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Accurate acupoint localization is crucial for the effectiveness of acupuncture
and related Traditional Chinese Medicine (TCM) therapies. This study introduces
a novel automated framework for recognizing back acupoints, uniquely
integrating the traditional TCM bone-measuring principle with advanced
deep learning for medical image analysis. The method employs an HRFormer
backbone network combined with a Structure-Guided Keypoint Estimation
Module (SG-KEM) and a structure-constrained loss function, ensuring
anatomically consistent predictions within a standardized spatial coordinate
system to improve accuracy across diverse body types. Trained and evaluated
on a dataset of 430 high-resolution back images with 19 annotated acupoints,
the framework achieved a normalized mean error (NME) of 0.6%, a failure rate
(FR@1 cm) of 1.2%, an area under the curve (AUC) of 0.97, and a precision
of 93.8%, while operating in real-time at 18 frames per second. Component
analysis confirmed significant contributions: the SG-KEM module reduced the
mean error by 33.3%, and the structure-constrained loss further decreased
it to 0.6%. Moreover, ablation studies under challenging conditions validated
the model’s robustness. On the obese subset, the NME decreased from
1.5% to 0.8%, FR@1 cm dropped from 4.0% to 1.3%, and precision improved
from 83.8% to 93.4%. Under illumination variation, the model achieved an
NME of 0.9%, outperforming both HRFormer (1.3%) and HRFormer+SG-KEM
(1.1%), with corresponding increases in AUC and precision. These findings
demonstrate strong generalization across diverse clinical scenarios. Collectively,
these results establish a clinically viable and computationally efficient solution
for intelligent acupoint localization, supporting AI-assisted diagnosis and
personalized treatment strategies within modern TCM healthcare systems.
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1 Introduction

Traditional Chinese Medicine (TCM) is a comprehensive medical system with
a history spanning thousands of years and has gained widespread application
worldwide through extensive clinical practice (Fung, 2009). Rooted in the theories of
zang-fu organs and meridians, TCM prominently features acupuncture and massage,
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which are primarily utilized for disease prevention, treatment,
and alleviation of fatigue (Epstein et al., 2023). Acupuncture
and massage achieve therapeutic effects and fatigue relief by
stimulating specific acupoints on the human body, thereby
regulating the flow of qi and blood and achieving a balance of
yin and yang (Ma, 2021; Cai and Vasconcelos, 2018). Accurate
acupoint localization is critical to the efficacy of acupuncture and
massage therapies, as inaccuracies can directly affect treatment
outcomes. Historically, acupoint identification has often relied on
clinical experience, potentially leading to inconsistent treatment
effects. Therefore, the development of high-precision acupoint
recognition technologies holds significant promise for enhancing
acupuncture accuracy, facilitating the modernization of TCM,
and promoting intelligent diagnostic systems (Qi et al., 2024;
Jaladat et al., 2023; Shen et al., 2024).

Furthermore, recent studies have demonstrated that accurate
stimulation of specific acupoints can modulate cortical activity and
brain network connectivity, revealing the neurophysiological basis
of acupuncture efficacy. EEG- and fMRI-based evidence shows that
acupuncture at well-localized points can regulate spectral power
and functional connectivity in the brain, contributing to therapeutic
effects in neurological conditions such as epilepsy and Parkinson’s
disease (Xue et al., 2023; Yu et al., 2018; Yu et al., 2019; Yu et al.,
2024). In particular, decoding brain responses to acupuncture using
EEG representation learning has laid the foundation for intelligent
acupuncture–brain interfaces (Lei et al., 2023; Yu et al., 2025).
These findings highlight the critical need for precise and automated
acupoint localization as a prerequisite for advancing brain-targeted
TCM therapies and integrative medicine systems.

In recent years, deep learning has increasingly found applications
in the medical field, offering promising opportunities for the
modernization of TCM (Pan et al., 2024; Zhou et al., 2024). Yang
et al. proposed a deep learning-based method for back acupoint
localization on weak-feature body surfaces, incorporating attention
mechanisms to enhance feature representation (Yang et al., 2024).
However, their method primarily relies on pixel-level intensity and
lacks anatomical structure modeling, which limits its ability to adapt
to individual variations in body shape or posture. Moreover, it does
not introduce normalizationmechanisms like bone-based coordinate
systems, which are essential for physiologically consistent keypoint
detection (Zhang et al., 2024). Our method explicitly addresses
these challenges by incorporating a structure-guided estimation
module and a TCM-inspired bone-measuring loss function, enabling
better generalization and anatomical fidelity. Researchers such as
Alexopoulos et al. (2023) have used deep learning for the early
detection of knee osteoarthritis, while Panda et al. (2024) have applied
it to lung tissue classification. Ronneberger et al. (2015) Unet model
has become a staple in biomedical image segmentation, and Lee et al.
(2018) have developed convolutional neural network models for the
classification of dental diseases.

