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Are counter movement jump and
isometric mid-thigh pull tests
reliable, valid, and sensitive
measurement instruments when
performed after maximal
cardiopulmonary exercise
testing? A sex-based analysis in
elite athletes
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Thony Ragnarsson1 and Anna K. Melin1

1Department of Sports Science, Linnaeus University, Kalmar, Sweden, 2Åsidan Health Center,
Nyköping, Sweden

Both the countermovement jump (CMJ) and the isometric mid-thigh pull
(IMTP) are frequently used performance tests to monitor neuromuscular fatigue
and recovery after exhaustive physical activities. However, to date, neither
the reliability nor the validity of the CMJ and IMTP performed after the
cardiopulmonary exercise testing (CPET) has been studied. Thus, this study
primarily aimed to investigate the intrasession relative and absolute reliability of
the CMJ and IMTP when performed after the CPET. Second, the study aimed
to examine the discriminative validity of the CMJ and IMTP performed after the
CPET by differentiating between elite male and female athletes. Twenty-eight
female (26.8 ± 6.6 years) and seventeen male (23.8 ± 3.5 years) elite Swedish
athletes voluntarily participated in the study. Protocols included anthropometric
measurements, a cycle ergometer-based CPET (i.e., VO2peak test), followed by
three maximal test-retest CMJ and IMTP trials. Jump height, peak power, and
relative peak power during CMJ and peak force and relative peak force during
IMTP testing were analysed. Results showed high relative reliability of the CMJ
and IMTP in the total sample (ICC: 0.97 and 0.98) and separately in male (ICC:
0.88 and 0.98) and female (ICC: 0.98 and 0.93) athletes. The good absolute
reliability of the CMJ and IMTP was evidenced by low within-subjects test-
retest variability (CVWS%) and typical measurement error percentage, ranging
between 5.7% and 6.5% and 6.3% and 8.9%, respectively. Both the CMJ and IMTP
showed good test sensitivity, with the smallest worthwhile change exceeding
the typical error. The CMJ’s jump height, relative peak power, and IMTP’s peak
force showed a large discriminatory capacity to differentiate between male
and female athletes (Cohen’s d = 3.92, 1.80 and 5.14, respectively). However,
when the peak force was standardised relative to body mass and lean mass,
the differences between sexes diminished. In conclusion, given that the CMJ
and IMTP tests demonstrated high reliability and sensitivity following CPET,
they could be confidently used as practical tools for monitoring neuromuscular
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fatigue and recovery, even after exhaustive cardiopulmonary exertion activities.
Additionally, the demonstrated discriminative validity in differentiating between
male and female athletes further supports their role in sex-specific performance
profiling.

KEYWORDS

jumpperformance, strength, relative reliability, absolute reliability, constructive validity,
smallest worthwhile change, typical error, test sensitivity

1 Introduction

Physical abilities such as strength, power, and endurance are
key performance indicators in many sports, as they determine
an athlete’s fundamental abilities to jump and run efficiently
(Cormie et al., 2010; Ishida et al., 2021). For instance, well-
developed muscular strength and power strongly correlate with
advanced agility and athletes’ jumping and sprinting abilities
(Maestroni et al., 2020; Suchomel et al., 2016). Furthermore, strength
and power are crucial for executing sport-specific technical skills
effectively, such as kicking a soccer ball, performing a jump shot
in basketball, serving or spiking in volleyball, executing forehands
and backhands in tennis, lifting a barbell in Olympic weightlifting,
skating in ice hockey, and similar athletic movements (Pojskic et al.,
2018a; Secomb et al., 2024; Spiteri et al., 2014; Thomas et al.,
2015a; Thomas et al., 2015b; Wang et al., 2016). Consequently,
permanent evaluation of strength and power is crucial for
monitoring the efficacy of strength and conditioning programs,
athletes’ progression, rehabilitation status, recovery after injury,
neuromuscular fatigue and talent identification (de la Motte et al.,
2017; Herda, 2022; Suchomel et al., 2016; Tanner and Gore, 2012).

Strength is defined as the ability of a single muscle or muscle
group to exert force (Tanner and Gore, 2012). It is commonly
assessed dynamically using the one-repetition maximum (1RM),
which measures the greatest amount of resistance (i.e., load) that
can be moved through the entire range of motion in a controlled
manner (Charles et al., 2018). Typical examples include 1RM squat
or bench press, both of which require technical proficiency to
ensure safety during execution (Comfort et al., 2019). Strength can
also be evaluated under static conditions through isometric testing,
where muscle tension is generated without visible joint movement,
meaning themuscle contracts without changing length, and the limb
remains stationary (Comfort et al., 2019). A widely used example
in clinical settings is the handgrip strength test, which measures
the maximal isometric force of the forearm and hand muscles
using a hand dynamometer (Roberts et al., 2011). In contrast, sport
performance settings often employ the Isometric Mid-Thigh Pull
(IMTP) test to assess whole-body maximal force production. This
test involves the athlete pulling upwards on an immovable bar while
standing in a position resembling the second pull phase of Olympic
lifting. The IMPT is typically performed using a force plate or load
cell (i.e., dynamometer) (Comfort et al., 2019). Due to its static
nature and simplicity of performance, it is considered a safer and
less fatiguing alternative to the 1RM squat (Comfort et al., 2019)
and has demonstrated high validity and reliability (De Witt et al.,
2018; Drake et al., 2017; Dos’ Santos et al., 2018) correlating with
sprinting, jumping and agility performance across various sports

(Spiteri et al., 2014; Thomas et al., 2015a; Thomas et al., 2015b;
Wang et al., 2016; Townsend et al., 2019).

