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Objective: To systematically analyze the current application status of
artificial intelligence (Al) in risk assessment and management of venous
thromboembolism (VTE), evaluate the predictive performance of Al models
and identify key risk factors, thereby providing evidence-based references for
optimizing clinical VTE prevention and treatment strategies.

Methods: A scoping review framework was used. We searched for literature
in both Chinese (CNKI, Wanfang, CBM) and English databases (PubMed, Web
of Science, Embase, CINAHL, and The Cochrane Library) to find studies on Al
applications in VTE risk assessment, covering the time from when the databases
started until 10 March 2025. By creating research questions, reviewing the
literature, gathering data, and summarizing the results, we organized various
Al models, assessed how accurately they predicted outcomes, and looked at
important risk factors.

Results: This review included a total of 23 studies. Al models showed
better accuracy in predicting VTE risk, with AUC values between 0.740 and
0.990, greatly surpassing traditional scoring tools. Key risk factors identified
included patient-related factors, disease-related factors, treatment-related
factors, laboratory indicators, and catheter-related factors.

Conclusion: Al technology shows remarkable advantages in VTE risk assessment
by integrating multi-source data to achieve dynamic and personalized
prediction. Future research should aim to conduct studies across multiple
centers to confirm how useful these models are in real-life situations and also
look into combining real-time monitoring data with Al to enhance the accuracy
of preventing and treating VTE, which will help lower the number of cases and
improve patient results.

artificial intelligence, Al models, venous thromboembolism, scoping review, VTE
(venous thromboembolism)
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1 Introduction

Venous Thromboembolism (VTE), which includes deep
vein thrombosis (DVT) and pulmonary embolism (PE), is a
prevalent vascular disorder that is associated with significant
morbidity, mortality, and healthcare burden (Henke et al,
2020). Globally, approximately 10 million cases of VTE occur
annually (Global Burden of VTE, 2023), with a steadily rising
incidence—particularly among hospitalized patients, surgical
populations, and cancer patients, who face significantly elevated
risks. As reported by the World Health Organization (WHO), VTE
ranks as the third leading cause of cardiovascular mortality, claiming
over 1 million lives yearly (Porfidia et al., 2020). Without timely
intervention, VTE may progress to chronic complications such as
post-thrombotic syndrome and chronic pulmonary hypertension,
severely impairing patients’ quality of life (Zhai et al., 2019). Early
detection, accurate risk prediction, and prompt intervention are
thus critical to mitigating the disease burden. Current standard
risk assessment tools, such as the Caprini and Padua scores,
while valuable, exhibit several inherent limitations that constrain
their predictive performance and clinical utility. These models
predominantly rely on a limited set of static, clinically apparent
variables, often captured at a single time point. This approach fails
to capture the dynamic evolution of patient risk throughout the care
continuum, integrates poorly with electronic health record (EHR)
systems for real-time calculation, and cannot effectively synthesize
complex, non-linear interactions among multifactorial risks or
leverage unstructured data from clinical notes. Consequently, their
predictive accuracy remains modest (AUC: 0.60-0.75), leading to
both over-prophylaxis in low-risk patients and under-prophylaxis
in high-risk individuals, which contributes to the persistent burden
of VTE-related complications (Stevens et al., 2022).

Faced with these challenges, there is a pressing need to explore
novel methodologies to overcome the limitations of traditional
scoring tools. In this context, artificial Intelligence (AI) has
emerged as a transformative technology with significant potential
in medical risk assessment (Zhou, 2023; Haug and Drazen,
2023). In contrast to conventional scoring systems, Al leverages
machine learning (ML) and deep learning (DL) algorithms to
overcome these limitations, representing a paradigm shift in the
field (Rajkomar et al, 2019). AI algorithms can dynamically
process high-dimensional, multi-source data—including structured
electronic health record (EHR) fields, longitudinal laboratory
parameters, and unstructured imaging and clinical narratives—to
identify complex, latent patterns, thereby enabling personalized
and dynamic prediction. Currently, Al models such as random
forests, gradient boosting decision trees, and neural networks have
been preliminarily validated in predicting outcomes related to
cardiovascular diseases, sepsis, and cancer. For example, Al-based
tools have been successfully developed to predict stroke risk in
patients with atrial fibrillation, major adverse cardiovascular events
after acute coronary syndrome, and cancer-associated thrombosis
events. These models generally demonstrate superior predictive
performance (as measured by AUC values) compared to traditional
clinical scoring rules (Deo, 2015; You et al, 2023; Gaviria-
Valencia et al., 2023). The success of Al in these domains provides a
robust methodological foundation and promising prospects for the
application of AI in VTE risk assessment. As such, AI technology
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offers a novel pathway to overcome the limitations of traditional
VTE evaluation. Nevertheless, the development of AT applications
specifically for VTE risk assessment has progressed relatively slowly
and faces unique challenges. The construction of powerful Al
models is hindered by significant data-related obstacles, including
heterogeneity in VTE data collection and annotation across
institutions, the high-dimensional and often incomplete nature of
real-world clinical datasets, and the inherent complexity in defining
and labeling VTE outcomes for model training. Therefore, although
existing Al research in VTE has primarily focused on diagnostic
image analysis or treatment outcome prediction, efforts dedicated
to developing and validating AI-driven risk assessment tools remain
in their nascent stages (Yang et al., 2023; Vollmer et al., 2020).

This study aims to conduct a scoping review to systematically
map the current landscape of Al applications in venous VTE risk
assessment. Specifically, we will evaluate the predictive performance
of emerging Al models in comparison to traditional risk scores,
identify key predictive features utilized by these algorithms, and
critically appraise the methodological rigor and clinical readiness
of the existing evidence. Furthermore, this review will elucidate the
transformative potential of Al, assess its advantages and challenges
in VTE risk prediction, and provide guidance for future research.
Ultimately, this work is expected to contribute to optimized VTE
prevention and treatment strategies, reduce the incidence of VTE-
related complications, alleviate the disease burden, and improve
patient outcomes.

2 Materials and methods
2.1 Defining the research question

After preliminary literature screening, the research question
was formulated as follows: The study aimed to conduct a scoping
review on the application and management of artificial intelligence
in risk assessment for venous thromboembolism (VTE) in both
domesticand international contexts. The key components were defined
using the PICO-S framework: P (Population): Patients with venous
thromboembolism. I (Intervention): Risk assessment tools, including
Random Forest models, XGBoost models, deep learning models,
natural language processing (NLP), etc. C (Comparison): Traditional
risk assessment scales such as the Caprini score and Padua score.
O (Outcome): Outcome measures include the area under the curve
(AUC), sensitivity, specificity, etc. S (Study design): Study types such as
retrospective cohort studies, prospective cohort studies, randomized
controlled trials (RCTs), systematic reviews, and meta-analyses.

