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Objective: To systematically analyze the current application status of 
artificial intelligence (AI) in risk assessment and management of venous 
thromboembolism (VTE), evaluate the predictive performance of AI models 
and identify key risk factors, thereby providing evidence-based references for 
optimizing clinical VTE prevention and treatment strategies.
Methods: A scoping review framework was used. We searched for literature 
in both Chinese (CNKI, Wanfang, CBM) and English databases (PubMed, Web 
of Science, Embase, CINAHL, and The Cochrane Library) to find studies on AI 
applications in VTE risk assessment, covering the time from when the databases 
started until 10 March 2025. By creating research questions, reviewing the 
literature, gathering data, and summarizing the results, we organized various 
AI models, assessed how accurately they predicted outcomes, and looked at 
important risk factors.
Results: This review included a total of 23 studies. AI models showed 
better accuracy in predicting VTE risk, with AUC values between 0.740 and 
0.990, greatly surpassing traditional scoring tools. Key risk factors identified 
included patient-related factors, disease-related factors, treatment-related 
factors, laboratory indicators, and catheter-related factors.
Conclusion: AI technology shows remarkable advantages in VTE risk assessment 
by integrating multi-source data to achieve dynamic and personalized 
prediction. Future research should aim to conduct studies across multiple 
centers to confirm how useful these models are in real-life situations and also 
look into combining real-time monitoring data with AI to enhance the accuracy 
of preventing and treating VTE, which will help lower the number of cases and 
improve patient results.
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1 Introduction

Venous Thromboembolism (VTE), which includes deep 
vein thrombosis (DVT) and pulmonary embolism (PE), is a 
prevalent vascular disorder that is associated with significant 
morbidity, mortality, and healthcare burden (Henke et al., 
2020). Globally, approximately 10 million cases of VTE occur 
annually (Global Burden of VTE, 2023), with a steadily rising 
incidence—particularly among hospitalized patients, surgical 
populations, and cancer patients, who face significantly elevated 
risks. As reported by the World Health Organization (WHO), VTE 
ranks as the third leading cause of cardiovascular mortality, claiming 
over 1 million lives yearly (Porfidia et al., 2020). Without timely 
intervention, VTE may progress to chronic complications such as 
post-thrombotic syndrome and chronic pulmonary hypertension, 
severely impairing patients’ quality of life (Zhai et al., 2019). Early 
detection, accurate risk prediction, and prompt intervention are 
thus critical to mitigating the disease burden. Current standard 
risk assessment tools, such as the Caprini and Padua scores, 
while valuable, exhibit several inherent limitations that constrain 
their predictive performance and clinical utility. These models 
predominantly rely on a limited set of static, clinically apparent 
variables, often captured at a single time point. This approach fails 
to capture the dynamic evolution of patient risk throughout the care 
continuum, integrates poorly with electronic health record (EHR) 
systems for real-time calculation, and cannot effectively synthesize 
complex, non-linear interactions among multifactorial risks or 
leverage unstructured data from clinical notes. Consequently, their 
predictive accuracy remains modest (AUC: 0.60–0.75), leading to 
both over-prophylaxis in low-risk patients and under-prophylaxis 
in high-risk individuals, which contributes to the persistent burden 
of VTE-related complications (Stevens et al., 2022).

Faced with these challenges, there is a pressing need to explore 
novel methodologies to overcome the limitations of traditional 
scoring tools. In this context, artificial Intelligence (AI) has 
emerged as a transformative technology with significant potential 
in medical risk assessment (Zhou, 2023; Haug and Drazen, 
2023). In contrast to conventional scoring systems, AI leverages 
machine learning (ML) and deep learning (DL) algorithms to 
overcome these limitations, representing a paradigm shift in the 
field (Rajkomar et al., 2019). AI algorithms can dynamically 
process high-dimensional, multi-source data—including structured 
electronic health record (EHR) fields, longitudinal laboratory 
parameters, and unstructured imaging and clinical narratives—to 
identify complex, latent patterns, thereby enabling personalized 
and dynamic prediction. Currently, AI models such as random 
forests, gradient boosting decision trees, and neural networks have 
been preliminarily validated in predicting outcomes related to 
cardiovascular diseases, sepsis, and cancer. For example, AI-based 
tools have been successfully developed to predict stroke risk in 
patients with atrial fibrillation, major adverse cardiovascular events 
after acute coronary syndrome, and cancer-associated thrombosis 
events. These models generally demonstrate superior predictive 
performance (as measured by AUC values) compared to traditional 
clinical scoring rules (Deo, 2015; You et al., 2023; Gaviria-
Valencia et al., 2023). The success of AI in these domains provides a 
robust methodological foundation and promising prospects for the 
application of AI in VTE risk assessment. As such, AI technology 

offers a novel pathway to overcome the limitations of traditional 
VTE evaluation. Nevertheless, the development of AI applications 
specifically for VTE risk assessment has progressed relatively slowly 
and faces unique challenges. The construction of powerful AI 
models is hindered by significant data-related obstacles, including 
heterogeneity in VTE data collection and annotation across 
institutions, the high-dimensional and often incomplete nature of 
real-world clinical datasets, and the inherent complexity in defining 
and labeling VTE outcomes for model training. Therefore, although 
existing AI research in VTE has primarily focused on diagnostic 
image analysis or treatment outcome prediction, efforts dedicated 
to developing and validating AI-driven risk assessment tools remain 
in their nascent stages (Yang et al., 2023; Vollmer et al., 2020).

This study aims to conduct a scoping review to systematically 
map the current landscape of AI applications in venous VTE risk 
assessment. Specifically, we will evaluate the predictive performance 
of emerging AI models in comparison to traditional risk scores, 
identify key predictive features utilized by these algorithms, and 
critically appraise the methodological rigor and clinical readiness 
of the existing evidence. Furthermore, this review will elucidate the 
transformative potential of AI, assess its advantages and challenges 
in VTE risk prediction, and provide guidance for future research. 
Ultimately, this work is expected to contribute to optimized VTE 
prevention and treatment strategies, reduce the incidence of VTE-
related complications, alleviate the disease burden, and improve 
patient outcomes. 