Power is defined as the product of force and velocity or the
amount of work produced per unit of time (Cronin and Sleivert,
2005). The most common test for measuring lower-body power
across various sports is the countermovement jump (CMJ) test
(Markovic et al., 2004). CMJ is a vertical jump test that utilises
the stretch-shortening cycle by requiring the athlete to perform
a rapid downward movement followed by an explosive upward
jump. It is widely recognized as a reliable and practical tool for
assessing lower-body power output, and is commonly performed
on a force plate (Carroll et al., 2019; Gathercole et al., 2015;
Markovic et al., 2004; Pojskić et al., 2022). Beyond its utility in
power assessment, CMJ has demonstrated broad applicability in
performance monitoring, talent identification and development,
fatigue and neuromuscular status tracking, injury prevention,
risk profiling, and return-to-play protocols (Bishop et al., 2021;
Hewett et al., 2005; Pojskic et al., 2018a; Pojskic et al., 2018b; Robles-
Palazón et al., 2023; Suchomel et al., 2016).

Although both the IMTP and CMJ have demonstrated high
reliability across numerous methodological studies (Carroll et al.,
2019; Markovic et al., 2004; Pojskić et al., 2022), a discrepancy exists
between how scientists evaluate the metric values of physical tests
and how coaches perform the tests in the field. In a controlled
research context, tests are commonly administered individually, in a
non-fatigued state, and following a standardised warm-up protocol.
This approach minimises measurement error, as the performance
of one test or different warm-up conditions can influence the
subsequent test outcomes by either improving or deteriorating
performance (Pagaduan et al., 2012; Pojskic et al., 2015; Pojskic et al.,
2023; Tanner and Gore, 2012). On the other hand, to save time
and costs, coaches often evaluate athletes’ performances through
multiple test batteries, where strength, power, and aerobic capacity
are assessed in a single testing session using various test orders
and training periods (e.g., pre- or post-session) (Scinicarelli et al.,
2021). Given these contrasting approaches, it is crucial to investigate
whether the reliability metrics of the IMTP and CMJ remain robust
with high-reliability metrics when performed consecutively in a
fatigued state, such as immediately following a cardiopulmonary
exercise testing (CPET), a maximum effort protocol performed
to exhaustion. Such research would provide valuable insight into
the ecological validity of these tests in real-world performance
monitoring scenarios.

The CPET is a widely used and objective method for evaluating
the cardiovascular, pulmonary, and skeletal muscle capacities
under exercise-induced stress (Tran, 2018). It is commonly
employed in research, sporting environments, and laboratory
settings. Exercise stress is usually induced by running on a treadmill
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or cycling on a cycle ergometer, while constantly measuring oxygen
consumption, with VO2max as one of the primary variables.
The tests are usually performed incrementally with gradual
increases in speed, inclination and resistance. The induced exercise
stress, intensity and fatigue during CPET are usually evaluated
simultaneously by several objective and subjective methods. For
instance, blood lactate levels are measured using a finger stick
capillary blood sampling method as one of the simplest methods
for evaluating exercise intensity. During CPET, blood lactate levels
rise gradually until reaching a point called the Onset of Blood
Lactate Accumulation, which corresponds to 4 mmol/L. Beyond
this point, blood lactate production exceeds clearance, leading to
accumulation in the blood and increased acidity in the muscles,
which can impair muscle function and contribute to the sensation
of fatigue (Goodwin et al., 2007). Research indicates that blood
lactate levels in athletes tend to return to near-baseline levels
(approximately 1–2 mmol/L) within 30–60 min after a maximal
CPET (Hinojosa et al., 2021; Katoch et al., 2025). Therefore, any
test conducted within 30 min following a can be regarded as taking
place during a state of elevated blood lactate, which is associated
with fatigue. Another objective measure of physical exertion during
CPET is the direct and constant measurement of heart rate (HR),
as HR and workload have a close and positive linear relationship
(Charles et al., 2018). For subjective evaluation of perceived exercise
strain, several scales, such as the Borg Rate of Perceived Exertion
Scale (RPE) and the Borg category rating scale (CR-10), were
developed (Borg, 1982; Noble et al., 1983; Charles et al., 2018). The
ratings of RPE have been shown to be linearly related to increased
exercise intensity (Noble et al., 1983) and highly correlated with
HR, while the CR-10 is more suitable for determining breathing
difficulties, aches, and pain (Borg, 1982). These validated scales are
useful as indicators of training intensity and impending fatigue in
exercise testing (Dantas et al., 2015; Charles et al., 2018).

Since the execution of one test can affect the result of the
following test (Tanner and Gore, 2012), it is essential to evaluate
whether a test provides trustworthy and meaningful results when
performed consecutively in contextual settings, such as match play
or competition, particularly when athletes experience acute fatigue.
To achieve this, the test is evaluated for its relative and absolute
reliability, sensitivity, and validity, thereby enhancing both scientific
rigour and practical application. Relative reliability refers to the
extent to which individuals maintain their position or ranking
within a group across repeated test trials, and it is commonly
quantified using the Intraclass Correlation Coefficient (ICC) (Koo
and Li, 2016; Weir, 2005). In contrast, absolute reliability measures
the degree of variation in repeated scores for an individual, typically
expressed in the same units as the test or as a coefficient of variation
(CV) between individuals' test-retest trials (Hopkins, 2000). Test
sensitivity refers to a test’s ability to detect meaningful changes in
performance. A test with high sensitivity will have a small typical
(measurement) error relative to the expected performance changes.
This concept is closely linked to the smallest worthwhile change
(SWC), which refers to the smallest change in a score that is
considered beneficial or meaningful. If the typical error exceeds
the SWC, the test may lack the sensitivity to detect small but
significant improvements (Hopkins, 2004). Given that a test can
be highly reliable but still invalid, it is also essential to determine
test validity (Gratton and Jones, 2010). One way is to evaluate

a test’s discriminative validity, which is a subtype of construct
validity that refers to the ability of a test to distinguish between
different constructs or different groups that should theoretically
not be related or equivalent (e.g., male and female athletes, elite
and sub-elite athletes) (Thomas et al., 2015c; Pojskic et al., 2020;
Pojskic et al., 2019; Pojskic et al., 2018b).

