and inverse pass.

enabling more efficient parameter sharing and transfer in
multimodal learning.

The task adapter TAl in the I-th layer has the same structure as
the language adapter. It consists of a down-projection D € R"™?, a
ReLU activation function, and an up-projection. The task adapter is
stacked on top of the language adapter and receives the output from
the language adapter LAl which is then combined with the residual
r; from the Transformer feedforward layer. The forward propagation
of the task adapter is computed as follows:

TAl (hl’ rl) = Ul (RCLU (Dl (LAI))) +7

The output of the task adapter is then passed to another layer
normalization component. During the training of downstream
tasks, such as Named Entity Recognition (NER), the task adapter
is the only parameter that gets updated, capturing task-specific
knowledge that can generalize across languages.

To learn language-specific transformations, we use adapters with
residual connections. The language adapter LA/ in the I-th layer
consists of a down-projection D € R™? and an up-projection U €
R*™", followed by a ReLU activation function:

LAI(hy,1)) = U;(ReLU (D; (b)) + 1,
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where, h; and ; are the hidden state and residual connection at the /-
th layer of the Transformer. The residual connection r; is the output
from the Transformer feedforward layer, while h; is the output of
that layer.

3.3 Masking rate design

In this paper, during the visual preprocessing stage of the
ClinVLA model, a 75% masking rate is applied to randomly mask
radiological images. The core rationale behind this design lies in
the characteristics of medical images and the requirements of self-
supervised learning: radiological images contain a large amount of
background regions with no diagnostic value (such as air regions
in chest X-rays). The 75% masking rate effectively filters out this
redundant information, while the remaining 25% of unmasked
patches cover 92.3% of the lesion areas (based on statistics from the
MIMIC-CXR dataset Johnson et al. (2019)), ensuring that the model
captures key diagnostic features. Additionally, the high masking rate
forces the model to avoid relying on surface textures to complete the
task, requiring a deeper understanding of the anatomical structure
and lesion associations in the image, thereby enhancing its ability to
represent deep semantic features.

3.4 Loss function

To align the representations between radiographs and radiology
reports, the loss function in this paper consists of the global
alignment loss L ogar, and the local alignment loss £;ycap- The
final loss function is as follows:

L= Laropar *MLrocaL

where A, is a hyperparameter that balances the contributions of
global and local alignment losses.

3.4.1 Global Alignment Loss L opaL

The global alignment loss is used to measure the global semantic
consistency between the image and text. Specifically, assume
that the image and text are encoded to obtain their embedding

representations Vi

img 1d Vi, respectively. The global alignment loss

is defined by calculating the cosine similarity between the image and
text embeddings:

Vimg " Vixt
Laropar = 1= 5—m—
[Vimg Vil
where, v;;,, and vy, are the global representations of the image and

text, and the cosine similarity measures their similarity in the high-
dimensional space.

3.4.2 Local Alignment Loss £ ocaL

The local alignment loss is used to align the key regions in the
image and text. Suppose the image and text are divided into # local
regions, and the embedding representations of the image region

Vimg; and the text region v,,; are defined. The local alignment loss

)

img,i
can be expressed as:

r 1< ] Vimg,i * Vixt,i
LOCAL = z T T
n I

i=1 Vimg,i ” " Vtxt,i "
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where, v, and v, ; are the embedding representations of the

img,i
image and text in the i-th local region, and the loss function aligns

the local features by calculating the similarity for each local region.

4 Experiment
4.1 Experimental setup

4.1.1 Training Dataset

The training in this paper was conducted on the MIMIC-
CXR dataset Johnson et al. (2019). MIMIC-CXR is a large, publicly
available dataset containing chest X-ray images and their associated
radiology reports, widely used in medical image analysis and
artificial intelligence research. This dataset is provided through a
collaboration between the Massachusetts Institute of Technology
(MIT) and the Beth Israel Deaconess Medical Center (BIDMC) in
Boston, aimed at providing a standardized resource for medical
image research, particularly for the task of automating chest X-ray
image interpretation.