Several studies have showcased the potential of deep learning in
acupoint recognition (Li et al., 2024). Sun et al. (2022) focused on
auricular point localization by constructing a 91-keypoint dataset and
applying directional normalizationmodules, achieving high precision
in ear-based acupuncture.Wang et al. (2023)Hand acupuncture point
localizationmethodbasedonadual-attentionmechanismandcascade
network model to localize 21 hand acupoints with excellent real-time
performance.Similarly,Yuanetal. (2024)proposedtheYOLOv8-ACU

framework for facial acupoint detection, incorporating lightweight
ECAmodules andaSlimneckstructure tobalancemodel accuracyand
efficiency. While these approaches demonstrate strong performance
in their respective body regions, they primarily target areas with rich
local features and fixed landmarks, such as the ears, hands, and face.
In contrast, the human back lacks visually salient landmarks and
exhibits considerable variation in bodymorphology,making acupoint
localization significantly more challenging (Yang et al., 2024).

While these methods offer unique advantages in their respective
body regions, research focusing on back acupoints remains
limited. Compared to acupoint areas like the ear or face, back
acupoint recognition presents distinct challenges due to the lack
of clear reference structures, a generally flat surface, and indistinct
landmarks, posing significant challenges for automated localization
(Kim et al., 2023; Mao et al., 2021). Nevertheless, the back hosts
numerous vital back-shu points closely linked to internal organ
functions, bearing irreplaceable clinical significance (Kim et al.,
2023). Therefore, improving back acupoint recognition accuracy is
critical for advancing intelligent diagnosis in TCM.

To overcome these limitations, we propose a novel acupoint
detection method that leverages both structural and contextual
knowledge. Building upon HRFormer (Yuan Y. et al., 2021), a
high-resolution transformer network for dense prediction tasks, we
introduce the Structure-Guided Keypoint Estimation Module (SG-
KEM) to explicitly integrate osteological priors from Traditional
Chinese Medicine. In addition, we design a structure-constrained
loss based on bone-proportion theory (Gang et al., 2011), enabling
the model to predict acupoints within a normalized anatomical
coordinate system.Unlike priormethods, our approach accounts for
both pixel-wise accuracy and physiological consistency, achieving
high precision while maintaining robustness across individuals with
varying body proportions and imaging conditions.

2 Materials and methods

2.1 Dataset

To support model training and evaluation, we utilized
the publicly available DMD-BAK dataset, which addresses
the lack of large-scale annotation resources for back acupoint
localization. The dataset is accessible at https://www.kaggle.
com/datasets/chunzheye/dmd-bak and contains 2,691 high-
resolution JPG images of the human back. Professional Traditional
Chinese Medicine (TCM) practitioners were invited to assist in
both the selection of 430 representative images—based on pose
diversity, image clarity, and annotation completeness—and the re-
annotation of acupoint positions to ensure accuracy and clinical
validity. In addition, new annotation modules were incorporated
to enrich the dataset structure and facilitate subsequent model
training. Each selected image includes standardized annotations
for 19 back acupoints. All data remain anonymized and ethically
compliant. The final subset offers a practical balance between
anatomical diversity and computational feasibility, making it well
suited for deep learning-based localization tasks. Table 1 lists the
corresponding acupoint codes and names, and Table 2 summarizes
acupoint–skeletal correlations with topologic descriptors.
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TABLE 1 The correspondence between the code numbers and the
acupoints.