Moreover, women are significantly underrepresented in exercise
science (Costello et al., 2014; Mujika and Taipale, 2019), which
usually leads to research based on men being applied to women,
despite performance differences between the sexes in elite athletes
ranging from 8% to 10% (Sandbakk et al., 2018). Consequently,
it is relevant to evaluate physical capacities separately in men
and women. Furthermore, there is a lack of standardised test
protocols for assessing physical abilities when comparing athletes
from different sports and sex groups in studies for various reasons.
Administering simple and practical test protocols that do not
require a high level of skill proficiency and familiarisation, such as
CMJ, IMTP, and cycle-ergometer CPET, could enable performance
evaluation and comparison in heterogeneous groups of athletes and
research samples. Given that no study has been published to date that
has examined the reliability and validity of the CMJ and IMTP tests
when performed following exhaustive cardiopulmonary exertion
activities, there are limited reliability metrics (i.e., ICC, CV, TE,
SWC) available in this research design context, highlighting a gap
in the existing literature.

Therefore, the primary objective of this study was to determine
whether the CMJ and IMTP tests are reliable and sensitive
measurement instruments when performed after CPET in a
heterogeneous group of elite athletes. A secondary aim was to
examine the reliability metrics separately for male and female
athletes. The third aim was to explore the discriminative validity
of the CMJ and IMTP by differentiating men and women. Based
on the previous studies, we hypothesised that both CMJ and
IMTP would demonstrate high reliability and discriminatory power
following CPET.

2 Materials and methods

2.1 Experimental design

This method study was part of a larger research project, the
Relative Energy Deficiency in Sport (REDs) Swedish study. This
part of the study was performed in a laboratory setting at the
Linnaeus University. It consisted of anthropometric measurements,
restingmetabolic ratemeasurements, a cycle ergometer-basedCPET
(i.e., VO2peak test), followed by CMJ and IMTP tests (see Figure 1
Experimental Protocol). In the final phase, reliability analysis was
conducted through the intrasession test-retest measurements of the
CMJ and IMTP tests.

2.2 Participants

Twenty-eight female and seventeen male elite athletes
voluntarily participated in the study (Table 1). They were recruited
through an initial on-line survey study of the REDs Sweden
project, which included athletes from Swedish National team
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FIGURE 1
Experimental protocol flowchart. DXA = dual-energy X-ray absorptiometry; RMR = resting metabolic rate; CPET = cardiopulmonary exercise testing;
RPE = rate of perceived exertion; rpm = revolutions per minute.

sports representing ball games (n = 15), weight category (n = 7),
technical (n = 3), aesthetic (n = 5), strength (n = 4) and endurance
(n = 11) sports. All participants were healthy and free of current
injuries or neuromuscular or chronic diseases (e.g., diabetes or
hypothyroidism). Since this method study was part of a larger
research project investigating various aspects (e.g., nutritional
status, microbiota, and performance aspects) of REDs among
Swedish elite athletes, only female athletes not using hormonal
contraceptives were included in the study. Systematic reviews have
reported no or trivial alterations of strength-related measures by the
fluctuations in ovarian sex hormones during the menstrual cycle
(Blagrove et al., 2020; McNulty et al., 2020; Colenso-Semple et al.,
2023). However, since the study also evaluated physiological

aspects among eumenorrheic and amenorrhoeic athletes that
might fluctuate during the menstrual cycle, such as body weight
(Desbrow et al., 2019), resting metabolic rate (RMR) (Benton et al.,
2020), we chose to test eumenorrheic athletes in the early follicular
phase, where oestrogen and progesterone levels are low (Elliot-
Sale et al., 2021). Hence,menstruating athletes were assessed on days
2–5 after the first day of menstrual bleeding, while amenorrhoeic
athleteswere assessedwhen suited. Participantswere asked to refrain
from high-intensity training for at least 24 h before testing. Before
commencing the study, participants were informed both orally and
in writing about the study design, protocols, benefits, potential risks,
and their right to withdraw without explanation. They provided
signed informed consent. The study was conducted in accordance
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with the Helsinki Declaration and was approved by the Regional
Ethical Committee in Medicine (Dnr: 2021-07031-01).

2.3 Procedures and measures

Participants were asked to arrive at the local hospital at 7:00
a.m. in a fasted state to undergo a total-body DXA scan. The DXA
(Lunar iDXA, EnCore v18.10.105) was used tomeasure participants’
body mass (BM), body height (BH), and body composition (e.g.,
fat and lean body mass percentage). The standardised procedure
was performed as previously described in the literature (Nana et al.,
2015). Upon arrival at the exercise physiology lab around 8 a.m.,
indirect calorimetry was performed using a canopy hood system
(Vyntus CPX, CareFusion, Hochberg, Germany) to measure RMR
as described elsewhere (Torstveit et al., 2018). Participants rested for
15 min before the actual 30-min measurement period began, during
which the last 20 min were used for RMR analysis. Afterwards, the
participants were provided with a standardised breakfast and were
additionally informed about the procedures for the CPET, CMJ, and
IMTP measurements. The standardised breakfast consisted of either
550 kcal (for participants <70 kg BW: 70 g CHO, 25 g protein, 20 g
fat) or 800 kcal (100 g CHO, 35 g protein, 30 g fat).

2.3.1 CPET measurements
Prior to the CPET measurements, participants were asked to sit

on the electrically braked cycle-ergometer (Monark LC7TT,Monark
Exercise AB, Vansbro, Sweden) and adjust the saddle and handlebar
height and distance. This enhanced the validity and reproducibility
of the measurements and comfort, allowing participants to focus
fully on the test and achieve their true performance capacity. Then,
an HR monitor (Polar RS400; Polar, Kempele, Finland) and an
Oro-nasal face mask (7450 Series V2, The Hans Rudolph Inc.,
Kansas, United States) were mounted, and the first out of three
capillary blood lactate sampleswas collected using a portable, finger-
stick blood lactate analyser (The Lactate Plus, Nova Biomedical,
Massachusetts, United States). Afterwards, participants proceeded
to a standardised warm-up which consisted of 5 min of paddling
at a power output of 50 W (W) and an approximate cadence of 80
revolutions per minute.