2.2 Literature search

A comprehensive search was conducted using a combination of
subject headings and keywords in the following databases: CNKI,
Wanfang, CBM, PubMed, Web of Science, Embase, CINAHL,
and the Cochrane Library. The search encompassed all published
studies on the application of artificial intelligence in venous
thromboembolism (VTE) risk assessment, with a time frame from
database inception to 10 March 2025. For Chinese databases
(like CNKI), the search method was (Artificial Intelligence OR
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#1 Venous Thromboembolism[MeSH Terms]
#2 Venous Thrombosis[MeSH Terms] OR Pulmonary Embolism[MeSH Terms] OR Thromb
oembolism[MeSH Terms] OR Deep Vein Thrombosis[MeSH Terms] OR DVT[Title/Abstrac
t] OR VTE][Title/Abstract] OR PE[Title/Abstract]
#3 #1 OR #2
#4 Artificial Intelligence[MeSH Terms]
#5 Machine Learning[MeSH Terms] OR Deep Learning[MeSH Terms] OR Neural Network
s, Computer[MeSH Terms] OR Natural Language Processing[MeSH Terms] OR "Support
Vector Machine"[MeSH Terms] OR "Linear Models"[MeSH Terms] OR "Ensemble Learnin
g"[Title/Abstract]
#6 "Random Forest"[Title/Abstract] OR "Gradient Boosting"[Title/Abstract] OR "Decision T
ree"[Title/Abstract] OR "XGBoost"[Title/Abstract] OR "Natural Language Processing"[Title/
Abstract] OR "NLP"[Title/Abstract] OR "Ensemble Model"[Title/Abstract] OR "Artificial N
eural Network"[Title/Abstract] OR "ANN"[Title/Abstract] OR "Support Vector Machine"[Tit
le/Abstract] OR "SVM"[Title/Abstract] OR "Linear Discriminant Analysis"[Title/Abstract] O
R "LDA"[Title/Abstract] OR "Generalized Linear Model"[Title/Abstract] OR "GLM"[Title/A
bstract]
#7 #4 OR #5 OR #6
#8 Risk Assessment(MeSH Terms]
#9 "Risk Prediction"[Title/Abstract] OR "Risk Score"[Title/Abstract] OR "Risk Model"[Title
/Abstract] OR "Risk Stratification"[Title/Abstract] OR "Risk Evaluation"[Title/Abstract]
#10 #8 OR #9
#11 #3 AND #7 AND #10

FIGURE 1

PubMed retrieval strategy.

Large Language Model OR AI) AND (Venous Thromboembolism
OR Deep Vein Thrombosis OR Pulmonary Thromboembolism
OR VTE OR DVT OR PTE OR PE) AND (Risk Assessment
OR Associated Risk OR Related Factors OR Risk Factors OR
Predictive Factors). We used a combination of MeSH terms
and free-text keywords for English databases like PubMed, to
ensure comprehensive retrieval and precision of the literature, we
supplemented our search by manually reviewing the reference lists
of all included studies. Figure 1 presents the detailed search strategy.

2.3 Inclusion and exclusion criteria

2.3.1 Literature inclusion criteria

(1) The objective was to explore the application of artificial
intelligence in the risk assessment of venous thromboembolism; (2)
The study population was VTE patients, aged >18 years; (3) There
is no limit to the type of research; (4) Articles published in Chinese
or English.
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2.3.2 Literature exclusion criteria

(1) Duplicate publications; (2) Documents with incomplete data
or unable to obtain the full text; (3) The language of the document
is not Chinese or English; (4) Non venous thrombosis-related
literature.

2.4 Literature extraction

EndNote20.0 software was used to eliminate the duplicate of
the imported literature, Prior to the formal screening process, a
standardized data extraction form was developed based on the
predetermined inclusion and exclusion criteria. To ensure accuracy
and consistency in the extraction process, a pilot test was conducted
using this form. Two researchers independently performed trial
extractions on five randomly selected articles. Their results were
then compared, and any discrepancies in the understanding or
application of the extraction items were discussed. Through iterative
calibration of the definitions and criteria, a consensus was reached,
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resulting in a finalized version of the standardized form for use in
the formal data extraction. After the first round of title and abstract
screening, the literature that did not meet the inclusion criteria
was excluded, exclusion criteria included mismatches between the
research focus and the study’s subject matter, incomplete data, and
unavailability of full-text articles. Two researchers independently
screened and extracted the remaining literature using two rounds
of full-text reading, based on the inclusion and exclusion criteria:
The first phase focused on capturing general study characteristics,
including the first author, publication year, country of origin, study
design, type of AI model utilized, study population, and sample
size. The second phase involved extracting key data directly relevant
to the research objectives, which encompassed model performance
metrics on the test/validation sets—such as the area under the curve
(AUC) with 95% confidence intervals, sensitivity, and specificity—as
well as significant VTE risk factors identified in the studies. At
the final full-text screening stage for inclusion, inter-rater reliability
was assessed, yielding a Cohen’s Kappa coefficient of 0.84, which
indicates an almost perfect level of agreement between the two
independent researchers. If the two researchers disagree, the third
researcher will arbitrate, and a consensus will be reached after
the third round of discussion. Finally, the data of the included
literatures were summarized by standardized tables (see Table 1),
and the extracted contents include basic information: author,
publication year, tool type, and artificial intelligence technology;
Clinical characteristics: application population and main evaluation
contents; Model effectiveness: test set AUC, validation set AUC,
sensitivity, and specificity.

3 Result
3.1 Literature extraction

The retrieval strategy found 3,318 pieces of Chinese and English
literature and their abstracts at first; after using EndNote 20.0
software to remove duplicates, 2,734 remained. Then, 2,734 were
chosen by reading titles and abstracts, 55 were excluded for not
meeting the criteria, 32 were removed after reading the full text, and
in the end, 23 were selected (Wang et al., 2020; Nudel et al., 2021;
{A1iZ and 4= P4, 2021; Wang et al., 2021; Liu et al,, 2021; Ryan et al.,
2021; Park et al,, 2021; Jin et al., 2022; Li et al,, 2022; Wang X. et al,,
2023; Chiasakul et al., 2023; Nassour et al., 2024; Guan et al., 2023;
Jin etal., 2023; Franco-Moreno et al., 2023; Hou et al., 2023; Wu et al.,
2024; Anghele et al., 2024; Lin et al., 2024; Liu et al., 2024; Wei et al.,
2024; Hu et al., 2025; Liu et al., 2025). The specific screening process
is shown in Figure 2.