2 Materials and methods

2.1 Defining the research question

After preliminary literature screening, the research question 
was formulated as follows: The study aimed to conduct a scoping 
review on the application and management of artificial intelligence 
in risk assessment for venous thromboembolism (VTE) in both 
domestic and international contexts. The key components were defined 
using the PICO-S framework: P (Population): Patients with venous 
thromboembolism. I (Intervention): Risk assessment tools, including 
Random Forest models, XGBoost models, deep learning models, 
natural language processing (NLP), etc. C (Comparison): Traditional 
risk assessment scales such as the Caprini score and Padua score. 
O (Outcome): Outcome measures include the area under the curve 
(AUC), sensitivity, specificity, etc. S (Study design): Study types such as 
retrospective cohort studies, prospective cohort studies, randomized 
controlled trials (RCTs), systematic reviews, and meta-analyses. 

2.2 Literature search

A comprehensive search was conducted using a combination of 
subject headings and keywords in the following databases: CNKI, 
Wanfang, CBM, PubMed, Web of Science, Embase, CINAHL, 
and the Cochrane Library. The search encompassed all published 
studies on the application of artificial intelligence in venous 
thromboembolism (VTE) risk assessment, with a time frame from 
database inception to 10 March 2025. For Chinese databases 
(like CNKI), the search method was (Artificial Intelligence OR 
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FIGURE 1
PubMed retrieval strategy.

Large Language Model OR AI) AND (Venous Thromboembolism 
OR Deep Vein Thrombosis OR Pulmonary Thromboembolism 
OR VTE OR DVT OR PTE OR PE) AND (Risk Assessment 
OR Associated Risk OR Related Factors OR Risk Factors OR 
Predictive Factors). We used a combination of MeSH terms 
and free-text keywords for English databases like PubMed, to 
ensure comprehensive retrieval and precision of the literature, we 
supplemented our search by manually reviewing the reference lists 
of all included studies. Figure 1 presents the detailed search strategy.

2.3 Inclusion and exclusion criteria

2.3.1 Literature inclusion criteria
(1) The objective was to explore the application of artificial 

intelligence in the risk assessment of venous thromboembolism; (2) 
The study population was VTE patients, aged ≥18 years; (3) There 
is no limit to the type of research; (4) Articles published in Chinese 
or English. 

2.3.2 Literature exclusion criteria
(1) Duplicate publications; (2) Documents with incomplete data 

or unable to obtain the full text; (3) The language of the document 
is not Chinese or English; (4) Non venous thrombosis-related 
literature. 

2.4 Literature extraction

EndNote20.0 software was used to eliminate the duplicate of 
the imported literature, Prior to the formal screening process, a 
standardized data extraction form was developed based on the 
predetermined inclusion and exclusion criteria. To ensure accuracy 
and consistency in the extraction process, a pilot test was conducted 
using this form. Two researchers independently performed trial 
extractions on five randomly selected articles. Their results were 
then compared, and any discrepancies in the understanding or 
application of the extraction items were discussed. Through iterative 
calibration of the definitions and criteria, a consensus was reached, 
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resulting in a finalized version of the standardized form for use in 
the formal data extraction. After the first round of title and abstract 
screening, the literature that did not meet the inclusion criteria 
was excluded, exclusion criteria included mismatches between the 
research focus and the study’s subject matter, incomplete data, and 
unavailability of full-text articles. Two researchers independently 
screened and extracted the remaining literature using two rounds 
of full-text reading, based on the inclusion and exclusion criteria: 
The first phase focused on capturing general study characteristics, 
including the first author, publication year, country of origin, study 
design, type of AI model utilized, study population, and sample 
size. The second phase involved extracting key data directly relevant 
to the research objectives, which encompassed model performance 
metrics on the test/validation sets—such as the area under the curve 
(AUC) with 95% confidence intervals, sensitivity, and specificity—as 
well as significant VTE risk factors identified in the studies. At 
the final full-text screening stage for inclusion, inter-rater reliability 
was assessed, yielding a Cohen’s Kappa coefficient of 0.84, which 
indicates an almost perfect level of agreement between the two 
independent researchers. If the two researchers disagree, the third 
researcher will arbitrate, and a consensus will be reached after 
the third round of discussion. Finally, the data of the included 
literatures were summarized by standardized tables (see Table 1), 
and the extracted contents include basic information: author, 
publication year, tool type, and artificial intelligence technology; 
Clinical characteristics: application population and main evaluation 
contents; Model effectiveness: test set AUC, validation set AUC, 
sensitivity, and specificity.

3 Result

3.1 Literature extraction

The retrieval strategy found 3,318 pieces of Chinese and English 
literature and their abstracts at first; after using EndNote 20.0 
software to remove duplicates, 2,734 remained. Then, 2,734 were 
chosen by reading titles and abstracts, 55 were excluded for not 
meeting the criteria, 32 were removed after reading the full text, and 
in the end, 23 were selected (Wang et al., 2020; Nudel et al., 2021; 
高远 and 李建涛, 2021; Wang et al., 2021; Liu et al., 2021; Ryan et al., 
2021; Park et al., 2021; Jin et al., 2022; Li et al., 2022; Wang X. et al., 
2023; Chiasakul et al., 2023; Nassour et al., 2024; Guan et al., 2023; 
Jin et al., 2023; Franco-Moreno et al., 2023; Hou et al., 2023; Wu et al., 
2024; Anghele et al., 2024; Lin et al., 2024; Liu et al., 2024; Wei et al., 
2024; Hu et al., 2025; Liu et al., 2025). The specific screening process 
is shown in Figure 2.

3.2 Basic characteristics of included 
literature

Among the 23 literature included in the study, 1 was in Chinese 
(高远 and 李建涛, 2021), and 22 were in English (Wang et al., 
2020; Nudel et al., 2021; Wang et al., 2021; Liu et al., 2021; 
Ryan et al., 2021; Park et al., 2021; Jin et al., 2022; Li et al., 2022; 
Wang X. et al., 2023; Chiasakul et al., 2023; Nassour et al., 2024; 
Guan et al., 2023; Jin et al., 2023; Franco-Moreno et al., 2023; 

Hou et al., 2023; Wu et al., 2024; Anghele et al., 2024; Lin et al., 2024; 
Liu et al., 2024; Wei et al., 2024; Hu et al., 2025; Liu et al., 2025). 
The tools used for predictions include various artificial intelligence 
technologies, such as 10 random forest models, 5 gradient boosting 
decision trees, 2 natural language processing tools, 2 integrated 
models, 1 artificial neural network, 1 support vector machine, 1 
linear discriminant analysis, and 1 generalized linear model. The 
subjects were hospitalized patients (n = 16), cancer patients (n = 2), 
orthopedic patients (n = 2), surgical patients (n = 1), stroke patients 
(n = 1), and trauma patients (n = 1). The main research designs were 
cohort study (n = 17), meta-analysis (n = 2), randomized controlled 
study (n = 2), case-control study (n = 1), and prospective study 
(n = 1). 