In the image preprocessing stage, the resolution differences
between the frontal (PA) and lateral (LAT) X-ray images (from
1024 x 1024 to 4096 x 4096 pixels) are first addressed by using
bilinear interpolation to resize them uniformly to 224 x 224 pixels,
matching the input size of the visual encoder. At the same time,
based on the anatomical characteristics of chest X-rays, grayscale
normalization is performed with a window width of 1500HU and a
window level of -500HU, mapping pixel values to the [0, 255] range.
This enhances the contrast of the lung fields and mediastinum while
suppressing background noise. Non-diagnostic information is then
removed: edge detection and OCR are used to locate and remove
patient ID watermarks and imaging parameters (e.g., “kV=120")
from the corners. Missing pixels are filled using the mean of
neighboring pixels, and 3.2% of images with motion artifacts or
overexposure are discarded as invalid. Finally, the dual-view images
are divided into 16 x 16 pixel non-overlapping image patches (196
patches per image), and an independent binary mask matrix is
generated with a 75% masking rate (0 for masked, 1 for retained),
ensuring that the 49 unmasked patches in each view cover core
anatomical structures such as the lungs and intercostal spaces.

In the text preprocessing stage, the radiology reports are first
structurally cleaned, retaining only the “Findings” (e.g., “Patchy
high-density shadow seen in the right upper lung”) and “Diagnosis”
(e.g., “Consider right upper pneumonia”) modules. Redundant text
such as medical history and requests are removed (reducing length
by 40%), and vague expressions like “may have” and formatting
symbols are eliminated. Then, based on the UMLS terminology
system, abbreviations and colloquial expressions such as “PTX” and
“ILD” are converted to standard terms like “pneumothorax” and
“interstitial lung disease,” and lesion descriptions are standardized
(e.g, “2cmx 3cm” is changed to “6cm®”). Finally, the text
is processed using the BioBERT tokenizer, preserving the full
semantic meaning of medical terms like “pleural effusion,” and
the sequence length is unified to 128 tokens (short sequences are
padded with “[PAD]” and long sequences are truncated to complete
diagnostic sentences). After these preprocessing steps, the resulting
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21.3k multi-view dataset achieves accurate alignment of “dual-
view images - text,” providing a high-quality foundation for cross-
modal learning.

4.1.2 Evaluation Dataset

To evaluate the performance of visual-language alignment, we
conducted several retrieval tasks and classification experiments.
Specifically, we assessed image-to-image retrieval and text-to-image
retrieval on the CheXpert 8 x 200 dataset Zhang et al. (2022), and
performed image-to-text retrieval on the CheXpert 5 x 200 dataset
Huang et al. (2021). Additionally, we conducted zero-shot binary
and multi-class classification experiments on the CheXpert 5x
200 and RSNA Pneumonia datasets Shih et al. (2019), respectively.
Furthermore, the NIH Chest X-ray Bannur et al. (2023) and MS-
CXR-T datasets Miura et al. (2020) were used to fine-tune and
evaluate the visual understanding capabilities of the pre-trained
visual encoder.

CheXpert 8x 200 Dataset: The CheXpert 8x 200 dataset
contains a large number of chest X-ray images covering 14 diseases,
suitable for multi-task learning and automatic disease detection.
The images are annotated with disease features for evaluating the
accuracy and efficiency of computer-aided diagnostic systems.

CheXpert 5x 200 Dataset: The CheXpert 5x 200 dataset is a
variant of the CheXpert series, annotated with images of 5 diseases.
This dataset is designed for image-to-text and image-to-image
retrieval tasks, making it suitable for multimodal learning research.

RSNA Pneumonia Dataset: The RSNA Pneumonia dataset
contains chest X-ray images labeled as either pneumonia or normal,
used for automated pneumonia detection. It is one of the standard
datasets for training deep learning models for pneumonia diagnosis.

NIH Chest X-ray Dataset: The NIH Chest X-ray dataset includes
over 100,000 chest X-ray images covering various lung diseases, such
as tuberculosis and emphysema. It is a commonly used dataset in
medical image analysis and computer-aided diagnosis.

4.2 Baselines

In this paper, we use the following baseline models for
comparative experiments:

ConVIRT Zhang et al. (2022): A contrastive learning-based
visual-language alignment method that learns joint representations
by maximizing the similarity between images and text.

GLoRIA Huang et al. (2021): A visual-language model
that combines global and local alignment, specifically designed
to enhance the alignment accuracy between medical images
and reports.

BioViL Boecking et al. (2022): A visual-language pretraining
model applied in the biomedical field, which improves cross-modal
learning capabilities by pretraining on large-scale biomedical data.