Seq. Type Code Acupoint Index

1 DU DU14 Dazhui 1

2 BL BL11 Dazhu 2/3

3 BL BL12 Fengmen 4/5

4 BL BL13 Feishu 6/7

5 BL BL14 Jueyinshu 8/9

6 BL BL15 Xinshu 10/11

7 BL BL17 Geshu 12/13

8 BL BL18 Ganshu 14/15

9 BL BL19 Danshu 16/17

10 BL BL20 Pishu 18/19

11 BL BL21 Weishu 20/21

12 BL BL22 Sanjiaoshu 22/23

13 BL BL23 Shenshu 24/25

14 BL BL25 Dachangshu 26/27

15 BL BL43 Gaohuang 28/29

16 GB GB21 Jianjing 30/31

17 SI SI9 Jianzhen 32/33

18 SI SI10 Naoshu 34/35

19 SI SI11 Tianzong 36/37

To ensure robust model evaluation, the dataset was divided
into training, validation, and testing subsets at a 6:2:2 ratio. The
validation set was strictly separated from the training data to prevent
data leakage, allowing for accurate monitoring of generalization
performance and effective hyperparameter tuning.

2.2 Data preprocessing

Given the relatively limited dataset size, multiple data
augmentation techniques were applied exclusively to the training
set to enhance generalization and model robustness.These included
random horizontal flipping (p = 0.5), affine transformations
(rotation within ±15°, scaling between 0.9 and 1.1), and adjustments
in brightness and contrast (scaling factors between 0.8 and 1.2). All
augmented samples retained label consistency (Wu et al., 2022).
The test set remained unaltered to ensure fair evaluation (Table 3).
summarizes the augmentation strategies.

Following data cleansing and augmentation, the final dataset
included 258 training images, 86 validation images, and 86 testing
images, all manually verified for clarity and annotation accuracy.

2.3 Backbone network

The HRFormer architecture was adopted as the backbone of
our model due to its superior performance in dense prediction
tasks. HRFormer integrates the multi-resolution parallel structure
of HRNet with the global modeling capability of Transformers. The
network comprises four stages (Stage 1 to Stage 4), each containing
multiple branches of varying resolutions. Transformer blocks within
each stage operate in windowed self-attention mode, and feature
maps are fused across branches to preserve both fine-grained spatial
information and high-level semantic understanding.

(Table 4) outlines the structural configuration of HRFormer.
Maintaining a high-resolution stream throughout the network
enables the precise representation of acupoint features.
Furthermore, the network’s capacity to process skeletal structures
(e.g., spinal curvature, scapular positions) alongside fine local
details (e.g., inter-acupoint distances) enhances both accuracy and
generalization. The architecture is illustrated in (Figure 1).

2.4 The SG-KEM module

To address the challenge of low visual salience in back acupoint
recognition, we propose the Structure-Guided Keypoint Estimation
Module (SG-KEM). This module is designed to integrate prior
knowledge of human skeletal structures with context-aware features
from the neighborhoods of keypoints, guiding the model to focus
on anatomically meaningful regions and thereby improving the
robustness and accuracy of keypoint localization. SG-KEM consists
of two submodules: the Structural Prior Enhancement Module
(SPEM), which models the relationship between acupoints and
skeletal structures to provide structural guidance; and the Local
Context Attention Module (LCAM), which enhances semantic
representation in local regions through a lightweight attention
mechanism.These two components work synergistically to improve
the model’s ability to adapt to complex backgrounds and individual
variations (Figure 2).

2.4.1 Structure prior enhancement module
(SPEM)

SPEM introduces anatomical constraints derived from
Traditional Chinese Medicine (TCM) knowledge by leveraging a
set of bone-referenced landmarks B = {bk}

k
{k=1}, such as the seventh

cervical vertebra and inferior scapular angles. These landmarks
are manually annotated and exhibit stable relative positions across
individuals.

We construct a set of geometrical edges Equation 1:

E = {(i, j) ∣ bi,bj ∈ B,Dref
ij known} (1)

For each pair (i, j) ∈ E), we compute a distance map (Dij)
and a directional map (Aij) based on predicted keypoint locations
(pipj) Equation 2.

Dij(x,y)=|pi − pj|2,Aij(x,y) =
pi − pj
|pi − pj|2

(2)

These are concatenated to form a structural guidance tensor
Gprior, which is fused with the HRFormer feature map Fviaa (1× 1)
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TABLE 2 Acupoint-skeletal correlations with topologic descriptors.