3.3 Evaluation of risk factors and reliability 
and validity indicators included in the 
literature

See Tables 1, 2, Figures 3, 4.

4 Discussion

4.1 There are various types of risk 
assessment models of artificial intelligence 
in venous thrombosis, but most models 
lack external validation and critical 
appraisal

At present, the research on AI technology for evaluating VTE 
with AI models is gradually increasing, including random forests 
model, gradient lifting decision trees, natural language processing, 
integrated model, artificial neural network, support vector machine 
model, linear discriminant analysis, and generalized linear models. 
Among the 23 studies included in this study, the predictive 
performance was evaluated, but 7 studies were not externally 
verified. The AUC of the test set ranged from 0.773 to 0.990 (高远 
and 李建涛, 2021; Park et al., 2021; Jin et al., 2022; Nassour et al., 
2024; Anghele et al., 2024; Lin et al., 2024; Wei et al., 2024). At 
present, relevant studies have externally verified some prediction 
tools to determine the clinical applicability of AI prediction model. 
Among the 23 prediction models, 16 models were developed and 
validated. The AUC range of the test set was 0.740–0.970, and the 
AUC range of the validation set was 0.740–0.980 (Wang et al., 2020; 
Nudel et al., 2021; Wang et al., 2021; Liu et al., 2021; Ryan et al., 2021; 
Li et al., 2022; Wang X. et al., 2023; Chiasakul et al., 2023; Guan et al., 
2023; Jin et al., 2023; Franco-Moreno et al., 2023; Hou et al., 2023; 
Wu et al., 2024; Liu et al., 2024; Hu et al., 2025; Liu et al., 2025). 

4.2 Technical characteristics, application 
variations, and clinical translation 
challenges of AI models

Different AI methods exhibit distinct characteristic differences 
and applicable scenarios when handling VTE risk prediction. 
Tree-based models such as random forests and gradient boosting 
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TABLE 1  Evaluation of risk factors and reliability and validity indicators of included literature.

Developer Tool type AI 
technology

Clinical 
application 
population

Main 
assessment 
contents

Test set 
AUC∗

Validation 
set AUC#

Sensitivity Specificity

Wang et al. 
(2020)

Prediction 
model

Random forest 
model

376 inpatients 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 11

0.856 (95% CI: 
0.807–0.905)

0.782 (95% CI: 
0.807–0.905)

0.733∗

0.595#
0.800∗

0.865#

Nudel et al. 
(2021)

Prediction 
model

Gradient 
lifting decision 

tree

436,807 
patients 

undergoing 
bariatric 
surgery

1, 2, 3, 6, 12, 
13, 14

0.670 (95% CI: 
0.64–0.69)

0.660 (95% CI: 
0.64–0.69)

0.711∗

0.595#
0.722∗

0.832#

高远 and 
李建涛 (2021)

Prediction 
model

Random forest 
model

15,856 
orthopedic 

patients

4, 14, 15, 16 0.890 - 0.290∗ 0.970∗

Wang et al. 
(2021)

Prediction 
model

natural 
language 

processing

51,383 
inpatients

2, 12, 16 0.970 (95% CI: 
0.95–0.98)

0.980 (95% CI: 
0.97–0.99)

0.890∗

0.870#
0.970∗

0.960#

Liu et al. 
(2021)

Prediction 
model

Support vector 
machine 
model

573 inpatients 4, 16, 17 0.904 (95% CI: 
0.87–0.94)

0.875 (95% CI: 
0.804–0.944)

0.590∗

0.590#
0.990∗

0.990#

Ryan et al. 
(2021)

Prediction 
model

Gradient 
lifting decision 

tree

99,237 
inpatients

4, 6, 16 0.830 (95% CI: 
0.81–0.85)

0.850 (95% CI: 
0.83–0.87)

0.800∗

0.800#
0.660∗

0.750#

Park et al. 
(2021)

Prediction 
model

Random forest 
model

92,481 
inpatients

2, 6, 10, 14, 18, 
19, 20

0.840 - 0.740∗ 0.800∗

Jin et al. (2022) Prediction 
model

Linear 
discriminant 

analysis

231 inpatients 2, 4, 16, 18, 20 0.773 (95% CI: 
0.722–0.818)

- 0.754∗ 0.660∗

Li et al. (2022) Prediction 
model

Generalized 
linear model

338 inpatients 2, 16 0.839 (95% CI: 
0.794–0.884)

0.826 (95% CI: 
0.755–0.897)

0.733∗

0.708#
0.828∗

0.863#

Wang et al. 
(2023a)

Prediction 
model

Integrated 
model①

6,987 
inpatients

2, 3, 4, 6, 10, 
12, 14, 16

0.920 (95% CI: 
0.895–0.936)

0.920 (95% CI: 
0.895–0.936)

0.802∗

0.802#
0.905∗

0.905#

Chiasakul et al. 
(2023)

Prediction 
model

Integrated 
model①

249,111 
inpatients

2, 3, 4, 6, 10, 
12, 16

0.860 (95% CI: 
0.81–0.91)

0.830 (95% CI: 
0.78–0.88)

0.880∗

0.850#
0.850∗

0.800#

Nassour et al. 
(2024)

Prediction 
model

Random forest 
model

479 inpatients 1, 2, 3, 6, 10, 
12, 14, 18

0.900 - 0.900∗ 0.760∗

Guan et al. 
(2023)

Prediction 
model

Random forest 
model

1,647 
inpatients

2, 3, 4, 6, 8, 9, 
12, 16, 17

0.937 0.937 0.779∗

0.779#
0.998∗

0.998#

Jin et al. (2023) Prediction 
model

Natural 
language 

processing

30,152 
inpatients

1, 2, 3, 4, 6, 10, 
12, 14, 16, 21

0.950 (95% CI: 
0.94–0.96)

0.950 (95% CI: 
0.94–0.96)

0.899∗

0.899#
0.998∗

0.998#

Franco-
Moreno et al. 