3.2 Basic characteristics of included
literature

Among the 23 literature included in the study, 1 was in Chinese
(=1 and 45404, 2021), and 22 were in English (Wang et al,
2020; Nudel et al., 2021; Wang et al, 2021; Liu et al., 2021;
Ryan et al., 2021; Park et al.,, 2021; Jin et al., 2022; Li et al., 2022;
Wang X. et al,, 2023; Chiasakul et al., 2023; Nassour et al., 2024;
Guan et al, 2023; Jin et al., 2023; Franco-Moreno et al., 2023;
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Hou et al., 2023; Wu et al., 2024; Anghele et al., 2024; Lin et al., 2024;
Liu et al., 2024; Wei et al., 2024; Hu et al., 2025; Liu et al., 2025).
The tools used for predictions include various artificial intelligence
technologies, such as 10 random forest models, 5 gradient boosting
decision trees, 2 natural language processing tools, 2 integrated
models, 1 artificial neural network, 1 support vector machine, 1
linear discriminant analysis, and 1 generalized linear model. The
subjects were hospitalized patients (n = 16), cancer patients (n = 2),
orthopedic patients (n = 2), surgical patients (n = 1), stroke patients
(n=1), and trauma patients (n = 1). The main research designs were
cohort study (n = 17), meta-analysis (n = 2), randomized controlled
study (n = 2), case-control study (n = 1), and prospective study
(n=1).

3.3 Evaluation of risk factors and reliability
and validity indicators included in the
literature

See Tables 1, 2, Figures 3, 4.

4 Discussion

4.1 There are various types of risk
assessment models of artificial intelligence
in venous thrombosis, but most models
lack external validation and critical
appraisal

At present, the research on Al technology for evaluating VTE
with AI models is gradually increasing, including random forests
model, gradient lifting decision trees, natural language processing,
integrated model, artificial neural network, support vector machine
model, linear discriminant analysis, and generalized linear models.
Among the 23 studies included in this study, the predictive
performance was evaluated, but 7 studies were not externally
verified. The AUC of the test set ranged from 0.773 to 0.990 (/i
and 2554, 2021; Park et al., 2021; Jin et al., 2022; Nassour et al.,
2024; Anghele et al., 2024; Lin et al., 2024; Wei et al., 2024). At
present, relevant studies have externally verified some prediction
tools to determine the clinical applicability of AI prediction model.
Among the 23 prediction models, 16 models were developed and
validated. The AUC range of the test set was 0.740-0.970, and the
AUC range of the validation set was 0.740-0.980 (Wang et al., 2020;
Nudel et al., 2021; Wang et al., 2021; Liu et al., 2021; Ryan et al., 2021;
Lietal., 2022; Wang X. et al., 2023; Chiasakul et al., 2023; Guan et al.,
2023; Jin et al., 2023; Franco-Moreno et al., 2023; Hou et al., 2023;
Wu et al., 2024; Liu et al., 2024; Hu et al., 2025; Liu et al., 2025).

4.2 Technical characteristics, application
variations, and clinical translation
challenges of Al models

Different AI methods exhibit distinct characteristic differences

and applicable scenarios when handling VTE risk prediction.
Tree-based models such as random forests and gradient boosting
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TABLE 1 Evaluation of risk factors and reliability and validity indicators of included literature.

10.3389/fphys.2025.1664470

Developer Tool type .\ Clinical Main Test set Validation = Sensitivity | Specificity
technology application assessment AUC* set AUC#
population contents
Wang et al. Prediction Random forest 376 inpatients 1,2,3,4,5,6, 0.856 (95% CI: 0.782 (95% CI: 0.733* 0.800"
(2020) model model 7,8,9,10, 11 0.807-0.905) 0.807-0.905) 0.595# 0.865#
Nudel et al. Prediction Gradient 436,807 1,2,3,6,12, 0.670 (95% CI: 0.660 (95% CI: 0.711" 0.722*
(2021) model lifting decision patients 13,14 0.64-0.69) 0.64-0.69) 0.595# 0.832#
tree undergoing
bariatric
surgery
it and Prediction Random forest 15,856 4,14,15,16 0.890 - 0.290* 0.970*
2RV (2021) model model orthopedic
patients
Wang et al. Prediction natural 51,383 2,12,16 0.970 (95% CI: 0.980 (95% CI: 0.890" 0.970"
(2021) model language inpatients 0.95-0.98) 0.97-0.99) 0.870# 0.960#
processing
Liu et al. Prediction Support vector 573 inpatients 4,16,17 0.904 (95% CI: 0.875 (95% CI: 0.590* 0.990*
(2021) model machine 0.87-0.94) 0.804-0.944) 0.590%# 0.990%#
model
Ryan et al. Prediction Gradient 99,237 4,6,16 0.830 (95% CI: 0.850 (95% CI: 0.800" 0.660"
(2021) model lifting decision inpatients 0.81-0.85) 0.83-0.87) 0.800# 0.750#
tree
Park et al. Prediction Random forest 92,481 2,6, 10, 14, 18, 0.840 - 0.740" 0.800"
(2021) model model inpatients 19, 20
Jin et al. (2022) Prediction Linear 231 inpatients 2,4,16,18,20 0.773 (95% CI: - 0.754* 0.660*
model discriminant 0.722-0.818)
analysis
Lietal. (2022) Prediction Generalized 338 inpatients 2,16 0.839 (95% CI: 0.826 (95% CI: 0.733* 0.828"
model linear model 0.794-0.884) 0.755-0.897) 0.708# 0.863#
Wang et al. Prediction Integrated 6,987 2,3,4,6, 10, 0.920 (95% CI: 0.920 (95% CI: 0.802" 0.905"
(2023a) model model® inpatients 12,14, 16 0.895-0.936) 0.895-0.936) 0.802# 0.905#
Chiasakul et al. Prediction Integrated 249,111 2,3,4,6,10, 0.860 (95% CI: 0.830 (95% CI: 0.880* 0.850*
(2023) model model® inpatients 12,16 0.81-0.91) 0.78-0.88) 0.850# 0.800#
Nassour et al. Prediction Random forest 479 inpatients 1,2,3,6,10, 0.900 - 0.900" 0.760"
(2024) model model 12, 14,18
Guan et al. Prediction Random forest 1,647 2,3,4,6,8,9, 0.937 0.937 0.779* 0.998*
(2023) model model inpatients 12,16, 17 0.779# 0.998#
Jin et al. (2023) Prediction Natural 30,152 1,2,3,4,6, 10, 0.950 (95% CI: 0.950 (95% CI: 0.899* 0.998*
model language inpatients 12, 14, 16, 21 0.94-0.96) 0.94-0.96) 0.899# 0.998#
processing
Franco- Prediction Gradient 12,249 cancer 3,4,5,6,11, 0.970 0.830 0.750* 0.880"
Moreno et al. model lifting decision patients 16,18 0.770# 0.930#
(2023) tree
Hou et al. Prediction Artificial 801 inpatients 1,4,5,6, 10, 0.970 (95% CI: 0.960 (95% CI: 0.920" 0.960"
(2023) model neural network 14,16, 17 0.92-0.99) 0.92-0.99) 0.920# 0.960%
Wu et al. Prediction Random forest 650 inpatients 2,3,16 0.760 (95% CI: 0.760 (95% CI: 0.666* 0.876"
(2024) model model 0.69-0.84) 0.69-0.84) 0.666# 0.876#
Anghele et al. Prediction Random forest 299 inpatients 2,3,4,6,10, 0.990 - 0.970* 0.920"
(2024) model model 12,16, 18
(Continued on the following page)
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TABLE 1 (Continued) Evaluation of risk factors and reliability and validity indicators of included literature.