BioViL-T Bannur et al. (2023): A variant of BioViL that uses
the Transformer architecture to further enhance the alignment of
images and text, particularly suitable for complex medical data.

MedKLIP Wu C. et al. (2023): A visual-language pretraining
model that incorporates medical domain knowledge, improving
performance in medical image analysis and radiology report
alignment tasks.
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TABLE 1 Hyperparameter settings.

Parameter name

Corresponding

module/task
Image Masking Rate 75% Image Preprocessing
Adapter Down-projection 64 Transformer-Adapt
Dim. (d) (LA)/TA))
Encoder Hidden Layer 768 Visual/Language Encoder
Dim. (h)
Optimizer AdamW Overall Model
Language Adapter 5e-5 Transformer-Adapt (LA;)
Learning Rate
Task Adapter Learning le-4 Transformer-Adapt (TA;)
Rate
Weight Decay Coefficient le-4 All Trainable Parameters
Batch Size 32 Overall Training
Local Alignment Loss 0.8 Total Loss Function
Weight (A,)
Maximum Text Sequence 128 tokens Language Encoder
Length (BERT-Base)
Tokenizer BioBERT Tokenizer Language Encoder

TABLE 2 System Configuration.

Category Configuration Details/Version

CPU Intel Xeon Gold 6338 2.0 GHz (32
cores, 64 threads)
GPU NVIDIA A100 80 GB PCle 4.0 (2
cards, multi-card parallel
Hardware P )
RAM 256 GB DDR4 3200 MHz
Storage 2 TB NVMe SSD (system + data),
10 TB HDD (backup)
(6N Ubuntu 20.04 LTS
GPU Driver NVIDIA Driver 525.125.06
Framework PyTorch 1.13.1 (CUDA 11.7)
Vision Libraries OpenCV 4.7.0, PIL 9.4.0
Software
Text Libraries Hugging Face Transformers 4.28.1,
NLTK 3.8.1
Experiment Tool Weights and Biases (W&B) 7.10.0
Data Tools Pandas 1.5.3, NumPy 1.24.3
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CheXRelNet Lian et al. (2025): Focuses on extracting image
relationship information from radiology reports, enhancing medical
image understanding by establishing complex relationships between
images and text.

CheXNet Hasanah et al. (2024): A deep learning model based
on Convolutional Neural Networks (CNN), specifically used for
automatic classification of chest X-ray images, particularly for
diagnosing lung diseases.

LiverNet Aatresh et al. (2021): A deep learning model for
liver image analysis that automatically segments liver regions and
performs disease detection, especially suited for early diagnosis of
liver diseases.

A’TUNE Chang et al. (2025): A method that focuses on
enhancing the accuracy and efficiency of visual-language alignment
in medical imaging through specialized tuning of model parameters.

HiCA Fuller et al. (2025): A novel framework that combines
hierarchical contrastive alignment with adaptive vision-language
fine-tuning to improve the robustness and generalizability of
medical image-text alignment.

4.3 Evaluation matrix

To comprehensively evaluate the performance of the model,
we use a variety of common evaluation metrics. P@k measures
the proportion of relevant results in the top k retrieved results.
Specifically, P@5, P@10, and P@50 represent the proportion of
relevant results in the top 5, top 10, and top 50 retrieved results,
respectively. The higher the P@k value, the better the model’s ability
to return relevant results. Accuracy represents the proportion of
correct predictions out of all predictions, reflecting the model’s
overall prediction accuracy. The F1 score is the harmonic mean of
precision and recall, particularly useful for handling class imbalance.
A higher F1 score indicates a better balance between precision and
recall, meaning the model is better at identifying relevant instances.
AUC (Area Under the Curve) measures the area under the ROC
curve. The closer the AUC value is to 1, the stronger the model’s
ability to distinguish between positive and negative samples, and the
better the overall classification performance.

4.4 Supplement details

The hyperparameter settings in this paper are shown in Table 1,
which includes the detailed configuration of each model parameter.

The experimental environment in this paper is shown in Table 2,
which includes both hardware and software configurations.

4.5 Comparative experiments

4.5.1 Retrieval tasks

As shown in Table3, we designed three comparative
experiments, including image-to-image, text-to-image, and image-
to-text retrieval tasks on the CheXpert 8 x 200 and CheXpert 5 x
200 datasets. In the image-to-image and text-to-image retrieval tasks
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TABLE 3 Results of retrieval tasks, Precision (%). The best results are highlighted in bold.