Seq. Acupoint Skeletal landmark Topological relationship

1 Dazhui C7 spinous process Below C7 (midline)

2 Dazhu T1 Spinous Process Below T1, 1.5 cun lateral

3 Fengmen T2 Spinous Process Below T2, 1.5 cun lateral

4 Feishu T3 Spinous Process Below T3, 1.5 cun lateral

5 Jueyinshu T4 Spinous Process Below T4, 1.5 cun lateral

6 Xinshu T5 Spinous Process Below T5, 1.5 cun lateral

7 Geshu T7 Spinous Process Below T7, 1.5 cun lateral (scapula level)

8 Ganshu T9 Spinous Process Below T9, 1.5 cun lateral

9 Danshu T10 Spinous Process Below T10, 1.5 cun lateral

10 Pishu T11 Spinous Process Below T11, 1.5 cun lateral

11 Weishu T12 Spinous Process Below T12, 1.5 cun lateral

12 Sanjiaoshu L1 Spinous Process Below L1, 1.5 cun lateral

13 Shenshu L2 Spinous Process Below L2, 1.5 cun lateral (umbilicus level)

14 Dachangshu L4 Spinous Process Below L4, 1.5 cun lateral (iliac crest level)

15 Gaohuang T4 Spinous Process Below T4, 3 cun lateral (medial scapula)

16 Jianjing C7 and Acromion Midpoint of C7-Acromion line

17 Jianzhen Posterior Axillary Fold 1 cun above axillary fold

18 Naoshu Scapular Spine Inferior to scapular spine

19 Tianzong Scapular Spine Center of infraspinous fossa

TABLE 3 Data augmentation strategies.

Augmentation type Description Parameter range/Probability

Random Horizontal Flip Symmetric left-right flip of the image Probability = 0.5

Random Rotation Rotation operation in affine transformation Angle ∈ [−15°, +15°]

Random Scaling Affine scaling operation with the center unchanged Scaling ratio ∈ [0.9, 1.1]

Random Brightness Perturbation Adjust the overall brightness of the image Adjustment factor ∈ [0.8, 1.2]

Random Contrast Perturbation Change the contrast of the image Adjustment factor ∈ [0.8, 1.2]

convolution Equation 3:

FSPEM = F+Conv1×1(Concat(i,j)∈E[Dij,Aij]) (3)

This fusion enables the network to be aware of physiologically
plausible acupoint arrangements.

2.4.2 Local contextual attention module (LCAM)
To model local dependencies and eliminate background noise,

LCAM applies directional convolution and spatial attention. The
SPEM-enhanced feature FSPEM is first processed with decomposed
directional convolutions Equation 4:

Fdir = ReLU(Conv3×1(FLCAM) +Conv1×3(FSPEM)) (4)
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TABLE 4 Parameters of four stages of the HRFormer.

Stage Number of branches Resolution ratio Number of
transformer blocks

per branch

Embedding
dimension per

layer(C)

1 1 1/4 2 64

2 2 1/4,1/8 2,2 64,128

3 3 1/4,1/8,1/16 2,2,2 64,128,256

4 4 1/4,1/8,1/16,1/32 2,2,2,2 64,128,256,512

FIGURE 1
Structure of HRFormer. (a)The HRFormer block is composed of local-window self-attentionm and feed-forward network (FFN) with depth-wise
convolution. (b)Illustrating the HRFormer architecture.
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FIGURE 2
Structure of SG-KEM module.

Next, we generate a soft spatial attention map Equation 5:

A(x,y) =
exp(Q(x,y))

∑
(u,v)

exp(Q(u,v))
,Q = Conv1×1Fdir (5)

The final output is a reweighted feature map Equation 6:

FLCAM = Fdir ⊙A (6)

2.4.3 Output fusion
We fuse the outputs of SPEM and LCAM to obtain the

final structurally enhanced feature representation for keypoint
regression Equation 7:

FSG−KEM = (Conv3×3(FSPEM+FLCAM)) (7)

This fused representation is passed to the keypoint regression
head for heatmap generation.

2.5 Structure-constrained loss function

To fully leverage the structure-guided features extracted by
the SG-KEM module, the resulting feature map is used as the

output of the keypoint heatmap branch to regress the spatial
coordinates of acupoints. To enhance both localization accuracy
and anatomical plausibility, we design a structure-constrained loss
function based on the traditional Chinese medicine (TCM) bone-
measuring method.

Unlike general pose estimation tasks involving full-body joint
detection, our method only focuses on stable anatomical landmarks
in the back region relevant to acupoint localization.These landmarks
obtained through a lightweight anatomical landmark detection
module. Based on these reference points, we divide the trunk region
into standardized proportional units known as “cuns” using the
TCM bone-measuring method. This process constructs a subject-
specific proportional reference space, onto which all acupoint
annotations are projected based on proportional units (cun).