Developer Tool type .\ Clinical Main Test set Validation Sensitivity | Specificity
technology application assessment AUC* set AUC#
population contents
Lin et al. Prediction Gradient 1,087 2,4,6,8,10,18 0.950 - 1.000* 0.890"
(2024) model lifting decision inpatients
tree
Liuetal. Prediction Random forest 620 stroke 1,2,5,6,12,16 0.740 0.730 0.780* 0.920*
(2024) model model patients 0.800# 0.920#
Wei et al. Prediction Gradient 2,434 cases of 2,3,6,10,12, 0.970 - 0.956" 0.911*
(2024) model lifting decision fracture 18
tree patients
Hu et al. Prediction Random forest 4,738 patients 2,3,4,5,6, 10, 0.890 0.740 0.615" 0.888"
(2025) model model with colorectal 11,12, 16,18 0.615# 0.740#
cancer
Liu et al. Prediction Random forest 3,116 trauma 2,3,8,9,10,16 0.870 (95% CI: 0.830 (95% CI: 0.956* 0.687*
(2025) model model patients 0.85-0.90) 0.79-0.86) 0.821 0.756#

@ The integrated model includes gradient lifting decision tree, random forest, support vector machine and logistic regression. 1 = smoking history, 2 = age =70, 3 = obesity (BMI 230 kg/m?), 4 =
history of venous thrombosis, 5 = decreased activity, 6 = high-risk disease factors (hypertension, coronary heart disease, diabetes, inflammatory bowel disease, varicose veins, thrombotic disease,
cardiopulmonary disease, cancer, acute infection or rheumatic disease, acute myocardial infarction, ischemic stroke), 7 = hormone therapy, 8 = blood transfusion, 9 = mechanical ventilation, 10 =
surgery history, 11 = chemotherapy, 12 = gender, 13 = race, 14 = anticoagulant therapy, 15 = blood glucose, 16 = laboratory indicators (D-dimer, fibrinogen, prothrombin time, international
standards biochemical ratio, white blood cell count, and C-reactive protein)are included, 17 = central venous catheter (CVC) or peripherally inserted central venous catheter (PICC), 18 = length of
hospital stay, 19 = diagnostic radiology, 20 = Charlson complication index, 21 = contraceptive use.

Recordsidentified Additinal records identified

through da.tabase through other sources
searching (n=0)
(n=3318)
v
Records after duplicates removed
(n=2734)
> Records excluded with reasons:
Records screened | The research topic does not
(n=2734) ”|conform to the research
object(n=2679)

hd

Full-text articles

assessed for eligibility
(n=55) Full-text articles excluded with

reasons:
Not relevant for research
questions (n=12)
Incomplete data (n=9)
Unable to obtain full-text (n=11)

N

Studies included in
scoping review
(n=23)

FIGURE 2
Flow chart of literature screening.
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TABLE 2 Classification of risk factors included in the literature.

Risk factor ‘ Main assessment contents Related literature

1 = Smoking history Wang et al. (Wang et al., 2020); Nudel et al. (Nudel et al.,
2021); Nassour et al. (Nassour et al., 2024); Jin et al.

(Jin et al., 2023); Hou et al. (Hou et al., 2023); Liu et al.
(Liu et al., 2024)

2= Age 270 Wang et al. (Wang et al., 2020); Nudel et al. (Nudel et al.,
2021); Wang et al. (Wang et al., 2021); Jung et al. (Park et al.,
2021); Jin et al. (Jin et al., 2022); Li et al. (Li et al., 2022);
Wang et al. (Wang et al., 2023a); Chiasakul et al.

(Chiasakul et al., 2023); Nassour et al. (Nassour et al., 2024);
Guan et al. (Guan et al., 2023); Jin et al. (Jin et al., 2023); Wu
etal. (Wu et al,, 2024); Anghele et al. (Anghele et al., 2024);
Lin et al. (Lin et al., 2024); Liu et al. (Liu et al., 2024); Wei
etal. (Wei et al., 2024); Hu et al. (Hu et al., 2025); Liu et al.
(Liu et al., 2025)

3 = Obesity (BMI >30 kg/m?) Wang et al. (Wang et al., 2020); Nudel et al. (Nudel et al.,
2021); Wang et al. (Wang et al., 2023a); Chiasakul et al.
Patient factors (Chiasakul et al., 2023); Nassour et al. (Nassour et al., 2024);
Guan et al. (Guan et al., 2023); Jin et al. (Jin et al., 2023);
Moreno et al. (Franco-Moreno et al., 2023); Wu et al.