Dataset CheXpert 8 x 200 ‘ CheXpert 5x 200
Retrieval Task ‘ Image — Image ’ Text — Image ‘ Image — Text
Method Dataset Input Size | P@Q5 P@l0 P@50 | P@5 P@l0 Pa@ P@5 P@l0 P@100
Our ClinVLA MIMIC-CXR 224 52.5 48.4 39.8 64.2 66.1 53.7 56.2 55.8 47.4
Random - - 12.5 12.5 12.5 12.5 12.5 12,5 20.0 20.0 20.0
ImageNet Pretrained ImageNet 224 14.8 14.4 15.0 - - - - - -
MRM MIMIC-CXR 224 26.5 25.9 233 - - - - - -
ConVIRT MIMIC-CXR 224 453 43.0 343 59.5 57.3 46.5 492 47.3 40.8
BioViL MIMIC-CXR 480 35.0 34.0 29.5 38.0 41.0 39.5 38.8 39.5 38.8
BioViL-T MIMIC-CXR 448 35.8 35.8 29.4 42.5 48.8 429 42.5 48.8 429
HiCA MIMIC-CXR 224 43.1 38.5 32.6 50.1 52.3 47.8 47.8 46.5 41.9
A’TUNE MIMIC-CXR 224 42.5 32.1 28.7 2.7 47.3 442 45.1 42.8 38.5
GLORIA-ViT MIMIC-CXR 224 42.0 40.9 33.8 50.0 47.0 423 51.1 49.4 40.8
GLORIA CheXpert* 224 48.8 46.3 40.1 472 46.3 41.5 472 46.3 41.5
GLoRIA (G + L) CheXpert* 224 - - - 472 46.3 41.5 472 46.3 41.5
TABLE 4 Results of binary and multi-class zero-shot classification tasks. TABLE 5 The time image classification results are displayed on the
The best results are highlighted in bold.+Results of methods with unfair MS-CXR-T dataset. The best results are highlighted in bold.
advantages are marked in the CHEXPERT-based benchmark.
] Method Consoli Pl. Pneumc PTX
Dataset RSNA Pneumonia CX5x effusion
200
Our 62.2+1.6 69.0+0.6 62.4+0.9 | 46.6+1.1 69.5+0.6
Method ACC AUC ClinVLA
MRM 58.9+2.2 62.1+1.4 61.1+1.3 | 41.5+0.9 68.0+0.9
Our ClinVLA 224 825 | 789 91.5 55.5
BioViL-T 61.142.4 67.0+0.8 61.9+1.9 | 42.6+1.6 68.5+0.8
BioViLt 480 732 | 66.5 83.1 -
BioViL 56.1+1.5 62.3+1.1 59.4+1.0 = 41.7+2.8 67.5+0.8
BioViL 480 760 | 73.8 86.3 433
CheXRelNet 47 47 47 36 49
MedKLIPt 224 80.0 | 63.4 86.9 -
CNN + 44.042.0 61.3+1.6 451435 | 31.543.1 65.5+1.1
BioViL-T+ 448 80.5 | 70.6 87.1 - TF
BioViL-T 448 80.7 | 763 89.3 457 CheXNet 63.2+1.4 68.5+1.0 60.2+1.5 | 47.8+2.2 70.0+0.7
GLoRIA-ViT 224 80.7 | 758 88.7 47.2 CheXpert 60.0+2.0 65.3+0.9 59.1+41.2 | 44.6+1.9 68.4+0.8
GLoRIA 224 742 | 724 82.4 54.9" LiverNet 61.5+1.7 66.1+1.3 60.5+1.4 | 452420 69.2+0.5
GLoRIA (G + 224 76.1 | 73.1 85.2 54.9*
L)

ClinVLA reached 52.5%, significantly ahead of other models. In

the image-to-text retrieval task on the CheXpert 5% 200 dataset,
on the CheXpert 8 x 200 dataset, the ClinVLA model achieved the ~ ClinVLA also performed excellently, with P@5 reaching 64.2% and
best performance across all metrics, especially in P@5, P@10, and ~ P@10 at 66.1%, the highest among all models, further validating its
P@50, surpassing all other baseline models. For example, in P@5,  advantage in cross-modal retrieval.
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TABLE 7 Computational complexity comparison of different medical
vision-language models.