The normalized coordinate space eliminates differences in body
proportion and posture, allowing the model to learn acupoint
localization in a structurally consistent and interpretable manner.
The architectural framework of this method is shown in (Figure 3).

To incorporate anatomical structure into the training process,
we introduce a sample-specific normalization mechanism.
Specifically, we estimate a personalized scale factor r, representing
the number of pixels per cun for each sample. This factor is
computed using the Euclidean distance d between two stable
anatomical landmarks—typically the medial borders of the left
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FIGURE 3
Structure-constrained Losses function.

and right scapulae—defined to span 24 cuns according to TCM
standards Equation 8:

r = d
24

(8)

This normalization enables the model to apply structural
constraints in a physiologically consistent coordinate space, allowing
adaptation to individuals with varying body proportions while
preserving standard acupoint relationships.

To encode structural knowledge, we define a set of acupoint pairs
P with known anatomical distances derived from TCM literature.
These include bilateral Dachangshu (BL25), Xinshu (BL15), and
spinal-axis acupoints such as Dazhui (DU14). For each acupoint
pair, the expected distance in cuns dcun is translated into pixel space
using the personalized scale α.

According to TCM standards, the distance between specific
acupoint pairs (e.g., bilateral BL25) is defined as a fixed number of
cuns (e.g., six cuns), which is then converted to pixel distance by
multiplying with the scale factor α Equation 9:

dexpectedpix = α · dcun (9)

This step ensures anatomical distances are expressed in the same
coordinate system as the predicted keypoint locations, enabling
consistent comparison during optimization.

The structure-constrained loss is formulated as a mean
squared error between the predicted distance and the expected
anatomical distance Equation 10:

Lstruct =
1
M
∑
(i,j)∈P
(‖ ̂pi − ̂pj‖2 − r · lij)

2
(10)

Here, P denotes the set of acupoint pairs selected for structural
constraint, and M is the total number of constrained pairs.

To jointly optimize both pixel-level accuracy and anatomical
consistency, we define the final loss function as a weighted
sum of keypoint regression loss Lreg and the structural loss
Lstruct Equation 11:

Ltotal = Lreg + θ ·Lstruct (11)

Where θ is a hyperparameter balancing precision and structural
compliance.

2.6 Evaluation metrics

To evaluate the performance of the proposedmodel, we adopted
five standard metrics: Normalized Mean Error (NME) (Lai et al.,
2019), Failure Rate (FR) (Finkelstein, 2008), Area Under the Curve
(AUC) (Myerson et al., 2001), Precision (Streiner and Norman,
2006), and Frames Per Second (Image/s) (Koslowsky et al., 2006).
These metrics jointly assess the model’s accuracy, robustness, and
efficiency.

NormalizedMean Error (NME):The average Euclidean distance
between predicted and ground-truth keypoints, normalized by
inter-Xinshu distance Equation 12:

NME = 1
K ·N

K

∑
k=1

N

∑
n=1

‖Yn
k − Ŷ

n
k‖

d
× 100% (12)

Failure Rate (FR): The proportion of test samples with NME
exceeding a fixed threshold δ Equation 13:

FR = 1
K

K

∑
k=1
𝕀( 1

N

N

∑
n=1

‖Yn
k − Ŷ

n
k‖

d
> δ)× 100% (13)
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Area Under the Curve (AUC): The integral of the cumulative
error distribution curve from 0 to δ Equation 14:

AUC = ∫
10%

0
CED(δ)dδ (14)

Precision:The proportion of true positive predictions among all
positive predictions Equation 15:

Precision = TP
TP+ FP

(15)

Images Per Second (IPS): The number of Images
per second Equation 16:

IPS =
Images

s
(16)

3 Result

The proposed model was trained and evaluated in a high-
performance computing environment equipped with an NVIDIA
GeForce RTX 3080 Ti GPU, running Ubuntu 18.04. The
implementation was based on Python 3.8 and PyTorch 1.10. The
Adam optimizer was used, with a batch size of 32 and a dropout
rate of 0.5 to mitigate overfitting. Training was conducted over 100
epochs with early stopping based on validation performance. These
configurations ensured training efficiency andmodel generalization.