(Wu et al,, 2024); Anghele et al. (Anghele et al., 2024); Wei
et al. (Wei et al., 2024); Hu et al. (Hu et al., 2025); Liu et al.
(Liu et al., 2025)

5 = Decreased mobility Wang et al. (Wang et al., 2020); Moreno et al.
(Franco-Moreno et al., 2023); Hou et al. (Hou et al., 2023);
Liu et al. (Liu et al., 2024); Hu et al. (Hu et al., 2025)

12 = Gender Nudel et al. (Nudel et al., 2021); Wang et al. (Wang et al.,
2021); Wang et al. (Wang et al., 2023a); Chiasakul et al.
(Chiasakul et al., 2023); Nassour et al. (Nassour et al., 2024);
Guan et al. (Guan et al., 2023); Jin et al. (Jin et al., 2023);
Anghele et al. (Anghele et al., 2024); Liu et al. (Liu et al.,
2024); Wei et al. (Wei et al., 2024); Hu et al. (Hu et al., 2025)

13 = Race Nudel et al. (Nudel et al., 2021)

4 = History of venous thrombosis Wang et al. (Wang et al., 2020); Gao et al. (= 17% and 4= £,
2021); Liu et al. (Liu et al., 2021); Ryan et al. (Ryan et al.,
2021); Jin et al. (Jin et al., 2022); Wang et al. (Wang et al.,
2023a); Chiasakul et al. (Chiasakul et al., 2023); Guan et al.
(Guan et al.,, 2023); Jin et al. (Jin et al., 2023); Moreno et al.
(Franco-Moreno et al., 2023); Hou et al. (Hou et al., 2023);
Anghele et al. (Anghele et al., 2024); Lin et al. (Lin et al.,
2024); Hu et al. (Hu et al., 2025)

Disease factors
6 = High risk disease factors Wang et al. (Wang et al., 2020); Nudel et al. (Nudel et al.,

2021); Ryan et al. (Ryan et al,, 2021); Jung et al. (Park et al.,
2021); Wang et al. (Wang et al., 2023a); Chiasakul et al.
(Chiasakul et al., 2023); Nassour et al. (Nassour et al., 2024);
Guan et al. (Guan et al., 2023); Jin et al. (Jin et al., 2023);
Moreno et al. (Franco-Moreno et al., 2023); Hou et al.

(Hou et al., 2023); Anghele et al. (Anghele et al., 2024); Lin
etal. (Lin et al., 2024); Liu et al. (Liu et al., 2024); Wei et al.
(WEei et al., 2024); Hu et al. (Hu et al., 2025)

(Continued on the following page)
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TABLE 2 (Continued) Classification of risk factors included in the literature.

Risk factor

18 = Length of stay

‘ Main assessment contents

10.3389/fphys.2025.1664470

Related literature

Jung et al. (Park et al., 2021); Jin et al. (Jin et al., 2022);
Nassour et al. (Nassour et al., 2024); Moreno et al.
(Franco-Moreno et al., 2023); Anghele et al.

(Anghele et al., 2024); Lin et al. (Lin et al., 2024); Wei
etal. (Wei et al.,, 2024); Hu et al. (Hu et al., 2025)

20 = Charlson comorbidity index

Jung et al. (Park et al., 2021); Jin et al. (Jin et al., 2022)

7 = Hormone therapy

Wang et al. (Wang et al., 2020)

8 = Blood transfusion

Wang et al. (Wang et al., 2020); Guan et al.
(Guan et al., 2023); Lin et al. (Lin et al., 2024); Liu et al.
(Liu et al., 2025)

9 = Mechanical ventilation

Wang et al. (Wang et al., 2020); Guan et al.
(Guan et al., 2023); Liu et al. (Liu et al., 2025)

10 = Surgical history

Therapeutic factors

Wang et al. (Wang et al., 2020); Jung et al. (Park et al.,
2021); Wang et al. (Wang et al., 2023a); Chiasakul et al.
(Chiasakul et al., 2023); Nassour et al. (Nassour et al.,
2024); Jin et al. (Jin et al., 2023); Hou et al. (Hou et al.,
2023); Anghele et al. (Anghele et al., 2024); Wei et al.
(Wei et al., 2024); Hu et al. (Hu et al., 2025); Liu et al.
(Liu et al., 2025)

11 = Chemotherapy

Wang et al. (Wang et al., 2020); Moreno et al.
(Franco-Moreno et al., 2023); Hu et al. (Hu et al., 2025)

14 = Anticoagulant therapy

Nudel et al. (Nudel et al., 2021); Gao et al. (573 and
ZEG 5, 2021); Jung et al. (Park et al., 2021); Wang
etal. (Wang et al., 2023a); Nassour et al.

(Nassour et al., 2024); Jin et al. (Jin et al., 2023); Hou
et al. (Hou et al., 2023)

19 = Diagnostic radiology examination

Jung et al. (Park et al., 2021)

21 = Contraceptive use

Jin et al. (Jin et al., 2023)

15 = Blood sugar

Gao et al. (51 and 252 74, 2021)

16 = Laboratory indicators

Clinical index factors

Gao et al. (#71E and 4= 474, 2021); Wang et al.
(Wang et al., 2021); Liu et al. (Liu et al., 2021); Jin et al.
(Jin et al., 2022); Li et al. (Li et al., 2022); Wang et al.
(Wang et al., 2023a); Chiasakul et al. (Chiasakul et al.,
2023); Guan et al. (Guan et al., 2023); Jin et al.

(Jin et al., 2023); Moreno et al. (Franco-Moreno et al.,
2023); Hou et al. (Hou et al., 2023); Wu et al.

(Wu et al,, 2024); Anghele et al. (Anghele et al., 2024);
Liu et al. (Liu et al., 2024); Hu et al. (Hu et al., 2025);
Liu et al. (Liu et al., 2025)

Catheter factor 17 = CVC or PICC catheterization

Liu et al. (Liu et al., 2021); Ryan et al. (Ryan et al.,
2021); Guan et al. (Guan et al., 2023); Hou et al.
(Hou et al., 2023)

decision trees excel in capturing complex nonlinear relationships
and feature interactions, making them particularly suitable for
high-dimensional clinical data; however, they suffer from poor
model interpretability. All ten studies employing random forests
in this research reported high predictive performance (AUC
>0.85), yet their “black-box” nature limits clinicians’ understanding
and trust in the predictions. Natural language processing (NLP)
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techniques can extract key information from unstructured
electronic medical record text. For example, Wang et al. (2021)
achieved an AUC of 0.970 using an NLP model, highlighting its
unique advantage in mining the value of clinical notes, although its
performance is highly dependent on corpus quality and annotation
consistency. Linear models such as support vector machines (SVM)
and linear discriminant analysis (LDA), while offering strong
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@ Retrospective cohort study
Case control study

FIGURE 3
Design types and Al model distribution matrix included in the study.
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Distribution of risk factors included in the study.
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interpretability and high computational efficiency, lack the flexibility
to recognize complex data patterns. For instance, the SVM model
adopted by Liu et al. (2021) achieved an AUC of 0.904 but required
extensive feature engineering.