(2023)

Prediction 
model

Gradient 
lifting decision 

tree

12,249 cancer 
patients

3, 4, 5, 6, 11, 
16, 18

0.970 0.830 0.750∗

0.770#
0.880∗

0.930#

Hou et al. 
(2023)

Prediction 
model

Artificial 
neural network

801 inpatients 1, 4, 5, 6, 10, 
14, 16, 17

0.970 (95% CI: 
0.92–0.99)

0.960 (95% CI: 
0.92–0.99)

0.920∗

0.920#
0.960∗

0.960#

Wu et al. 
(2024)

Prediction 
model

Random forest 
model

650 inpatients 2, 3, 16 0.760 (95% CI: 
0.69–0.84)

0.760 (95% CI: 
0.69–0.84)

0.666∗

0.666#
0.876∗

0.876#

Anghele et al. 
(2024)

Prediction 
model

Random forest 
model

299 inpatients 2, 3, 4, 6, 10, 
12, 16, 18

0.990 - 0.970∗ 0.920∗

(Continued on the following page)
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TABLE 1  (Continued) Evaluation of risk factors and reliability and validity indicators of included literature.

Developer Tool type AI 
technology

Clinical 
application 
population

Main 
assessment 
contents

Test set 
AUC∗

Validation 
set AUC#

Sensitivity Specificity

Lin et al. 
(2024)

Prediction 
model

Gradient 
lifting decision 

tree

1,087 
inpatients

2, 4, 6, 8, 10, 18 0.950 - 1.000∗ 0.890∗

Liu et al. 
(2024)

Prediction 
model

Random forest 
model

620 stroke 
patients

1, 2, 5, 6, 12, 16 0.740 0.730 0.780∗

0.800#
0.920∗

0.920#

Wei et al. 
(2024)

Prediction 
model

Gradient 
lifting decision 

tree

2,434 cases of 
fracture 
patients

2, 3, 6, 10, 12, 
18

0.970 - 0.956∗ 0.911∗

Hu et al. 
(2025)

Prediction 
model

Random forest 
model

4,738 patients 
with colorectal 

cancer

2, 3, 4, 5, 6, 10, 
11, 12, 16, 18

0.890 0.740 0.615∗

0.615#
0.888∗

0.740#

Liu et al. 
(2025)

Prediction 
model

Random forest 
model

3,116 trauma 
patients

2, 3, 8, 9, 10, 16 0.870 (95% CI: 
0.85–0.90)

0.830 (95% CI: 
0.79–0.86)

0.956∗

0.821
0.687∗

0.756#

① The integrated model includes gradient lifting decision tree, random forest, support vector machine and logistic regression. 1 = smoking history, 2 = age ≥70, 3 = obesity (BMI ≥30 kg/m2), 4 = 
history of venous thrombosis, 5 = decreased activity, 6 = high-risk disease factors (hypertension, coronary heart disease, diabetes, inflammatory bowel disease, varicose veins, thrombotic disease, 
cardiopulmonary disease, cancer, acute infection or rheumatic disease, acute myocardial infarction, ischemic stroke), 7 = hormone therapy, 8 = blood transfusion, 9 = mechanical ventilation, 10 = 
surgery history, 11 = chemotherapy, 12 = gender, 13 = race, 14 = anticoagulant therapy, 15 = blood glucose, 16 = laboratory indicators (D-dimer, fibrinogen, prothrombin time, international 
standards biochemical ratio, white blood cell count, and C-reactive protein)are included, 17 = central venous catheter (CVC) or peripherally inserted central venous catheter (PICC), 18 = length of 
hospital stay, 19 = diagnostic radiology, 20 = Charlson complication index, 21 = contraceptive use.

FIGURE 2
Flow chart of literature screening.
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TABLE 2  Classification of risk factors included in the literature.

Risk factor Main assessment contents Related literature

Patient factors

1 = Smoking history Wang et al. (Wang et al., 2020); Nudel et al. (Nudel et al., 
2021); Nassour et al. (Nassour et al., 2024); Jin et al. 
(Jin et al., 2023); Hou et al. (Hou et al., 2023); Liu et al. 
(Liu et al., 2024)

2 = Age ≥70 Wang et al. (Wang et al., 2020); Nudel et al. (Nudel et al., 
2021); Wang et al. (Wang et al., 2021); Jung et al. (Park et al., 
2021); Jin et al. (Jin et al., 2022); Li et al. (Li et al., 2022); 
Wang et al. (Wang et al., 2023a); Chiasakul et al. 
(Chiasakul et al., 2023); Nassour et al. (Nassour et al., 2024); 
Guan et al. (Guan et al., 2023); Jin et al. (Jin et al., 2023); Wu 
et al. (Wu et al., 2024); Anghele et al. (Anghele et al., 2024); 
Lin et al. (Lin et al., 2024); Liu et al. (Liu et al., 2024); Wei 
et al. (Wei et al., 2024); Hu et al. (Hu et al., 2025); Liu et al. 
(Liu et al., 2025)

3 = Obesity (BMI ≥30 kg/m2) Wang et al. (Wang et al., 2020); Nudel et al. (Nudel et al., 
2021); Wang et al. (Wang et al., 2023a); Chiasakul et al. 
(Chiasakul et al., 2023); Nassour et al. (Nassour et al., 2024); 
Guan et al. (Guan et al., 2023); Jin et al. (Jin et al., 2023); 
Moreno et al. (Franco-Moreno et al., 2023); Wu et al. 
(Wu et al., 2024); Anghele et al. (Anghele et al., 2024); Wei 
et al. (Wei et al., 2024); Hu et al. (Hu et al., 2025); Liu et al. 
(Liu et al., 2025)

5 = Decreased mobility Wang et al. (Wang et al., 2020); Moreno et al. 
(Franco-Moreno et al., 2023); Hou et al. (Hou et al., 2023); 
Liu et al. (Liu et al., 2024); Hu et al. (Hu et al., 2025)

12 = Gender Nudel et al. (Nudel et al., 2021); Wang et al. (Wang et al., 
2021); Wang et al. (Wang et al., 2023a); Chiasakul et al. 
(Chiasakul et al., 2023); Nassour et al. (Nassour et al., 2024); 
Guan et al. (Guan et al., 2023); Jin et al. (Jin et al., 2023); 
Anghele et al. (Anghele et al., 2024); Liu et al. (Liu et al., 
2024); Wei et al. (Wei et al., 2024); Hu et al. (Hu et al., 2025)

13 = Race Nudel et al. (Nudel et al., 2021)

Disease factors

4 = History of venous thrombosis Wang et al. (Wang et al., 2020); Gao et al. (高远 and 李建涛, 
2021); Liu et al. (Liu et al., 2021); Ryan et al. (Ryan et al., 
2021); Jin et al. (Jin et al., 2022); Wang et al. (Wang et al., 
2023a); Chiasakul et al. (Chiasakul et al., 2023); Guan et al. 
(Guan et al., 2023); Jin et al. (Jin et al., 2023); Moreno et al. 
(Franco-Moreno et al., 2023); Hou et al. (Hou et al., 2023); 
Anghele et al. (Anghele et al., 2024); Lin et al. (Lin et al., 
2024); Hu et al. (Hu et al., 2025)