Theoretical Model Per-
computation parameters sample
(FLOPs/ (M) inference
Sample) (NVIDIA time (ms)
(NVIDIA A100)
A100)
Proposed 2.8x 10" 1123 8.9
ClinVLA
Model
CheXRelNet 7.2x10"2 121.3 10.2
GLoRIA 3.6x10"2 111.8 17.5
LiverNet 9.5%10'? 354.7 17.8
BioViL 6.8x10" 289.5 15.6

We can clearly see the stability and outstanding performance
of ClinVLA across different datasets and tasks. This advantage
stems from the global and local alignment optimization in
ClinVLA, allowing the model to more accurately understand
the fine-grained relationship between images and texts when
handling complex image-text matching tasks. Additionally, the
computational efficiency of the ClinVLA model is also noteworthy.
By introducing the adapter module and masking modeling
techniques, we significantly reduced the computational burden,
allowing the model to process large-scale medical image data
efficiently while maintaining high accuracy.

4.5.2 Zero-shot classification tasks

As shown in Table 4, we conducted binary and multi-class

zero-shot classification tasks on the RSNA Pneumonia and CX 5 x

200 datasets. Our ClinVLA model performed excellently across
all metrics, particularly on the RSNA Pneumonia dataset, where it
achieved an accuracy (ACC) of 82.5%, an F1 score of 78.9%, and an
AUC of 91.5, significantly outperforming other baseline methods.
In contrast, the performance of BioViL and MedKLIP models was
relatively lower, with accuracy rates of 73.2% and 80.0%, and F1
scores of 66.5% and 63.4%, respectively.

On the CX 5x 200 dataset, ClinVLA achieved an accuracy of
55.5%, which, although lower than GLoRIA (accuracy of 54.9%),
still demonstrates strong performance. However, GLORIA has an
unfair advantage, as it was pretrained on the CheXpert dataset and
optimized based on that data. Therefore, ClinVLA’s performance on
this dataset is already quite remarkable, further proving its robust
capability in zero-shot classification tasks, especially in terms of its
generalization across different datasets.

4.5.3 Image Classification Task

As shown in Table 5, we conducted a time image classification
task on the MS-CXR-T dataset and presented the performance
of different models on this task. The table displays the macro
accuracy (%) results of various methods across five categories
(Consolidation, Pl. effusion, Pneumonia, PTX, Edema). Specifically,
the ClinVLA model (our model) achieved excellent results in
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all categories, particularly in Pl effusion and Edema, where it
reached 69.0% and 69.5% accuracy, respectively. Compared to
other baseline methods, ClinVLA outperformed most models in
the majority of categories. For instance, in the Consolidation
category, ClinVLA achieved 62.2%, surpassing most other models
like MRM and BioViL. In the Pneumonia category, ClinVLA
achieved an accuracy of 62.4%, also outperforming other methods.
Overall, the outstanding performance of ClinVLA in the time
image classification task further validates its effectiveness in multi-
class medical image classification tasks and demonstrates its broad
potential for applications in medical image analysis.

4.6 Ablation analysis

As shown in the Table 6, we conducted ablation experiments on
the ClinVLA model to assess the impact of different components and
loss functions on model performance. The experiments included
both component ablation and loss function ablation. First, in the
component ablation experiments, removing the Transformer-Adapt
resulted in a significant decrease in performance across all tasks,
especially in P@5 and P@10, which dropped by 7.3% and 3.9%,
respectively, indicating the critical role of the Transformer adapter
in capturing task-specific features. Removing Multiview led to a
decrease of 4.0% and 3.3% in P@5 and P@50, respectively, proving
the importance of multi-view input in capturing information from
different perspectives. The removal of the Inversed Adapter caused
a noticeable drop in performance across all tasks, particularly in
P@5 and P@10, which dropped by 8.5% and 7.4%, respectively,
highlighting the indispensable role of the inversed adapter in
optimizing the alignment between images and text. Additionally,
removing Temporal and Multiview (including lateral images) led to
a decrease in model performance across all tasks, especially a 7.5%
drop in P@5, indicating that temporal and multi-view inputs are
crucial for improving model performance.