Immediately after the warm-up, participants continued with
the incremental CPET protocol, which consisted of continuously
increasing resistance by 20 W each 1-min interval, starting with
100 W in the first interval. During the test, oxygen consumption
(VO2) and carbon dioxide production (VCO2) were constantly
measured using a calibrated breath-by-breath gas analysis system
(Vyntus CPX, CareFusion, Hochberg, Germany) according to
standard laboratory procedures. The RPE and CR-10 scales were
used for the subjective evaluation of perceived exercise strain until
participants reached levels 18 and 9, respectively. Then, participants
continued to pedal without reporting the exercise exertion to stay
focused on the test. Participants were asked to pedal, keeping the
cadence between 70 and 80 revolutions per minute, until they
reached volitional exhaustion, that is, the point at which they could
no longer maintain the required workload.

The test was terminated earlier if one of the following criteria
for reaching VO2peak was met: (a) levelling of VO2 consumption and
HR despite increased workload, (b) five beats from maximum HR,

(c) a respiratory equivalent ratio above 1.10, (d) RPE < 18 and CR-
10 < 8, and/or (e) inability to keep a cadence of 70 revolutions per
minute (Denham et al., 2020). The average of the two highest VO2
data points was used to determine VO2peak. The second and third
blood lactate sampling were performed immediately after the CPET
and 5 min after. Both the warm-up and CPET were performed on
the electrically braked cycle-ergometer for several reasons. Firstly,
participants do not require long and specific familiarisation with the
cycling technique; therefore, it provides similar testing conditions in
a heterogeneous group of athletes. Secondly, it provides an accurate
increase in power output ranging between 4 and 1,400 W, relatively
independent of pedal cadence (Tanner and Gore, 2012).

2.3.2 CMJ and IMTP measurements
After the CPET protocol and before CMJ and IMTP tests,

participants were allowed a 15-min rest period, which they used
to rehydrate, eat a fruit snack and recover. The CMJ test was
performed using the MuscleLab dual force plate system (Egotest
Technology AS, Stathelle, Norway) to assess lower body peak power
(W), relative peak power (W/kg) and jump height (m). Participants
were instructed to stand with their feet on the two force plates,
ensuring each foot was placed on a designated plate and to place
their hands on their hips throughout the test to minimise arm
involvement and isolate the contribution of the lower body. They
were asked not to bend their knees and hips when airborne, but just
upon landing on the force plates to provide accurate measurement
and reduce the risk of injury. Following a brief warm-up and
familiarisation that included three to four submaximal jumps,
participants initiated a countermovement by flexing their knees to
a comfortable depth and immediately executed an explosive vertical
jump. Each participant performed three maximal attempts and was
given a 1-min rest period between attempts to ensuremaximal effort
during each attempt. The test showed high test-retest reliability
(ICC > 0.90) in numerous method studies (Carroll et al., 2019;
Markovic et al., 2004; Pojskić et al., 2022).

The IMTP test was conducted to assess maximal force output
(N) and relative force output (N/kg) during a static position that
simulates the first phase of the clean (i.e., the Olympic weightlifting
exercise), known as the pull phase or initial pull (De Witt et al.,
2018). Participants were positioned in a hip-width stance, with the
feet flat on a custom-built wooden platform (80 × 50 cm). Knee-
flexion of 140°–145° and hip-flexion of 145°–150° were controlled
with a handheld goniometer before each attempt. They were asked
to position a solid metal bar (length 80 cm, diameter: 3 cm) at mid-
thigh height, simulating the first phase of the clean. The hand grip
on the bar was slightly wider than shoulder-width. On one side,
the MuscleLab load cell (Egotest Technology AS, Stathelle, Norway)
was attached to the bar, while the other was connected via a chain
to the platform. The chain and carabiner chain lock allowed the
bar to be fixed at a designated height above the floor, adapting to
the participant’s required starting position. The participants were
instructed to create a pretension that engaged all major muscle
groups to avoid slack in the body and jerky movement prior to
the pull. Then, upon the command: “3, 2, 1 pull”, participants
were asked to exert maximal pulling force straight up against the
bar for 3 s, generating force by the legs and hips (i.e., knee and
hip extension). To establish a better hand grip, participants used
lifting straps. Participants were not allowed to lean their bodies
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backwards and touch their hips with the bar. Familiarisation and
warm-up (i.e., 2% × 50%, 2% × 70%, and once 85%–90% of self-
estimated maximal effort) were employed before three maximal
attempts, separated by a 1-min rest between each attempt. The
test showed high test-retest reliability (ICC > 0.90) in previous
studies (De Witt et al., 2018; Dos’ Santos et al., 2018; Drake et al.,
2017). All participants were verbally encouraged throughout the
testing process. All measurements were conducted under standard
laboratory conditions at 21 °C–22 °C, which were permanently
monitored.

2.4 Statistical analyses

The sample size was estimated a priori using a hypothesis
testing approach (Arifin, 2018) and a web-based sample size
calculator accessible at https://wnarifin.github.io/ssc/ssalpha.html,
considering previously published interclass correlation coefficients
of CMJ and IMTP (Springham et al., 2024; Bright et al., 2023;
Montoro-Bombú et al., 2023; Pichardo et al., 2024). For a minimum
acceptable ICC of 0.70, an expected ICC of 0.85, a significance level
of 0.05, a statistical power of 0.80, three test attempts and an expected
dropout rate of 10%, it was estimated that 42 participants would
provide an appropriate sample size.

Descriptive statistics [mean, standard deviation (SD),
minimum, and maximum] were calculated for all variables. The
Shapiro-Wilk test and visual observation of the normality QQ
plots were used to explore a normal distribution of outcome
variables. Systematic measurement error of CMJ and IMPT and
differences between BL periods (pre, 1- and 5-min post) were
evaluated using repeated measures ANOVA. When statistically
significant differences were detected between trials for the
ANOVA, pairwise comparisons were performed using a Bonferroni
post hoc test.