6 = High risk disease factors Wang et al. (Wang et al., 2020); Nudel et al. (Nudel et al., 
2021); Ryan et al. (Ryan et al., 2021); Jung et al. (Park et al., 
2021); Wang et al. (Wang et al., 2023a); Chiasakul et al. 
(Chiasakul et al., 2023); Nassour et al. (Nassour et al., 2024); 
Guan et al. (Guan et al., 2023); Jin et al. (Jin et al., 2023); 
Moreno et al. (Franco-Moreno et al., 2023); Hou et al. 
(Hou et al., 2023); Anghele et al. (Anghele et al., 2024); Lin 
et al. (Lin et al., 2024); Liu et al. (Liu et al., 2024); Wei et al. 
(Wei et al., 2024); Hu et al. (Hu et al., 2025)

(Continued on the following page)
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TABLE 2  (Continued) Classification of risk factors included in the literature.

Risk factor Main assessment contents Related literature

18 = Length of stay Jung et al. (Park et al., 2021); Jin et al. (Jin et al., 2022); 
Nassour et al. (Nassour et al., 2024); Moreno et al. 
(Franco-Moreno et al., 2023); Anghele et al. 
(Anghele et al., 2024); Lin et al. (Lin et al., 2024); Wei 
et al. (Wei et al., 2024); Hu et al. (Hu et al., 2025)

20 = Charlson comorbidity index Jung et al. (Park et al., 2021); Jin et al. (Jin et al., 2022)

Therapeutic factors

7 = Hormone therapy Wang et al. (Wang et al., 2020)

8 = Blood transfusion Wang et al. (Wang et al., 2020); Guan et al. 
(Guan et al., 2023); Lin et al. (Lin et al., 2024); Liu et al. 
(Liu et al., 2025)

9 = Mechanical ventilation Wang et al. (Wang et al., 2020); Guan et al. 
(Guan et al., 2023); Liu et al. (Liu et al., 2025)

10 = Surgical history Wang et al. (Wang et al., 2020); Jung et al. (Park et al., 
2021); Wang et al. (Wang et al., 2023a); Chiasakul et al. 
(Chiasakul et al., 2023); Nassour et al. (Nassour et al., 
2024); Jin et al. (Jin et al., 2023); Hou et al. (Hou et al., 
2023); Anghele et al. (Anghele et al., 2024); Wei et al. 
(Wei et al., 2024); Hu et al. (Hu et al., 2025); Liu et al. 
(Liu et al., 2025)

11 = Chemotherapy Wang et al. (Wang et al., 2020); Moreno et al. 
(Franco-Moreno et al., 2023); Hu et al. (Hu et al., 2025)

14 = Anticoagulant therapy Nudel et al. (Nudel et al., 2021); Gao et al. (高远 and 
李建涛, 2021); Jung et al. (Park et al., 2021); Wang 
et al. (Wang et al., 2023a); Nassour et al. 
(Nassour et al., 2024); Jin et al. (Jin et al., 2023); Hou 
et al. (Hou et al., 2023)

19 = Diagnostic radiology examination Jung et al. (Park et al., 2021)

21 = Contraceptive use Jin et al. (Jin et al., 2023)

Clinical index factors

15 = Blood sugar Gao et al. (高远 and 李建涛, 2021)

16 = Laboratory indicators Gao et al. (高远 and 李建涛, 2021); Wang et al. 
(Wang et al., 2021); Liu et al. (Liu et al., 2021); Jin et al. 
(Jin et al., 2022); Li et al. (Li et al., 2022); Wang et al. 
(Wang et al., 2023a); Chiasakul et al. (Chiasakul et al., 
2023); Guan et al. (Guan et al., 2023); Jin et al. 
(Jin et al., 2023); Moreno et al. (Franco-Moreno et al., 
2023); Hou et al. (Hou et al., 2023); Wu et al. 
(Wu et al., 2024); Anghele et al. (Anghele et al., 2024); 
Liu et al. (Liu et al., 2024); Hu et al. (Hu et al., 2025); 
Liu et al. (Liu et al., 2025)

Catheter factor 17 = CVC or PICC catheterization Liu et al. (Liu et al., 2021); Ryan et al. (Ryan et al., 
2021); Guan et al. (Guan et al., 2023); Hou et al. 
(Hou et al., 2023)

decision trees excel in capturing complex nonlinear relationships 
and feature interactions, making them particularly suitable for 
high-dimensional clinical data; however, they suffer from poor 
model interpretability. All ten studies employing random forests 
in this research reported high predictive performance (AUC 
>0.85), yet their “black-box” nature limits clinicians’ understanding 
and trust in the predictions. Natural language processing (NLP) 

techniques can extract key information from unstructured 
electronic medical record text. For example, Wang et al. (2021) 
achieved an AUC of 0.970 using an NLP model, highlighting its 
unique advantage in mining the value of clinical notes, although its 
performance is highly dependent on corpus quality and annotation 
consistency. Linear models such as support vector machines (SVM) 
and linear discriminant analysis (LDA), while offering strong 
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FIGURE 3
Design types and AI model distribution matrix included in the study.

FIGURE 4
Distribution of risk factors included in the study.

interpretability and high computational efficiency, lack the flexibility 
to recognize complex data patterns. For instance, the SVM model 
adopted by Liu et al. (2021) achieved an AUC of 0.904 but required 
extensive feature engineering.

It is noteworthy that significant differences also exist among AI 
methods in feature selection and model generalizability. Tree models 

typically possess built-in feature importance evaluation functions, 
enabling automatic identification of key risk factors, but are prone 
to overfitting the training data. Although ensemble models improve 
predictive stability by combining multiple base learners, this comes 
at the cost of increased model complexity and computational 
resource demands. Furthermore, existing studies generally lack 
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validation of models’ cross-institutional generalizability. Only a few 
studies (Nudel et al., 2021; Ryan et al., 2021; Guan et al., 2023) used 
multi-center data for external validation, while data standardization 
issues (such as differences in laboratory measure units, inconsistent 
diagnostic codes, etc.) remain critical obstacles affecting model 
transferability.

At the level of clinical feasibility and practical implementation, 
the application of AI models faces numerous challenges. Firstly, 
insufficient model interpretability affects clinical adoption, as 
physicians struggle to understand the decision-making basis of 
“black-box” models. Secondly, real-time prediction requires deep 
integration with existing EMR systems, involving a series of 
practical issues such as data interfaces, computational efficiency, 
and modifications to user workflows. Additionally, no consensus 
framework has yet been formed for the regulatory approval and 
ethical considerations of AI models in clinical practice.