It is noteworthy that significant differences also exist among Al
methods in feature selection and model generalizability. Tree models
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typically possess built-in feature importance evaluation functions,
enabling automatic identification of key risk factors, but are prone
to overfitting the training data. Although ensemble models improve
predictive stability by combining multiple base learners, this comes
at the cost of increased model complexity and computational
resource demands. Furthermore, existing studies generally lack
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validation of models’ cross-institutional generalizability. Only a few
studies (Nudel et al., 2021; Ryan et al., 2021; Guan et al., 2023) used
multi-center data for external validation, while data standardization
issues (such as differences in laboratory measure units, inconsistent
diagnostic codes, etc.) remain critical obstacles affecting model
transferability.

At the level of clinical feasibility and practical implementation,
the application of AI models faces numerous challenges. Firstly,
insufficient model interpretability affects clinical adoption, as
physicians struggle to understand the decision-making basis of
“black-box” models. Secondly, real-time prediction requires deep
integration with existing EMR systems, involving a series of
practical issues such as data interfaces, computational efficiency,
and modifications to user workflows. Additionally, no consensus
framework has yet been formed for the regulatory approval and
ethical considerations of AI models in clinical practice.

Therefore, future research should not solely focus on improving
model predictive accuracy but should pay more attention to the
clinical translation pathway of AI models. It is recommended
to prioritize the development of highly interpretable models that
can seamlessly integrate into clinical decision-making workflows.
Simultaneously, multi-center collaboration should be strengthened
to establish standardized VTE data collection and model validation
protocols, and to actively explore model deployment and regulatory
solutions that comply with healthcare industry standards.

4.3 Analysis of risk factors of artificial
intelligence in venous thrombosis

Al
encompassing five major categories: patient factors, disease factors,

models integrated multi-dimensional risk factors,
treatment factors, laboratory indicators, and catheter-related factors.
Factors that appeared frequently (reported in 210 studies) included:
age 270 years, obesity (BMI >30 kg/m?), gender, history of VTE,
high-risk comorbidities, surgical history, and abnormal laboratory
indicators. These factors were consistently identified as important
predictive variables across multiple models, demonstrating strong

evidence consistency.

4.3.1 Comprehensive assessment of
patient-related factors is fundamental for
reducing the risk of venous thrombosis

® Smoking significantly increases the risk of VTE through
mechanisms involving vascular endothelial injury, activation of
inflammatory responses, and a hypercoagulable state (Wang et al.,
2020; Catella et al, 2022). The AI model developed by
De Pooter et al. (2021) demonstrated that a history of smoking
significantly enhanced the predictive accuracy for VIE (AUC
= 0.856), while Nudel et al. (2021) found that smokers faced a
50%-100% higher risk of VTE compared to non-smokers. These
findings suggest that clinical practice should more systematically
evaluate the impact of smoking on VTE, particularly in high-risk
populations, by strengthening smoking cessation interventions to
reduce the disease burden associated with smoking-related VTE.
(® Age 270 years is an independent risk factor for VTE, with
its mechanism linked to declining vascular endothelial function
and venous stasis (Righini et al., 2014). The random forest model
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by Wang et al. (2021) indicated a significant weight for this
factor (AUC = 0.970), and Park et al. (2021) observed that the
incidence of VTE in elderly patients was 2-3 times higher than
in younger populations. There is a clinical need to implement
intensified VTE prevention strategies for elderly patients, and future
research could explore Al-driven risk stratification models that
incorporate aging-related biomarkers. @ Obesity (BMI >30 kg/m?)
elevates VTE risk by promoting a chronic inflammatory state,
hypercoagulability, and hemodynamic changes (Chen et al., 2022;
Goffi et al., 2025). The study by Gao et al. ({51t and 2= F, 2021)
showed that obesity increased the risk of VTE by 2.5 times (AUC
= 0.890), and Nudel et al. (2021) identified BMI >30 kg/m2 as a
core predictive factor in their bariatric surgery cohort. Clinicians
should pay special attention to VTE prevention in obese patients,
applying mechanical and pharmacological prophylactic measures
appropriately. ® Decreased mobility leads to impaired muscle
pump function and venous stasis, significantly increasing the risk
of VTE (Chatterjee et al., 2021; Nayak et al., 2024). A study by
Wang et al. (2020) showed that individuals with restricted mobility
had a 3.2-fold higher risk of VTE, while Franco-Moreno et al.
(2023) demonstrated a dose-dependent relationship between bed
rest duration and DVT incidence (OR = 1.8, 95% CI 1.2-2.7).
Therefore, early mobility interventions should be emphasized, and
optimal activity protocols for different patient populations need to
be explored. ® Gender differences play a significant role in VTE
risk. Women of reproductive age face elevated risk due to estrogen
effects, while older men exhibit high risk due to the accumulation
of risk factors (Schapkaitz et al., 2023; Giustozzi et al., 2021).
Nudel et al. (2021) identified male sex as an independent predictor
(OR = 1.4), and Wang et al. (2021) incorporated gender as a core
variable in their natural language processing model (AUC = 0.970).
Clinical risk assessment should account for gender differences,
and future efforts should focus on developing gender-specific
prediction models. (® Racial disparities are associated with genetic
predisposition, inflammatory status, and medical interventions.
Although African populations have a lower prevalence of inherited
thrombophilia, they exhibit a higher risk of VTE (Saber et al., 2022).
Nudel et al. (2021) found that African American patients had a 1.3-
fold increased risk (OR = 1.3), and Wang X. et al. (2023) validated
race as an independent predictive variable using an integrated
model (AUC = 0.920). Future research should further explore gene-
environment interactions related to race and uncover underlying
biological mechanisms through the integration of multi-omics data
and AI modeling.