3.1 Performance comparison with baseline
models

To evaluate the effectiveness of the proposed method, we
conducted comparative experiments against several mainstream
models, including Vision Transformer (ViT) (Yuan L. et al., 2021).,
ACFormer (Zong et al., 2023), RTMpose (Jiang et al., 2023;
He et al., 2024), Faster R-CNN(Bharati and Pramanik, 2019),
YOLOv8 (Sohan et al., 2024),HRFormer (Yuan Y. et al., 2021) and
Uniformer (Li et al., 2023). The comparison focused on five key
metrics: Normalized Mean Error (NME), Failure Rate within 1 cm
(FR@1 cm), Area Under the Curve (AUC), Precision, and Images
Per Second (IPS). The results are presented in (Figure 4).

The Normalized Mean Error (NME) dropped significantly to
0.6%, representing a 57.1% reduction compared to ViT (2.8%) and
a 50% reduction compared to HRFormer (1.2%). Similarly, the
FR@1 cm metric improved markedly, reaching only 1.2%, versus
12.5% for ViT and 3.8% for HRFormer, indicating high localization
precision at the anatomical level.

In terms of AUC, the proposed method achieved 0.97,
outperforming all others, including Uniformer (0.94) and
HRFormer (0.92). Precision reached 93.8%, compared to 83.6%
for YOLOv8 and 84.1% for HRFormer. Despite being slightly
slower than YOLOv8 (18 FPS vs 45 FPS), the proposed model
still meets real-time requirements and delivers significantly
higher accuracy. These results suggest a well-balanced trade-off
between speed and accuracy, with clear superiority in anatomical
alignment and model generalization.

FIGURE 4
Performance comparison of different models. (a) Comparison of
different models in AUC. (b) Comparison of different models in
FR@1 cm (%). (c) Comparison of different models in IPS. (d)
Comparison of different models in NME (%). (e) Comparison of
different models in Precision (%).
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These results underscore that while high-speed detectors like
YOLOv8may be suitable for general object detection, their precision
is insufficient for delicate clinical tasks such as acupoint localization.
Our model’s structure-guided design ensures not only numerical
superiority but also anatomical plausibility, essential for safe
acupuncture guidance or medical navigation.

3.2 Robustness under obese body
morphologies

To assess the robustness of our model in the presence of
anatomical variations, we evaluated performance on a subset of
obese subjects, whose back contours exhibit significant curvature,
skin folds, and less-defined anatomical landmarks (Figure 5).reports
the results of an ablation study under these challenging conditions.

We compared three variants:
HRFormer baseline, HRFormer + SG-KEM module and Full

model (HRFormer + SG-KEM + structure-constrained loss).
NME decreased from 1.5% to 0.8%, representing a 46.7%

improvement, while FR@1 cm dropped from 4.0% to 1.3%,
confirming improved localization accuracy in anatomically complex
regions. The addition of SG-KEM alone already improved NME to
1.3%, indicating that multi-scale structural priors provide benefit
even without the loss constraint.

AUC improved from 0.91 to 0.95, and Precision increased from
83.8% to 93.4%, supporting the effectiveness of structure-constrained
learning in handling size-induced anatomical distortion. FPSdeclined
modestly from 22 to 18, but the real-time capability remained
acceptable. These results indicate that our structure-guided model is
well-adapted to variations in bodymorphology, enhancing its clinical
applicability for diverse patient groups .

The improvements in obese individuals are particularly
significant from a clinical perspective. In practice, acupoint
palpation in overweight patients is more difficult due to tissue
coverage and ambiguous bone landmarks. By leveraging a structure-
constrained spatial normalization (TCM bone-measuring system),
our model achieves robust predictions across body types. This is
critical for real-world deployment in diverse populations, such as in
hospitals or mobile healthcare units.

3.3 Generalization under illumination
variation

Lighting conditions significantly impact image-based
recognition systems, particularly in clinical settingswhere consistent
lighting is hard to maintain. To evaluate generalization under
such visual disturbances, we applied the same three model
variants (HRFormer, HRFormer+SG-KEM, full model) to a test
set modified with varying brightness and contrast levels. Results are
summarized in (Figure 6).

The NME reduced from 1.3% in HRFormer to 0.9% in the full
model, a 30.8% improvement, while the FR@1 cm dropped from
4.3% to 1.5%. These findings show the proposed model’s resilience
in retaining spatial accuracy under degraded visual conditions.