Therefore, future research should not solely focus on improving 
model predictive accuracy but should pay more attention to the 
clinical translation pathway of AI models. It is recommended 
to prioritize the development of highly interpretable models that 
can seamlessly integrate into clinical decision-making workflows. 
Simultaneously, multi-center collaboration should be strengthened 
to establish standardized VTE data collection and model validation 
protocols, and to actively explore model deployment and regulatory 
solutions that comply with healthcare industry standards. 

4.3 Analysis of risk factors of artificial 
intelligence in venous thrombosis

AI models integrated multi-dimensional risk factors, 
encompassing five major categories: patient factors, disease factors, 
treatment factors, laboratory indicators, and catheter-related factors. 
Factors that appeared frequently (reported in ≥10 studies) included: 
age ≥70 years, obesity (BMI ≥30 kg/m2), gender, history of VTE, 
high-risk comorbidities, surgical history, and abnormal laboratory 
indicators. These factors were consistently identified as important 
predictive variables across multiple models, demonstrating strong 
evidence consistency. 

4.3.1 Comprehensive assessment of 
patient-related factors is fundamental for 
reducing the risk of venous thrombosis

① Smoking significantly increases the risk of VTE through 
mechanisms involving vascular endothelial injury, activation of 
inflammatory responses, and a hypercoagulable state (Wang et al., 
2020; Catella et al., 2022). The AI model developed by 
De Pooter et al. (2021) demonstrated that a history of smoking 
significantly enhanced the predictive accuracy for VTE (AUC 
= 0.856), while Nudel et al. (2021) found that smokers faced a 
50%–100% higher risk of VTE compared to non-smokers. These 
findings suggest that clinical practice should more systematically 
evaluate the impact of smoking on VTE, particularly in high-risk 
populations, by strengthening smoking cessation interventions to 
reduce the disease burden associated with smoking-related VTE. 
② Age ≥70 years is an independent risk factor for VTE, with 
its mechanism linked to declining vascular endothelial function 
and venous stasis (Righini et al., 2014). The random forest model 

by Wang et al. (2021) indicated a significant weight for this 
factor (AUC = 0.970), and Park et al. (2021) observed that the 
incidence of VTE in elderly patients was 2–3 times higher than 
in younger populations. There is a clinical need to implement 
intensified VTE prevention strategies for elderly patients, and future 
research could explore AI-driven risk stratification models that 
incorporate aging-related biomarkers. ③ Obesity (BMI ≥30 kg/m2) 
elevates VTE risk by promoting a chronic inflammatory state, 
hypercoagulability, and hemodynamic changes (Chen et al., 2022; 
Goffi et al., 2025). The study by Gao et al. (高远 and 李建涛, 2021) 
showed that obesity increased the risk of VTE by 2.5 times (AUC 
= 0.890), and Nudel et al. (2021) identified BMI ≥30 kg/m2 as a 
core predictive factor in their bariatric surgery cohort. Clinicians 
should pay special attention to VTE prevention in obese patients, 
applying mechanical and pharmacological prophylactic measures 
appropriately. ④ Decreased mobility leads to impaired muscle 
pump function and venous stasis, significantly increasing the risk 
of VTE (Chatterjee et al., 2021; Nayak et al., 2024). A study by 
Wang et al. (2020) showed that individuals with restricted mobility 
had a 3.2-fold higher risk of VTE, while Franco-Moreno et al. 
(2023) demonstrated a dose-dependent relationship between bed 
rest duration and DVT incidence (OR = 1.8, 95% CI 1.2–2.7). 
Therefore, early mobility interventions should be emphasized, and 
optimal activity protocols for different patient populations need to 
be explored. ⑤ Gender differences play a significant role in VTE 
risk. Women of reproductive age face elevated risk due to estrogen 
effects, while older men exhibit high risk due to the accumulation 
of risk factors (Schapkaitz et al., 2023; Giustozzi et al., 2021). 
Nudel et al. (2021) identified male sex as an independent predictor 
(OR = 1.4), and Wang et al. (2021) incorporated gender as a core 
variable in their natural language processing model (AUC = 0.970). 
Clinical risk assessment should account for gender differences, 
and future efforts should focus on developing gender-specific 
prediction models. ⑥ Racial disparities are associated with genetic 
predisposition, inflammatory status, and medical interventions. 
Although African populations have a lower prevalence of inherited 
thrombophilia, they exhibit a higher risk of VTE (Saber et al., 2022). 
Nudel et al. (2021) found that African American patients had a 1.3-
fold increased risk (OR = 1.3), and Wang X. et al. (2023) validated 
race as an independent predictive variable using an integrated 
model (AUC = 0.920). Future research should further explore gene-
environment interactions related to race and uncover underlying 
biological mechanisms through the integration of multi-omics data 
and AI modeling. 

4.3.2 Effective management of high-risk diseases 
is central to reducing the risk of venous 
thrombosis

① A history of venous thromboembolism (VTE) is the strongest 
independent risk factor for VTE recurrence. The mechanisms 
involve a persistent hypercoagulable state, abnormal repair following 
vascular endothelial injury, and the procoagulant effect of residual 
thrombosis (Simon et al., 2023). A study by Gao et al. (高远 and 
李建涛, 2021) in orthopedics showed that this history increases 
VTE risk by 4.8-fold (AUC = 0.890), while Wang X. et al. 
(2023) identified it as the highest-weight predictor in their 
integrated model (AUC = 0.920). Consequently, long-term risk 
management—including extended anticoagulation therapy and 
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regular monitoring of relevant indicators—is essential for patients 
with a prior VTE event (Simon et al., 2023). ② High-risk diseases 
synergistically increase VTE risk through multiple mechanisms: 
metabolic diseases cause endothelial glycation injury, cardiovascular 
disorders lead to abnormal blood flow, inflammatory conditions 
activate coagulation factors via cytokines, and malignancies directly 
release procoagulant substances (Charlier et al., 2022; Egbe et al., 
2018; Patiño-Trives et al., 2021). Wang et al. (2021) confirmed that 
the presence of ≥2 high-risk diseases elevates VTE risk by 4.3 times 
(AUC = 0.856), a correlation further validated by Chiasakul et al. 
(2023) and Wei et al. (2024). In clinical practice, it is crucial 
to establish disease-specific risk assessment systems and develop 
targeted prevention strategies for specific disease combinations to 
optimize individualized VTE management in high-risk patients. ③ 
Prolonged hospital stay is significantly associated with increased 
VTE risk, which is attributed to reduced mobility, impaired muscle 
pump function, and venous stasis in the lower limbs (Tøndel et al., 
2022). Park et al. (2021) found that for every 5-day increase in 
hospitalization, VTE risk rises by 1.8-fold—a conclusion supported 
by Nassour et al. (2024) (AUC = 0.900) and Liu et al. (2025) 
(OR = 2.1). Future research should focus on developing dynamic 
risk assessment systems based on real-time monitoring data and 
integrating them with electronic health records to enable automated 
alerts. ④ The Charlson Comorbidity Index (CCI), which reflects 
comorbidity burden, shows a significant correlation with VTE 
risk. The underlying mechanisms involve systemic inflammation, 
activation of a procoagulant state, and the impact of polypharmacy 
(Bonnesen et al., 2022). Park et al. (2021) demonstrated that patients 
with a CCI ≥3 have a 3.5-fold higher VTE risk, and Jin et al. (2022) 
included CCI as a core predictor (AUC = 0.773). Therefore, greater 
emphasis should be placed on thromboprophylaxis in patients with 
comorbidities, especially high-risk individuals with CCI ≥2. Future 
efforts may explore comorbidity-specific risk prediction models and 
develop individualized prevention and treatment strategies for this 
special population. 