4.3.2 Effective management of high-risk diseases
is central to reducing the risk of venous
thrombosis

® A history of venous thromboembolism (VTE) is the strongest
independent risk factor for VTE recurrence. The mechanisms
involve a persistent hypercoagulable state, abnormal repair following
vascular endothelial injury, and the procoagulant effect of residual
thrombosis (Simon et al.,, 2023). A study by Gao etal. (5L and
Z=7E P4, 2021) in orthopedics showed that this history increases
VTE risk by 4.8-fold (AUC = 0.890), while Wang X. et al
(2023) identified it as the highest-weight predictor in their
integrated model (AUC = 0.920). Consequently, long-term risk

management—including extended anticoagulation therapy and
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regular monitoring of relevant indicators—is essential for patients
with a prior VTE event (Simon et al., 2023). @ High-risk diseases
synergistically increase VTE risk through multiple mechanisms:
metabolic diseases cause endothelial glycation injury, cardiovascular
disorders lead to abnormal blood flow, inflammatory conditions
activate coagulation factors via cytokines, and malignancies directly
release procoagulant substances (Charlier et al., 2022; Egbe et al,,
2018; Patino-Trives et al., 2021). Wang et al. (2021) confirmed that
the presence of >2 high-risk diseases elevates VTE risk by 4.3 times
(AUC = 0.856), a correlation further validated by Chiasakul et al.
(2023) and Wei et al. (2024). In clinical practice, it is crucial
to establish disease-specific risk assessment systems and develop
targeted prevention strategies for specific disease combinations to
optimize individualized VTE management in high-risk patients. ®
Prolonged hospital stay is significantly associated with increased
VTE risk, which is attributed to reduced mobility, impaired muscle
pump function, and venous stasis in the lower limbs (Tondel et al.,
2022). Park et al. (2021) found that for every 5-day increase in
hospitalization, VTE risk rises by 1.8-fold—a conclusion supported
by Nassour et al. (2024) (AUC = 0.900) and Liu et al. (2025)
(OR = 2.1). Future research should focus on developing dynamic
risk assessment systems based on real-time monitoring data and
integrating them with electronic health records to enable automated
alerts. ® The Charlson Comorbidity Index (CCI), which reflects
comorbidity burden, shows a significant correlation with VTE
risk. The underlying mechanisms involve systemic inflammation,
activation of a procoagulant state, and the impact of polypharmacy
(Bonnesen et al., 2022). Park et al. (2021) demonstrated that patients
with a CCI 23 have a 3.5-fold higher VTE risk, and Jin et al. (2022)
included CCI as a core predictor (AUC = 0.773). Therefore, greater
emphasis should be placed on thromboprophylaxis in patients with
comorbidities, especially high-risk individuals with CCI >2. Future
efforts may explore comorbidity-specific risk prediction models and
develop individualized prevention and treatment strategies for this
special population.

4.3.3 Making reasonable treatment decisions is a
crucial measure for reducing the risk of venous
thrombosis

® Hormone therapy is unequivocally associated with an
increased risk of VTE, primarily due to disruption of the coagulation
balance. Exogenous hormones promote the synthesis of clotting
factors and inhibit anticoagulant proteins, while glucocorticoids
suppress the fibrinolytic system (Ayodele et al., 2022). Wang et al.
(2020) reported that hormone therapy increases VTE risk by
2.8-fold, and Jin et al. (2023) confirmed it as an independent
predictor in women of reproductive age using an NLP model
(AUC = 0.950). Individualized thrombotic risk assessment should
be conducted prior to initiating hormone therapy to optimize
safety in patients requiring long-term hormonal treatment. @
Blood transfusion is associated with an elevated risk of VTE.
Microparticles and free hemoglobin in stored blood trigger
inflammation and endothelial activation, while also enhancing
platelet activity and thrombin generation (Sheth et al, 2022).
Wang et al. (2020) found that perioperative transfusion increased
VTE risk by 3.2-fold, and Guan et al. (2023) supported transfusion
as an independent predictor using a random forest model (AUC =
0.937). These findings underscore the importance of strict adherence
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to transfusion indications and enhanced thrombotic monitoring
in patients requiring transfusion. ® Mechanical ventilation
significantly increases VTE risk. Positive pressure ventilation and
sedation-induced immobility reduce venous return and impair
muscle pump function (Sochet et al.,, 2022). Wang et al. (2020)
observed a VTE incidence of 28.6% in mechanically ventilated
patients, and Liu et al. (2025) indicated an 18% increase in risk for
every additional 24 h of ventilation. Future research should focus
on developing dynamic risk assessment models based on ventilation
parameters and evaluating the impact of alternative therapies, such
as extracorporeal support, on thromboprophylaxis to optimize
VTE management in critically ill patients. ® Surgical history
is an independent risk factor for VTE. Tissue injury during the
perioperative period releases tissue factor that activates coagulation,
while immobility contributes to venous stasis (Levy et al., 2023).
Anghele et al. (2024) reported a 5.8-fold increase in VTE risk
following major surgery, and Wang X. et al. (2023) identified
it as the third most important predictor in their integrated
model. Therefore, healthcare providers should implement stratified
prophylaxis strategies for surgical patients, selecting appropriate
anticoagulation regimens based on surgery type and individual
patient characteristics.(® Chemotherapy significantly increases the
risk of VTE through direct endothelial injury, promotion of tissue
factor release, and suppression of anticoagulant proteins (Izquierdo-
Condoy et al., 2025). Franco-Moreno et al. (2023) reported a VTE
incidence of 12.8% in chemotherapy patients, while Hu et al. (2025)
found that regimens containing bevacizumab were associated with
an additional 2.1-fold increase in risk. Future efforts should focus
on developing chemotherapy cycle-specific dynamic prediction
models that integrate pharmacogenomic profiles and real-time
biomarker monitoring to optimize thromboprophylaxis strategies
in cancer patients. (® Anticoagulant therapy exhibits a “biphasic
effect” on VTE risk: an initial transient hypercoagulable state may
occur, while long-term suboptimal adherence or inadequate dosing
increases the risk of recurrence (Li et al., 2023). Nudel et al. (2021)
demonstrated a 2.3-fold higher recurrence risk in patients with
subtherapeutic anticoagulation, and Hou et al. (2023) validated
anticoagulation intensity as a key predictive variable using a
neural network model (AUC = 0.970). Clinical practice should
emphasize drug monitoring and patient education, alongside the
development of intelligent dose-adjustment systems based on
real-time coagulation monitoring to enable precision thrombosis
management. & Diagnostic radiological procedures increase VTE
risk due to prolonged immobility in specific positions and the use of
contrast agents, which can cause endothelial injury and coagulation
activation (Oka et al., 2020). Park et al. (2021) observed a significant
rise in VTE risk within 30 days after contrast-enhanced CT (OR =
2.1), particularly among bedridden patients. Future research should
explore methods to mitigate contrast-induced endothelial damage
and develop risk assessment tools tailored to examination type and
duration. Contraceptive use significantly elevates VTE risk, as
exogenous estrogen upregulates the synthesis of clotting factors
and suppresses anticoagulant protein activity (Maughan et al.,
2022; Gialeraki et al., 2018). Jin et al. (2023) reported a 3.5-fold
increased risk among users, with even higher risk (OR = 6.8) in
carriers of Factor V Leiden mutation. Contraceptive prescriptions
should be carefully considered and preceded by individualized risk
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assessment, especially in patients with inherited thrombophilia or
other risk factors.