FIGURE 5
Results of ablation study under the obese subset. (a) Comparison of
different models in AUC. (b) Comparison of different models in
FR@1 cm (%). (c) Comparison of different models in IPS. (d)
Comparison of different models in NME (%). (e) Comparison of
different models in Precision (%).
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FIGURE 6
Results of ablation study under illumination variation. (a) Comparison
of different models in AUC. (b) Comparison of different models in
FR@1 cm (%). (c) Comparison of different models in IPS. (d)
Comparison of different models in NME (%). (e) Comparison of
different models in Precision (%).

AUC increased from 0.88 to 0.92, and Precision improved from
83.5% to 92.6%, confirming that both SG-KEM and structure-
aware supervision enhance the model’s lighting invariance.
Although FPS slightly decreased from 22 to 17, the model
maintained real-time performance. These outcomes demonstrate
that anatomical constraints improve illumination robustness,
making themodel suitable for dynamic clinical environments where
lighting conditions may be inconsistent.

These results highlight that illumination invariance is not solely
a function of network depth or capacity, but greatly benefits from
domain-specific anatomical priors.Themodel’s integration of bone-
referenced geometry enables it to rely less on pixel intensity and
more on structural layout, a desirable trait in noisy or uncontrolled
environments. This is particularly relevant for real-world TCM
diagnosis settings using mobile devices or home-care robotics.

3.4 Summarize

Across all test conditions—standard, obese, and illumination-
perturbed—the proposed model consistently demonstrates
superior accuracy, robustness, and clinical relevance. The
improvements observed in (Figures 4–6) stem from carefully
designed modules that bridge anatomical priors with deep
feature extraction. This structure-aware strategy enables robust
acupoint localization suitable for complex and variable clinical
environments.

4 Discussion

This study proposes a structure-aware acupoint localization
framework that effectively integrates Traditional Chinese
Medicine (TCM) principles with advanced deep learning
techniques (Gang et al., 2011). By incorporating a high-
resolution transformer backbone (HRFormer), a Structure-
Guided Keypoint Estimation Module (SG-KEM), and a structure-
constrained loss based on the bone-measuring method, the model
achieves accurate and anatomically coherent localization of back
acupoints.

The integration of SG-KEM significantly enhances spatial
feature representation by guiding the model to focus on
physiologically meaningful regions. This module leverages
skeletal priors—such as scapular and spinal landmarks—that
remain relatively stable across individuals, enabling the model
to localize acupoints accurately even in anatomically ambiguous
or low-contrast regions (Riegler et al., 2015). Furthermore,
the structure-constrained loss enforces consistency in relative
acupoint spacing based on TCM-defined proportions, enhancing
physiological plausibility and improving generalization across
different body types.

Experimental results confirm the effectiveness of the proposed
approach. On a dataset comprising 430 back images with 19
annotated acupoints, the model achieved a normalized mean
error (NME) of 0.6%, a failure rate (FR@1 cm) of 1.2%, and
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an AUC of 0.97. These outcomes reflect substantial gains in
both spatial precision and anatomical consistency compared to
multiple baselines, including HRFormer (Yuan Y. et al., 2021) alone,
ViT (Yuan L. et al., 2021), and YOLOv8 (Sohan et al., 2024).
Importantly, the model maintained real-time inference capability
(18 IPS),meeting the demands of clinical deployment scenarios such
as intelligent diagnosis, robot-assisted acupuncture, and posture-
adaptive therapy systems (Cheng et al., 2024).

Ablation studies demonstrate the individual contributions
of each component. The SG-KEM module reduced NME by
33.3%, while the addition of the structure-constrained loss further
improved anatomical compliance and lowered NME to 0.6%.The
benefits of this architecture extended to challenging clinical
conditions. Under the obese subset (Mao et al., 2021), the proposed
method achieved a 46.7% relative reduction in NME compared to
HRFormer (from 1.5% to 0.8%), while improving precision from
83.8% to 93.4%. Similarly, under illumination variation, the model’s
NME decreased from 1.3% to 0.9%, and precision increased from
83.5% to 92.6%, outperforming both the backbone and intermediate
variants. These results substantiate the model’s robustness to patient
morphology, lighting inconsistencies, and anatomical complexity,
underscoring its viability for real-world clinical applications
where such variability is common. This modular design supports
flexible adaptation to various clinical applications and suggests
potential for extension to other TCM body regions. These results
substantiate the model’s robustness to patient morphology, lighting
inconsistencies, and anatomical complexity, underscoring its
viability for real-world clinical applications where such variability
is common. In particular, the framework achieved consistent
accuracy in images of obese individuals, where back curvature
and surface texture differ significantly from standard anatomical
presentations. These findings highlight the model’s resilience
to intra-population variability and its suitability for broader
clinical use.