4.3.3 Making reasonable treatment decisions is a 
crucial measure for reducing the risk of venous 
thrombosis

① Hormone therapy is unequivocally associated with an 
increased risk of VTE, primarily due to disruption of the coagulation 
balance. Exogenous hormones promote the synthesis of clotting 
factors and inhibit anticoagulant proteins, while glucocorticoids 
suppress the fibrinolytic system (Ayodele et al., 2022). Wang et al. 
(2020) reported that hormone therapy increases VTE risk by 
2.8-fold, and Jin et al. (2023) confirmed it as an independent 
predictor in women of reproductive age using an NLP model 
(AUC = 0.950). Individualized thrombotic risk assessment should 
be conducted prior to initiating hormone therapy to optimize 
safety in patients requiring long-term hormonal treatment. ② 
Blood transfusion is associated with an elevated risk of VTE. 
Microparticles and free hemoglobin in stored blood trigger 
inflammation and endothelial activation, while also enhancing 
platelet activity and thrombin generation (Sheth et al., 2022). 
Wang et al. (2020) found that perioperative transfusion increased 
VTE risk by 3.2-fold, and Guan et al. (2023) supported transfusion 
as an independent predictor using a random forest model (AUC = 
0.937). These findings underscore the importance of strict adherence 

to transfusion indications and enhanced thrombotic monitoring 
in patients requiring transfusion. ③ Mechanical ventilation 
significantly increases VTE risk. Positive pressure ventilation and 
sedation-induced immobility reduce venous return and impair 
muscle pump function (Sochet et al., 2022). Wang et al. (2020) 
observed a VTE incidence of 28.6% in mechanically ventilated 
patients, and Liu et al. (2025) indicated an 18% increase in risk for 
every additional 24 h of ventilation. Future research should focus 
on developing dynamic risk assessment models based on ventilation 
parameters and evaluating the impact of alternative therapies, such 
as extracorporeal support, on thromboprophylaxis to optimize 
VTE management in critically ill patients. ④ Surgical history 
is an independent risk factor for VTE. Tissue injury during the 
perioperative period releases tissue factor that activates coagulation, 
while immobility contributes to venous stasis (Levy et al., 2023). 
Anghele et al. (2024) reported a 5.8-fold increase in VTE risk 
following major surgery, and Wang X. et al. (2023) identified 
it as the third most important predictor in their integrated 
model. Therefore, healthcare providers should implement stratified 
prophylaxis strategies for surgical patients, selecting appropriate 
anticoagulation regimens based on surgery type and individual 
patient characteristics.⑤ Chemotherapy significantly increases the 
risk of VTE through direct endothelial injury, promotion of tissue 
factor release, and suppression of anticoagulant proteins (Izquierdo-
Condoy et al., 2025). Franco-Moreno et al. (2023) reported a VTE 
incidence of 12.8% in chemotherapy patients, while Hu et al. (2025) 
found that regimens containing bevacizumab were associated with 
an additional 2.1-fold increase in risk. Future efforts should focus 
on developing chemotherapy cycle-specific dynamic prediction 
models that integrate pharmacogenomic profiles and real-time 
biomarker monitoring to optimize thromboprophylaxis strategies 
in cancer patients. ⑥ Anticoagulant therapy exhibits a “biphasic 
effect” on VTE risk: an initial transient hypercoagulable state may 
occur, while long-term suboptimal adherence or inadequate dosing 
increases the risk of recurrence (Li et al., 2023). Nudel et al. (2021) 
demonstrated a 2.3-fold higher recurrence risk in patients with 
subtherapeutic anticoagulation, and Hou et al. (2023) validated 
anticoagulation intensity as a key predictive variable using a 
neural network model (AUC = 0.970). Clinical practice should 
emphasize drug monitoring and patient education, alongside the 
development of intelligent dose-adjustment systems based on 
real-time coagulation monitoring to enable precision thrombosis 
management. ⑦ Diagnostic radiological procedures increase VTE 
risk due to prolonged immobility in specific positions and the use of 
contrast agents, which can cause endothelial injury and coagulation 
activation (Oka et al., 2020). Park et al. (2021) observed a significant 
rise in VTE risk within 30 days after contrast-enhanced CT (OR = 
2.1), particularly among bedridden patients. Future research should 
explore methods to mitigate contrast-induced endothelial damage 
and develop risk assessment tools tailored to examination type and 
duration. ⑧ Contraceptive use significantly elevates VTE risk, as 
exogenous estrogen upregulates the synthesis of clotting factors 
and suppresses anticoagulant protein activity (Maughan et al., 
2022; Gialeraki et al., 2018). Jin et al. (2023) reported a 3.5-fold 
increased risk among users, with even higher risk (OR = 6.8) in 
carriers of Factor V Leiden mutation. Contraceptive prescriptions 
should be carefully considered and preceded by individualized risk 
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assessment, especially in patients with inherited thrombophilia or 
other risk factors. 