Absolute reliability (within-subject variation) was established
using the coefficient of variation expressed as a percentage (CV%)
according to the following formula: mean value of the trials/TE ×
100, where TE (typical error) was calculated by dividing the SD of
the trial-to-trial difference score by √2 (Hopkins, 2000). A TE% and
CV% of <10% indicated low measurement error and good absolute
reliability, respectively (Gathercole et al., 2015; Schambra et al.,
2015). The ICC estimates and their 95% confidence intervals (CIs)
were calculated based on mean measurements (k = 3 for CMJ and
IMTP), absolute agreement, and a two-way mixed-effects model
(Weir, 2005). An ICC > 0.70 reflected high (DeVellis and Thorpe,
2021) and above 0.90 excellent (Koo and Li, 2016) relative reliability.

Sensitivity was computed by comparing TE with the SWC,
both expressed in the test scores for each test (Hopkins, 2000;
Buchheit et al., 2014). The SWC was derived from the between-
subject SD multiplied by either 0.2 (SWC0.2) (Hopkins, 2004;
Pyne et al., 2005), which is the typical small magnitude effect,
or 0.5 (SWC0.5), which is an alternate moderate effect (Cohen,
2013). A TE below SWC indicated test sensitivity to be “good”,
and a similar TE as SWC was rated “acceptable”. If TE was
higher than SWC, it was deemed to have “marginal” sensitivity
(Hopkins, 2004; Pyne et al., 2005).

Construct validity was evidenced by differentiating the male
and female athletes using an independent t-test. Additionally,

magnitude-based effect size with 95% Confidence Intervals (CIs)
was calculated, and the following criteria were used: ≤0.2 = trivial,
>0.2–0.6 = small, >0.6–1.2 = moderate, >1.2–2.0 = large, and >2.0
very large effect size (Hopkins, 2000). All statistical analyses were
performed with SPSS® for Windows (version 30; IBM Corporation,
Armonk, NY, United States) and MS Excel charts.

3 Results

3.1 Descriptive statistics

Descriptive statistics and differences between male and
female athletes in terms of age, anthropometrics, physiology,
and performance-related variables are presented in Table 1. The
results showed big variability (i.e., heterogeneity) in the sample
with between-subjects CV > 10%. The female athletes showed
higher variability in age and all anthropometric, physiological,
and performance variables, except for body fat percentage and
CMJ Peak Power. The male athletes were younger, taller, heavier,
and had a lower body fat percentage, as well as better absolute
values in performance tests, compared to female athletes. Although
higher in male (184.7 ± 11.2 beats/minute) athletes, HR max did
not show significant differences compared with female (180.2 ±
7.7 beats/minute) athletes. Repeated measures ANOVA revealed
a significant effect of time of blood lactate measurements (Wilks’
Lambda: F = 332.610, p < 0.001 and ηp2 = 0.953) where pre (1.9
± 0.6 mmol/L), 1-min post (12.8 ± 2.3 mmol/L) and 5-min post
blood lactate (11.3 ± 3.2 mmol/L) levels were significantly different
between each other. The visual observation of the normality QQ
plots and the Shapiro-Wilk test showed that CMJ and IMTP data for
all attempts, when averaged, were found to be normally distributed
(p > 0.05).

3.2 Reliability and sensitivity of CMJ and
IMTP

Descriptive, reliability and sensitivity data for the CMJ and
IMTP tests are presented in Table 2. Repeated measures ANOVA
showed no significant effect of time, neither for the CMJ nor for
IMPT, in three test-retest trials (Wilks’ Lambda: F = 1.032, p = 0.365,
ηp2 = 0.048; F = 3.204, p = 0.051, ηp2 = 0.138, respectively), for
the total sample. Similar results are observed in the group of male
athletes for CMJ (F = 0.007, p = 0.993, and ηp2 = 0.001) and IMTP (F
= 0.051, p = 0.951, and ηp2 = 0.008). In the group of female athletes, a
significant effect of time was observed for test-retest trials in CMJ (F
= 3.828, p = 0.035, ηp2 = 0.227) and IMTP (F = 6.631, p = 0.005, ηp2

= 0.347). Bonferroni post hoc analysis showed the first CMJ attempt
(28.1 ± 8.1 cm)was significantly lower than the second attempt (28.9
± 7.8 cm).The first (1,342.9 ± 248.3 N) and second attempts (1,367.8
± 220.8 N) were statistically lower than the third attempt (1,455.9 ±
259.1) in IMTP.

The absolute reliability was good in the total sample and
separately for the male and female athletes. The reliability of the
CMJ was better than that of the IMTP, with CV values ranging
between 5.7% and 6.1% and 6.3% and 6.5%, respectively.The relative
variability for both CMJ and IMTP was high to excellent (ICC:
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0.88–0.98 and 0.93–0.98, respectively) in total and separately for
both groups. Low measurement error (i.e., <10%) was detected for
both tests and groups. In the total sample, and for male and female
athletes, TE and TE% ranged between 2.2 and 2.6 cm (6.9%–8.0%)
for CMJ and between 122.5 and 128.8 N (6.3%–8.9%) for IMTP.
Both CMJ and IMTP showed good test sensitivity.The TEwas larger
than SWC(0.2) but smaller than SWC(0.5) except for the IMTP in
female athletes, where the TE exceeded both SWC(0.2) and SWC(0.5),
showing marginal sensitivity.

3.3 Discriminative validity of CMJ and IMTP

CMJ height, relative CMJ Peak Power and IMTP force were
significantly different between the two groups (Table 2). The male
athletes had better performance scores in CMJ height [(t-test: 3.92,
p < 0.01; large ES (CI: 0.55–1.86)], relative CMJ Peak Power [(t-
test: 1.80, p < 0.05; small ES (CI: 0.06-1.16)] and IMTP force [(t-
test: 5.14, p < 0.01; large ES (CI: 1.13-2.57)] compared to the female
athletes. However, no significant differences between the groups
were identified for the CMJ Peak Power (t-test: 1.47, p = 0.07) or
the relative IMTP force (t-test: 0.51, p = 0.30).

4 Discussion

This study is the first to investigate the reliability and validity
of the CMJ and IMTP tests performed after the CPET in a
heterogeneous group of elite male and female athletes. This study
provides several important findings: (1) the CMJ and IMTP,
performed after the CPET (i.e., a maximal exhaustion test), are
reliable and sensitive measurement tests in a heterogeneous group
of athletes, (2) the CMJ and IMTP tests, performed after CPET,
evidence good discriminative validity by differentiating between
male and female athletes.