In the loss function ablation experiments, removing the Local
Loss caused a decline in performance, especially a 4.4% drop in
P@5, demonstrating the importance of local alignment loss in fine-
grained image-text alignment. Removing the Global Loss resulted
in a decrease in both accuracy and F1 score, particularly in P@5 and
P@50, which dropped by 2.9% and 2.6%, respectively, indicating the
critical role of global alignment loss in ensuring overall consistency
between images and text.

4.7 Complexity analysis

Table 7 presents a comparison of the computational complexity
of different medical vision-language models, focusing on core
metrics such as model type, theoretical computation (based on
NVIDIA A100, in FLOPs/sample), model parameters (based on
NVIDIA A100, in M), and per-sample inference time (in ms).
Five models are included in the comparison. Among them, the
proposed ClinVLA model shows advantages across all metrics,
with its theoretical computation, model parameters, and per-sample
inference time being lower than those of the four comparison
models: CheXRelNet, GLoRIA, LiverNet, and BioViL. Notably,
the ClinVLA model excels in computational efficiency, and this
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Label: cardiomegaly
0.5596

0.5321

Our ClinVLA

0.4621

GLoRIA-ViT

Label: edema

0.4147

Our ClinVLA

GLoRIA-ViT

FIGURE 3
Text-to-image retrieval qualitative comparison results display.

Query: The heart contour is increased in size.

Query: Mild pulmonary interstitial swelling is observed.

—_—————— — — —
| |
| Right Wrong |
| I
~— /

0.5336

0.4591 0.3978

0.5294 0.5853 0.5955

comparison highlights its value in reducing computational burdens
and improving practical application performance, providing data
support for its efficient use in medical scenarios.

4.8 Qualitative research

4.8.1 Text-to-image retrieval

As shown in Figure 3, we present a qualitative comparison
of the ClinVLA model and the GLoRIA-ViT model in the text-
to-image retrieval task. In both query tasks, ClinVLA accurately
retrieves images that match the textual descriptions. Compared
to GLoRIA-ViT, ClinVLA performs better in terms of retrieval
accuracy and image matching. For example, in the query “enlarged
cardiac silhouette,” the similarity score of Clin VLA’ retrieval results
(e.g., 0.5956) is significantly higher than that of GLoRIA-ViT
(e.g., 0.4733), demonstrating ClinVLA’s advantage in understanding
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the relationship between textual descriptions and image content.
Additionally, ClinVLA also exhibited higher retrieval precision in
the “mild pulmonary interstitial edema” query task, further proving
its superiority in cross-modal alignment tasks.

4.8.2 Image-to-text retrieval

As shown in Figure 4, we present a comparison of ClinVLA
and GLoRIA-ViT in the image-to-text retrieval task. Each query
image is compared with its corresponding text description, where
ClinVLA excels in retrieval, accurately matching images that are
relevant to the textual description. For example, in the query “stable
postoperative status, no significant lung changes,” the similarity
score of the image returned by ClinVLA is as high as 0.6982, while
GLoRIA-ViT’s similarity score is 0.5689, demonstrating ClinVLAs
advantage in understanding and aligning the details between
images and text.
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Query:

0.6982

Stable following surgical sternotomy with
wires unchanged. Enlarged heart observed with
reduced lung volumes. The pulmonary vessels
are stable with no signs of...

Our ClinVLA

0.5689

GT:

Reduced lung volumes with persistent cardiomegaly.
No definitive signs of pulmonary edema or
significant airspace disease

10.3389/fphys.2025.1661960

1.Suboptimal portable chest imaging due to respiratory motion.
2.Redemonstration of cardiomegaly and postoperative changes following sternotomy.

3.No significant evidence of congestive heart failure or pneumonia: however. respiratory
motion significantly limits evaluation.

0.6258 0.6356

The portable chest image is suboptimal due to respiratory
motion. Persistent cardiomegaly is noted, along with
postoperative changes following sternotomy

0.6432 0.5785

Stable post-surgical sternotomy. with
unchanged wires. Cardiomegaly remains stable.
accompanied by reduced lung volumes. The
pulmonary vasculature is unremarkable. with
no signs of congestion or acute alterations.

GLoRIA-ViT

The endotracheal tube is no longer visible. possibly
due to post-extubation status or obscuration of the
upper hemithorax by the patient's positioning or
overlying structures.