Moreover, the proposed framework exemplifies how TCM
domain knowledge can be systematically encoded into modern
AI systems to enhance interpretability and trustworthiness. By
embedding fixed anatomical constraints within both the network
structure and training objective, the model yields acupoint
predictions that are not only numerically accurate but also aligned
with clinical and diagnostic expectations. This structure-aware
paradigm offers a valuable reference for future development of AI
systems that bridge traditional medical expertise with data-driven
methodologies.

These findings not only confirm the technical robustness
of the model but also support its alignment with classical
meridian theories in Traditional Chinese Medicine (Yang et al.,
2011). The accurate mapping of acupoints in proportionally
normalized anatomical space resonates with the TCM concept
of “bone-based measurement”, bridging empirical knowledge
with data-driven precision. This provides a valuable foundation
for modernizing diagnostic protocols and ensuring consistency
in acupuncture-based interventions across practitioners and
institutions.

While the current framework demonstrates robust performance
on a curated dataset of back images, its application to dynamic
scenarios—such as real-time tracking during respiration or
movement—remains to be explored. Additionally, future work

may incorporate multimodal sensing, including depth, thermal,
or surface EMG signals, to further enhance performance under
occlusion, poor lighting, or patient movement. Deployment
optimization through model compression techniques may also
broaden accessibility to portable and embedded hardware platforms
(Pan et al., 2024; Dantas et al., 2024).

In summary, this study presents a clinically viable, structurally
grounded, and computationally efficient solution for back acupoint
localization. It underscores the potential of combining TCM
anatomical principles with high-resolution deep learning to
advance intelligent diagnosis and personalized treatment in
integrative medicine.

5 Conclusion

In this study, we developed a novel acupoint localization
framework that effectively integrates Traditional Chinese Medicine
(TCM) anatomical knowledge with high-resolution deep learning
techniques. By embedding the bone-measuring method into both
the feature extraction and optimization stages, the proposed
model achieves accurate, anatomically consistent localization of
back acupoints—a task traditionally hindered by the back’s flat
morphology and sparse visual landmarks.

Our approach combines the HRFormer backbone with a
Structure-Guided Keypoint Estimation Module (SG-KEM) and a
structure-constrained loss function rooted in TCM’s proportional
anatomy. This design enables the model to capture spatially
meaningful features and maintain physiologically plausible
acupoint arrangements across individuals with varying body
types. Experimental results demonstrate excellent localization
performance (NME: 0.6%, FR@1 cm: 1.2%, AUC: 0.97), robust
generalization under challenging conditions such as obesity and
illumination variation, and real-time inference capability (18
IPS), confirming the model’s potential for clinical deployment.
Importantly, ablation studies further revealed the model’s strong
generalization under challenging conditions. Under the obese
subset, the framework reduced NME from 1.5% to 0.8% and
improved precision from 83.8% to 93.4%. In illumination variation
scenarios, it achieved a 30.8% relative NME reduction (from 1.3% to
0.9%) andmaintained high precision at 92.6%.These results confirm
the model’s robustness across diverse body shapes and imaging
environments, which are commonly encountered in real-world
clinical settings.

Beyond technical contributions, this work exemplifies a
promising direction in AI-assisted integrative medicine: translating
traditional anatomical systems intomachine-understandable priors.
The framework offers a scalable and interpretable foundation
for intelligent acupuncture navigation, standardized treatment
planning, and TCM digitization. In the broader context of TCM,
our method lays the groundwork for standardizing acupoint
localization in clinical acupuncture, facilitating the integration of
AI into meridian-based therapies. Furthermore, by quantifying
traditionally qualitative anatomical concepts, it contributes to the
digital transformation of acupuncture education, robot-assisted
therapy, and international standard formulation. Future research
will focus on expanding the dataset to include dynamic scenarios
and diverse populations, incorporating multimodal imaging, and
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optimizing the model for deployment on portable diagnostic or
therapeutic devices.
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