4.3.4 Dynamic monitoring of clinical indicators is
essential for reducing the risk of venous
thrombosis

® Hyperglycemia exhibits a dose-response relationship with
VTE risk, primarily mediated through endothelial dysfunction,
platelet activation, and impaired fibrinolysis (Niu et al., 2019).
Gao etal. (#i and 44274, 2021) demonstrated that fasting
blood glucose >7.0 mmol/L increased VTE risk by 2.3-fold, with
random forest models identifying glucose as a core predictive
variable (AUC =
elevated risk due to chronic inflammation and hemorheological

0.890). Diabetic patients face particularly

alterations. These findings underscore the importance of enhanced
glycemic
with hyperglycemia. @ Abnormal laboratory indicators reflect

monitoring and thromboprophylaxis in patients

multidimensional imbalances in coagulation, inflammation,
and hemorheology. Elevated D-dimer indicates coagulation
activation; increased fibrinogen promotes thrombus formation
and exacerbates stasis; abnormal clotting times reflect dysregulated
coagulation factors; and inflammatory markers such as C-reactive
protein contribute to thrombosis via procoagulant mechanisms
(Wang J. et al., 2023; Sleutjes et al., 2021). Li et al. (2022) confirmed
that combining D-dimer (>0.5mg/L) and fibrinogen (>4 g/L)
improved predictive performance (AUC = 0.839), while Wang et al.
(2021) found that dynamic changes in these markers offered greater
value than single measurements (AUC = 0.970). Future research
should focus on developing machine learning models capable
of integrating temporal variations in multiple biomarkers and
exploring the predictive utility of novel biomarkers to enable earlier

risk warning and precision interventions.

4.3.5 Routine catheter care is imperative for
reducing reduce the risk of venous thrombosis

The presence of a central venous catheter (CVC) or peripherally
inserted central catheter (PICC) significantly increases the risk
of venous thromboembolism (VTE). The underlying mechanisms
include vascular injury, altered hemodynamics, and catheter-blood
interface interactions. Catheter insertion causes direct vascular
endothelial damage and activates the coagulation cascade. The
persistent presence of the catheter alters blood flow patterns,
creating turbulence and low-shear zones that promote platelet
adhesion (Citla Sridhar et al., 2020; Lockwood and Desai, 2019).
A prospective study by Liu et al. (2021) reported a symptomatic
VTE incidence of 15.3% in patients with CVC/PICC (OR
=4.2), and Ryan et al. (2021) identified catheter-related factors as
an independent predictor using a gradient-boosted decision tree
model (AUC = 0.830). The risk of catheter-related thrombosis
is closely associated with insertion site, catheter diameter, and
indwelling duration. Clinical practice should adhere to best practices
in catheter management, including ultrasound-guided insertion,
minimizing catheter size, and regularly reassessing the necessity
of catheter retention. Future efforts should explore personalized
catheterization strategies based on individual vascular anatomy
and develop predictive models integrating clinical factors and
biomarkers to enable early warning and precision prevention of
catheter-related thrombosis.
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4.4 Sources and evidence synthesis of
heterogeneity in Al model performance

The Al models synthesized in this study demonstrated excellent
predictive performance (AUC: 0.740-0.990), yet significant
heterogeneity was observed in their outcomes. This variation is
not coincidental but stems primarily from three sources. First,
differences at the data level play a central role. The included studies
utilized diverse data sources—some derived from single-center
electronic health records, while others originated from multi-
center databases or disease-specific registries. Variations in data
quality, completeness, and coding consistency directly influence
model performance. For example, studies by Wang et al. (2021) and
Jin et al. (2023), which leveraged large, rigorously validated data
warehouses, achieved notably high AUC values above 0.95. Second,
considerable disparities in sample sizes and the number of outcome
events contributed to differences in model stability. Studies with
sample sizes exceeding ten thousand cases (Vollmer et al., 2020)
generally demonstrated better model generalizability compared to
those with smaller samples (Nudel et al., 2021), even though the
latter occasionally reported very high AUC values at the risk of
overfitting. Finally, variations in model algorithms and validation
methods introduced additional heterogeneity. Although ensemble
learning models overall performed superiorly, their efficacy heavily
depended on hyperparameter tuning and the rigor of internal
validation strategies.

Therefore, when interpreting the predictive performance of
these Al models, it is essential to critically consider the design
context and data foundations of the original studies. Future research
should focus on establishing standardized data reporting protocols
and model validation workflows to facilitate evidence integration
and comparison across the field.

5 Limitations

Based on the analysis of the 23 included studies, 70% (n =
16) were retrospective in design, which may introduce recall bias.
Furthermore, while this study focuses on predictive performance,
the “black-box” nature of most AI models remains a significant
challenge in terms of interpretability. Although these models
can effectively predict risk, they often fail to provide clinicians
with intuitive decision-making rationale, thereby hindering clinical
translation. Finally, as a scoping review, this study aims to outline
the overall landscape of the field but does not include meta-
analysis of model performance, which limits the ability to draw
definitive conclusions regarding the effectiveness of the models.
Future research should incorporate more prospective designs, strive
to develop interpretable AI models, and explore validation of model
generalizability across different studies and populations.

6 Conclusion

This paper systematically reviews the application status of Al
in the VTE risk assessment through a scoping review. The study
found that AI models such as random forest, gradient boosting
decision tree, and natural language processing demonstrated high
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performance in predicting VTE risk, with AUC values between
0.740 and 0.990, which was much better than traditional risk
assessment scores. In addition, AI can integrate multi-source
data, including patient factors, disease factors, treatment factors,
laboratory indicators, and catheter factors, to achieve dynamic and
personalized risk assessment. Among them, age =70 years old,
obesity, history of venous thrombosis, and abnormal laboratory
indicators were identified as key predictive factors. It provides a
more accurate risk stratification tool for clinical practice and helps
optimize VTE prevention and treatment strategies. Future studies
should further explore multicenter, prospective data to verify the
universality and clinical practicability of AT models. At the same
time, the development of a dynamic prediction model that can
integrate real-time monitoring data and realize automatic early
warning combined with an electronic medical record system will
greatly improve the efficiency of VTE management. In addition,
in the future, we can pay attention to the personalized model of
specific populations and explore the combination of new biomarkers
and AI technology, which is expected to open up a new way for
the prevention and treatment of VTE. Through the above ways, Al
technology is continuously optimized to achieve early intervention
and precise management of VTE, reduce the disease burden, and
improve the prognosis of patients.
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