4.1 Reliability of CMJ and IMTP

Previous method studies have demonstrated the relative
reliability of the CMJ test (i.e., jump height) with high ICC
values (i.e., >0.90) either performed on a contact and infrared
mat (Markovic et al., 2004; Pojskic et al., 2015; Pojskić et al.,
2014; Pojskić et al., 2015; Pojskic et al., 2018a) or a force plate
(Fahey et al., 2024; Pojskić et al., 2022; Souza et al., 2020; Bright et al.,
2023; Bagchi et al., 2024; Plakoutsis et al., 2023; Warr et al., 2020;
Springham et al., 2024; Thomas et al., 2017). Similarly, the IMTP
test has demonstrated high test-retest reliability (ICC > 0.85) when
either performed on a force plate (Thomas et al., 2017; Aben et al.,
2020; De Witt et al., 2018; Guppy et al., 2018) or using a load
cell dynamometer (Montoro-Bombú et al., 2023; Pichardo et al.,
2024; Dobbin et al., 2018; Till et al., 2018). The findings from the
current study are consistent with previous studies, evidencing high
to excellent relative test-retest reproducibility for the CMJ and
IMTP in the total sample (ICC = 0.97 and 0.98) and separately
for men (ICC = 0.88 and 0.98) and women (ICC = 0.98 and
0.93), respectively (DeVellis and Thorpe, 2021; Koo and Li, 2016).
This means that when the CMJ and IMTP were performed, the

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2025.1663590
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Pojskić et al. 10.3389/fphys.2025.1663590

participants consistently maintained their ranking order relative
to others in the group, regardless of group affiliation and the fact
that they performed the tests after the CPET in a fatigued state
(Weir, 2005). The high relative reliability can be partially attributed
to sample heterogeneity, as evidenced by considerable between-
subjects variation (CVBS%) ranging from 17.1% to 29.2%. This
considerable heterogeneity was expected, given that participants
were affiliated with different sport categories (see Section 2.2,
Participants), where the CMJ and IMTP tests are regularly included
in performance testing in many sports, such as football and rugby,
but not in sports like rowing and cycling. Logically, in heterogeneous
samples, it is easier for each participant to maintain the ranking
order after test-retest measurements than in homogeneous
samples, thereby contributing to increased relative reliability
(Weir, 2005).

Similarly, the absolute reliability of the CMJ and IMTP,
evidenced by low within-subjects test-retest variability (CVWS%)
and typical measurement error (TE%), was shown to be good,
ranging between 5.7% and 6.5% and 6.3% and 8.9%, respectively
(Gathercole et al., 2015; Schambra et al., 2015). The findings
corroborate those of previous studies, which have shown the high
absolute reliability of the CMJ (Bagchi et al., 2024; Bright et al.,
2023; Markovic et al., 2004; Petré et al., 2023; Pojskić et al., 2022;
Souza et al., 2020; Thomas et al., 2017) and IMTP (Dobbin et al.,
2018; Montoro-Bombú et al., 2023; Pichardo et al., 2024; Till et al.,
2018; Thomas et al., 2017). However, the high absolute reliability
was not entirely expected, given that the CMJ and IMTP were
not equally represented as measurement instruments across the
sample and that the tests were performed after the CPET. It
is noteworthy that the CVWS%, typical error, and typical error
% could be more useful than the ICC, as these metrics enable
comparison of reliability across various jump and isometric strength
tests, regardless of calibration, measurement devices, or sample
heterogeneity (Hopkins, 2000), which contrasts with the ICC,
which solely provides a unitless estimate of between-subject trial
differences (Weir, 2005).

Moreover, neither the CMJ nor the IMPT showed any
significant systematic variation. In other words, consistent trial-
to-trial differences were observed in the total sample and among
the group of male athletes. Practically, this means that if the
familiarisation is performed as described, two CMJ and IMTP
testing trials would be sufficient (Weir, 2005). In contrast, trial-
to-trial differences were observed in the group of female athletes.
Specifically, the first CMJ attempt was significantly lower than
the second attempt. Similarly, the first and second attempts were
statistically lower than the third in the IMTP. Although all
participants were required to demonstrate technical proficiency
before performing the tests, the potential bias introduced by
the learning effect and post-activation potentiation (PAP) should
not be entirely discounted (Tanner and Gore, 2012). In brief,
the learning effect refers to improvements in performance that
occur simply because participants become more familiar with
the test procedure, rather than due to a genuine improvement
in their underlying ability or fitness level (Atkinson and Nevill,
1998; Hopkins, 2000; Tanner and Gore, 2012). The PAP refers
to the acute enhancement of muscular performance following a
prior high-intensity contraction (Sale, 2002; Tillin and Bishop,
2009; Pojskic et al., 2015; Pojskic et al., 2023). Logically, a

longer familiarisation should be applied to avoid a confounded
interpretation of the results, especially in groups of athletes who do
not regularly perform the CMJ and IMTP. Furthermore, recovery
time longer than 1 min should be used between test-retest trials to
mitigate PAP effects.

Although none of the previous studies have investigated
the reliability of the CMJ and IMTP after any exhaustive
cardiopulmonary exertion activity, they have used some form
of warm-up before the measurements. Specifically, the warm-up
protocols before the CMJ usually consist of 5–15 min of general
warm-up (i.e., low-to-moderate self-paced running or cycling),
followed by 5–7 min of specific warm-up (i.e., dynamic stretching,
callisthenics, sprints, jumps, etc.) (Bagchi et al., 2024; Bright et al.,
2023; Fahey et al., 2024; Markovic et al., 2004; Plakoutsis et al., 2023;
Pojskić et al., 2022; Springham et al., 2024; Warr et al., 2020). Most
studies have employed 5–10 min of light-to-moderate running,
dynamic stretching exercises, and a test-specific warm-up consisting
of several submaximal IMTP attempts with progressively increasing
intensities (e.g., 50%, 70%, 85%) (Dobbin et al., 2018; Montoro-
Bombú et al., 2023; Pichardo et al., 2024; Till et al., 2018). In the
current study, 15 min after the CPET, the participants performed
only a specific warm-up consisting of three to four submaximal
jumps prior to the CMJ and five submaximal attempts (i.e., 2%
× 50%, 2% × 70%, and once 85%–90% of self-estimated maximal
effort) before the IMTP. This routine proved to be an effective and
sufficient way to ensure participants were familiarised with the tests,
allowing for reliable results even after completing an exhaustive
exercise protocol like the CPET.