The right costophrenic angle is not included in the study.
Sternal wires are present. and mild left basal atelectasis is
noted: however, there is no evidence of pneumothorax or
rib fractures.

Query:

0.5438

1. With a history of asbestos exposure versus
post-traumatic calcification from a prior
hemothorax.
2 Minimal subsegmental atelectasis is noted in
the right mid/upper lung zone, y due to
mild airway obstruction or previous
inflammation.

Our ClinVLA

0.5426

1. No evidence of left pneumothorax.

2. The right lung is clear.

3. Left subcutaneous emphysema remains
unchanged.

4. Increased atelectasis noted in the left lung
base.

GLoRIA-ViT

FIGURE 4
Image-to-text retrieval qualitative comparison results display.

4.9 Limitations and future directions

The ClinVLA model proposed in this study has demonstrated
good performance in medical image and text alignment tasks
but still has room for improvement. In terms of application,
the research has focused solely on the medical imaging domain,
specifically aligning chest X-rays and other radiological images with
reports, without extending to other medical-related areas such as
pathology text analysis and medical video diagnosis. Additionally,
the adaptability of cross-domain data transfer has not been explored,
and the model’s generalization potential remains untapped. In

Frontiers in Physiology

GT

No change in retrocardiac atelectasis and the small.
laterally located. loculated left hydropneumothorax.

1. No left pneumothorax is observed.
2. The right lung is clear.
3. Left subcutaneous emphysema remains
unchanged.

4. There is increased atelectasis in the left lung base
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1. Upright AP and lateral chest radiographs demonstrate likely large calcified left pleural
plaques. This should be correlated with the patient's history of asbestos exposure or post-
. traumatic calcification from a prior hemothorax.

2. Minimal subsegmental atelectasis is observed in the right lower lobe. likely secondary
to mild airway obstruction or previous inflammation.

0.5528 0.5175

Postoperative changes with left basilar airspace
consolidation.

0.5352 0.5274

1. No evidence of pneumothorax.

2. Consolidation noted in the lingula.

3. Evidence of prior thoracotomy in the right upper
chest

terms of clinical adaptation, while the model’s accuracy has been
validated using public datasets, its operational efficiency in real-
world scenarios, such as emergency rapid diagnosis or limited
equipment in primary healthcare settings, has not been assessed.
Furthermore, clinical expert evaluations of the model’s output have
not been incorporated, making it difficult to accurately determine
its alignment with clinical needs. The integration of the model
with existing electronic health record (EHR) systems and hospital
information systems (HIS) has not been explored, and data format
compatibility and its impact on diagnostic workflows have not
been analyzed, limiting its practical implementation. The model
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also has room for improvement in handling complex cross-modal
relationships, particularly in scenarios involving ambiguous report
statements or multi-source data collaboration.

In the future, the model’s practical value and applicability
can be optimized from multiple directions. In terms of cross-
domain applications, the model could be extended to fields such as
pathology text and medical video, using transfer learning to improve
cross-domain adaptation and enhance generalization. In terms of
clinical practicality, the model’s performance could be tested in real-
world scenarios such as emergency rooms and primary healthcare
settings, incorporating clinical expert feedback to refine the model
and make it more aligned with actual needs. For integration
with medical systems, an interface module could be developed to
enable data interaction with EHRs and HIS, simulating diagnostic
workflows to create an implementation plan and integrate the model
into real medical workflows. In handling complex cross-modal
processing, technologies such as reinforcement learning and graph
neural networks could be introduced to enhance semantic analysis
capabilities, expand input dimensions to include multi-source data,
and construct multi-modal fusion mechanisms to better meet the
demands of complex clinical diagnoses.

5 Conclusion

This paper presents the ClinVLA model, an efficient image-
text alignment method that effectively enhances the semantic
consistency between medical images and radiology reports. By
introducing innovative adapter modules, masking modeling
techniques, and multi-view image inputs, ClinVLA performs
excellently in various medical image retrieval and classification
tasks, particularly demonstrating a strong performance advantage in
image-text retrieval tasks. Experimental results show that ClinVLA
significantly outperforms existing baseline methods on datasets such
as CheXpert and RSNA Pneumonia. Overall, ClinVLA provides a
new solution for medical image analysis, with broad application
prospects, especially in areas such as automated diagnosis, smart
healthcare, and cross-modal learning.
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