4.3.4 Dynamic monitoring of clinical indicators is 
essential for reducing the risk of venous 
thrombosis

① Hyperglycemia exhibits a dose-response relationship with 
VTE risk, primarily mediated through endothelial dysfunction, 
platelet activation, and impaired fibrinolysis (Niu et al., 2019). 
Gao et al. (高远 and 李建涛, 2021) demonstrated that fasting 
blood glucose >7.0 mmol/L increased VTE risk by 2.3-fold, with 
random forest models identifying glucose as a core predictive 
variable (AUC = 0.890). Diabetic patients face particularly 
elevated risk due to chronic inflammation and hemorheological 
alterations. These findings underscore the importance of enhanced 
glycemic monitoring and thromboprophylaxis in patients 
with hyperglycemia. ② Abnormal laboratory indicators reflect 
multidimensional imbalances in coagulation, inflammation, 
and hemorheology. Elevated D-dimer indicates coagulation 
activation; increased fibrinogen promotes thrombus formation 
and exacerbates stasis; abnormal clotting times reflect dysregulated 
coagulation factors; and inflammatory markers such as C-reactive 
protein contribute to thrombosis via procoagulant mechanisms 
(Wang J. et al., 2023; Sleutjes et al., 2021). Li et al. (2022) confirmed 
that combining D-dimer (>0.5 mg/L) and fibrinogen (>4 g/L) 
improved predictive performance (AUC = 0.839), while Wang et al. 
(2021) found that dynamic changes in these markers offered greater 
value than single measurements (AUC = 0.970). Future research 
should focus on developing machine learning models capable 
of integrating temporal variations in multiple biomarkers and 
exploring the predictive utility of novel biomarkers to enable earlier 
risk warning and precision interventions. 

4.3.5 Routine catheter care is imperative for 
reducing reduce the risk of venous thrombosis

The presence of a central venous catheter (CVC) or peripherally 
inserted central catheter (PICC) significantly increases the risk 
of venous thromboembolism (VTE). The underlying mechanisms 
include vascular injury, altered hemodynamics, and catheter-blood 
interface interactions. Catheter insertion causes direct vascular 
endothelial damage and activates the coagulation cascade. The 
persistent presence of the catheter alters blood flow patterns, 
creating turbulence and low-shear zones that promote platelet 
adhesion (Citla Sridhar et al., 2020; Lockwood and Desai, 2019). 
A prospective study by Liu et al. (2021) reported a symptomatic 
VTE incidence of 15.3% in patients with CVC/PICC (OR 
= 4.2), and Ryan et al. (2021) identified catheter-related factors as 
an independent predictor using a gradient-boosted decision tree 
model (AUC = 0.830). The risk of catheter-related thrombosis 
is closely associated with insertion site, catheter diameter, and 
indwelling duration. Clinical practice should adhere to best practices 
in catheter management, including ultrasound-guided insertion, 
minimizing catheter size, and regularly reassessing the necessity 
of catheter retention. Future efforts should explore personalized 
catheterization strategies based on individual vascular anatomy 
and develop predictive models integrating clinical factors and 
biomarkers to enable early warning and precision prevention of 
catheter-related thrombosis. 

4.4 Sources and evidence synthesis of 
heterogeneity in AI model performance

The AI models synthesized in this study demonstrated excellent 
predictive performance (AUC: 0.740–0.990), yet significant 
heterogeneity was observed in their outcomes. This variation is 
not coincidental but stems primarily from three sources. First, 
differences at the data level play a central role. The included studies 
utilized diverse data sources—some derived from single-center 
electronic health records, while others originated from multi-
center databases or disease-specific registries. Variations in data 
quality, completeness, and coding consistency directly influence 
model performance. For example, studies by Wang et al. (2021) and 
Jin et al. (2023), which leveraged large, rigorously validated data 
warehouses, achieved notably high AUC values above 0.95. Second, 
considerable disparities in sample sizes and the number of outcome 
events contributed to differences in model stability. Studies with 
sample sizes exceeding ten thousand cases (Vollmer et al., 2020) 
generally demonstrated better model generalizability compared to 
those with smaller samples (Nudel et al., 2021), even though the 
latter occasionally reported very high AUC values at the risk of 
overfitting. Finally, variations in model algorithms and validation 
methods introduced additional heterogeneity. Although ensemble 
learning models overall performed superiorly, their efficacy heavily 
depended on hyperparameter tuning and the rigor of internal 
validation strategies.

Therefore, when interpreting the predictive performance of 
these AI models, it is essential to critically consider the design 
context and data foundations of the original studies. Future research 
should focus on establishing standardized data reporting protocols 
and model validation workflows to facilitate evidence integration 
and comparison across the field. 

5 Limitations

Based on the analysis of the 23 included studies, 70% (n =
16) were retrospective in design, which may introduce recall bias. 
Furthermore, while this study focuses on predictive performance, 
the “black-box” nature of most AI models remains a significant 
challenge in terms of interpretability. Although these models 
can effectively predict risk, they often fail to provide clinicians 
with intuitive decision-making rationale, thereby hindering clinical 
translation. Finally, as a scoping review, this study aims to outline 
the overall landscape of the field but does not include meta-
analysis of model performance, which limits the ability to draw 
definitive conclusions regarding the effectiveness of the models. 
Future research should incorporate more prospective designs, strive 
to develop interpretable AI models, and explore validation of model 
generalizability across different studies and populations. 

6 Conclusion

This paper systematically reviews the application status of AI 
in the VTE risk assessment through a scoping review. The study 
found that AI models such as random forest, gradient boosting 
decision tree, and natural language processing demonstrated high
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performance in predicting VTE risk, with AUC values between 
0.740 and 0.990, which was much better than traditional risk 
assessment scores. In addition, AI can integrate multi-source 
data, including patient factors, disease factors, treatment factors, 
laboratory indicators, and catheter factors, to achieve dynamic and 
personalized risk assessment. Among them, age ≥70 years old, 
obesity, history of venous thrombosis, and abnormal laboratory 
indicators were identified as key predictive factors. It provides a 
more accurate risk stratification tool for clinical practice and helps 
optimize VTE prevention and treatment strategies. Future studies 
should further explore multicenter, prospective data to verify the 
universality and clinical practicability of AI models. At the same 
time, the development of a dynamic prediction model that can 
integrate real-time monitoring data and realize automatic early 
warning combined with an electronic medical record system will 
greatly improve the efficiency of VTE management. In addition, 
in the future, we can pay attention to the personalized model of 
specific populations and explore the combination of new biomarkers 
and AI technology, which is expected to open up a new way for 
the prevention and treatment of VTE. Through the above ways, AI 
technology is continuously optimized to achieve early intervention 
and precise management of VTE, reduce the disease burden, and 
improve the prognosis of patients.
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