In the present study, the cycle-ergometer-based CPET
was used to examine VO2peak by gradually increasing exercise
intensity until maximal exhaustion. The high BL levels (11.3
± 3.2 mmol/L), 5 min post-CPET, which were still at near-
maximal or supramaximal exercise intensity and well above the
anaerobic threshold (i.e., 4 mmol/L), evidenced the participants'
exhaustion. Given that the blood lactate levels return to near-
baseline (∼1–2 mmol/L) within 30–60 min after a maximal test
in athletic populations (Hinojosa et al., 2021; Katoch et al., 2025),
we can assume that the athletes in the current study performed
both the CMJ and IMTP tests in a blood lactate-elevated state.
This elevated blood lactate level could cause muscle fatigue and
reduced performance due to the buildup of lactate and hydrogen
(H+) ions, which inhibit contractile processes and weaken muscle
function (i.e., muscular force production and motor control)
(Theofilidis et al., 2018). In brief, H+ ions lower the pH, which
alters the conformation of troponin and reduces the calcium (Ca2+)
binding affinity, thereby inhibiting the exposure of actin binding
sites necessary for myosin cross-bridge formation and the power
stroke, the primary force-generating step in muscle contraction
(Theofilidis et al., 2018; Kenney et al., 2022). This, along with
reduced energy production due to a shift in pH balance and
depleted energy sources (i.e., ATP, creatine phosphate, circulating
glucose), could partially explain the lower results in both the CMJ
and IMTP compared to previous studies performed in athletic
populations (Dobbin et al., 2018; Petré et al., 2023; Pojskic et al.,
2015; Pojskić et al., 2015; Pojskic et al., 2018a; Thomas et al.,
2017). However, the high reliability and sensitivity of CMJ
and IMTP tests following the CPET highlight their practical
utility for post-exercise neuromuscular assessment in the
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athlete population. Their robustness even under conditions of
physiological fatigue makes them potentially valuable tools for
monitoring performance and recovery after exhaustive physical
activities.

4.2 Sensitivity of CMJ and IMTP

Both the CMJ and IMTP showed good test sensitivity (i.e.,
SWC > typical error), which was evident by comparing SWC
and typical error (Hopkins et al., 2009; Atkinson and Nevill,
1998). The typical error was larger than SWC(0.2) but smaller than
SWC(0.5) except for the IMTP in female athletes, where the typical
error exceeded both SWC(0.2) and SWC(0.5), showing “marginal”
sensitivity. This indicates that the CMJ can be utilised to detect
moderate changes that exceed 0.5 times the test’s SD, showing “good”
measurement usefulness in both male and female participants
(Buchheit et al., 2014; Hopkins, 2004). In practice, it means that
if a participant achieves, for instance, the CMJ results of 35.3 ±
4.4 cm at baseline testing, then any post-line change above 2.2 cm
(4.4 cm × 0.5) can be considered a meaningful performance change.
These findings corroborate previous results of good CMJ sensitivity
(SWC = 2.0 cm and typical error = 1.6 cm) in male and female
basketball players (Pojskić et al., 2022). On the contrary, the IMTP
showed “good” sensitivity only in the sample of male participants.
Consequently, any change over time in the IMTP in the observed
sample of female participants should be taken with caution. The
“marginal” sensitivity could be attributed to the low experience
among some female participants in performing the IMTP test and
the post-activation potentiation effect, which, in turn, may increase
the observed systematic measurement error (i.e., the improved test
results across trials).

4.3 Discriminative validity

The primary performance metric of the CMJ, jump height,
demonstrated a substantial discriminatory capacity to differentiate
between male and female athletes, with a Cohen’s d value greater
than 1.2 (Hopkins, 2004). The male athletes jumped 28.7%
higher than the female athletes. Our results on CMJ height
corroborate those of previous studies, which have found that
men jump 24%–34% higher than women (Philpott et al., 2021;
Petrovic et al., 2024; Höög and Andersson, 2021; McMahon et al.,
2017; Ebben et al., 2007; Laffaye et al., 2014; Rice et al., 2017).
Interestingly, the absolute peak power during the CMJ, which was
higher in men, did not reach a significance level (p = 0.07), which
could be attributed to the heterogeneous nature of the sample in
both sex groups. This contradicts one of the previously mentioned
studies, which showed higher absolute power amongmale basketball
players compared to female players (Rice et al., 2017), but conforms
with other studies that showed no differences between sexes
(McMahon et al., 2017; Petrovic et al., 2024). The relative peak
power (W/kg) in the present study, however, was higher in the male
athletes than the female athletes, corroboratingwith previous studies
(Márquez et al., 2017; McMahon et al., 2017; Petrovic et al., 2024;
Philpott et al., 2021; Rice et al., 2017), meaning that male athletes
can exert propulsive force at higher rates per kg of body mass than

female athletes. The observed differences can largely be attributed
to the male athletes' higher percentage of lean body mass, which
is approximately 7.3%, as well as a lower body fat percentage of
around 7.1%. This combination enhances their ability to generate
propulsive force more effectively, allowing them to accelerate their
body mass more quickly and achieve higher jump heights compared
to their female counterparts (Bchini et al., 2023; Petrovic et al.,
2024). This is in line with the premise that muscle volume and
size of cross-sectional area could be an essential contributing factor
in discriminating between male and female athletes in vertical
jumping performance (Häkkinen et al., 1996; Kanehisa et al.,
1994; Bchini et al., 2023). However, there are other potential
discriminating factors, such as differential leg stiffness strategies,
the muscle and tendon properties, and motor units’ activation level
(Bojsen-Møller et al., 2005; Laffaye et al., 2014; McMahon et al.,
2017), that were not examined in the present study, but contribute
to advanced utilisation of stored elastic energy in the tendons
and the stretch-reflex during the stretch-shortening cycle in
male athletes.

It is worth noting that, although male athletes outperformed
female athletes in the CMJ, the achieved results are generally
lower than those reported in previous studies (Laffaye et al., 2014;
McMahon et al., 2017; Petrovic et al., 2024; Philpott et al., 2021;
Rice et al., 2017). This is logical, given that the participants tested in
the current study were recruited from various sports where lower-
body power was not a dominant physical ability (e.g., endurance and
technical sports). In contrast, previous studies have been conducted
in homogeneous groups of athletes where explosive power is a
key performance indicator (e.g., volleyball, netball, basketball,
football, and track and field sprint and jump) (Laffaye et al.,
2014; McMahon et al., 2017; Petrovic et al., 2024; Philpott et al.,
2021; Rice et al., 2017). Moreover, the influence of a dynamic
interplay between fatigue and PAP on poorer performance results
in the current study should be considered. Fatigue, resulting from
CPET, could transiently impair neuromuscular function, leading to
decreased peak power output and force production, while PAP could
improve subsequent explosive efforts by temporarily enhancing
neuromuscular performance (Sale, 2002; Tillin and Bishop, 2009).
The balance between these opposing processes influences post-
CPET test outcomes. Initially, fatigue may dominate, reducing
performance, but as recovery progresses, PAP mechanisms may
foster temporary performance gains (Collins et al., 2018). The net
effect depends on the timing of measurement post-CPET, exercise
intensity, and individual recovery capacity, with literature indicating
that prolonged fatigue tends to suppress neuromuscular output
(Cormie et al., 2011). Consequently, we can assume that a 15-
min post-CPET recovery was not sufficient to favour PAP gains, but
rather promoted a fatigued state (Hinojosa et al., 2021; Katoch et al.,
2025), which in turn could impair the CMJ and IMTP
test results.

The absolute peak force, the most frequently reported
performance metric of the IMTP test, also showed great power
in discriminating between male and female athletes. Specifically, the
male athletes were 32.3% stronger compared to the female athletes.
This finding is comparable to previous studies that investigated
differences between men and women in recreational resistance-
trained individuals (Merrigan et al., 2020) and athletic populations
(Cornish et al., 2024; Townsend et al., 2019). However, when peak
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force was standardised to body mass and lean mass, the differences
diminished. This corroborates the findings of Merrigan et al.
(2020), who also demonstrated a higher absolute peak force in
men compared to women, while the peak force relative to fat-
free mass was similar between sexes. However, they showed that
men exerted a higher peak force per kilogram of body mass, which
contradicts our findings. The observed discrepancies in the present
study can be the consequence of the heterogeneous sample, as
previously described.

In general, the advanced ability of male athletes to exert
absolute force and develop power can be attributed to the well-
documented sex-related biological differences in body mass and
lean mass. Specifically, men are, on average, taller (approximately
13 cm), heavier (approximately between 14 and 18 kg), possess
more muscle mass (approximately between 18 and 22 kg), and
have less fat mass (approximately between 3 and 6 kg) than the
average woman (Kenney et al., 2022), which is comparable with
anthropometrical data in the current study. Collectively, the findings
corroborate previous performance studies, which show that the
differences between the sexes in elite athletes range from 8% to 10%
(de Araújo et al., 2020; Buchheit et al., 2014; Höög and Andersson,
2021; McMahon et al., 2017; Sandbakk et al., 2018).

4.4 Strengths and limitations

One of the key strengths of this study is the inclusion of an
elite athlete sample, which enhances the relevance and applicability
of the findings to high-performance sports contexts. Moreover,
the cycle ergometer was used to test cardiopulmonary capacity,
even though it may yield lower values of VO2peak than the
treadmill (Price et al., 2022; Millet et al., 2009). However, the
cycle ergometer is particularly advantageous in a heterogeneous
group of athletes because it provides reproducible and accurate
incremental workloads, reducing injury risk and skill bias in athletes
who may not be experienced runners (e.g., swimmers, rowers).
Additionally, conducting the study in a strictly controlled laboratory
setting ensures a high level of internal validity, allowing for precise
control of variables and reducing potential confounding factors.
This combination supports the reliability and specificity of the
observed outcomes.

However, the study has several limitations that should be
acknowledged. First, the study did not include measurements of the
CMJ and IMTP tests before the CPET, which prevents a comparison
of pre- and post-reliability metrics. Second, the cross-sectional
research design, which included data collection at a single point in
time, made it impossible to assess changes or trends over time or
determine the causality of observed between-sex disparities. This
could limit the ability to understand how long-term factors such
as training history, hormonal fluctuations, or adaptation to sport-
specific demands may influence performance differences between
sexes. Third, although the equality of variances across groups was
controlled, the heterogeneity of the sample could still affect the
observed differences between men and women. Fourth, only the
primarymetrics of theCMJ and IMTP tests were analysed. Although
they are highly informative and generally sufficient for assessing
neuromuscular performance (e.g., power and maximal strength),

they may lack the ability for a more comprehensive biomechanical
evaluation and analysis.

5 Conclusion

In conclusion, given that the CMJ and IMTP tests demonstrated
high reliability and sensitivity following CPET in a heterogeneous
sample of athletes, they could be confidently used as practical
tools for monitoring neuromuscular fatigue and recovery, even
after exhaustive cardiopulmonary exertion activities (e.g., bycycle
or running races, football or basketball matches, etc.). Furthermore,
their stability and robustness under fatigue enhance their value
in return-to-play protocols and sports science research, where
valid, reproducible data are essential despite physiological stress.
Their high reliability and discriminative validity support their
use across sexes and diverse athlete populations for consistent
performance diagnostics and longitudinal monitoring. Moreover,
the findings reinforce the relevance of CMJ and IMTP as reliable,
sensitive, and broadly applicable measures in both applied and
research settings.
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