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Objective: Digital-based visual training (VT) is widely employed to improve
visual-cognitive performance, yet its efficacy may be confounded by the
“learning effect”.

Methods: A systematic literature search was conducted across PubMed, Web
of Science, MEDLINE, SPORTDiscus, and Cochrane Library, covering all studies
published up to 8 May 2025. The search was limited to peer-reviewed articles
written in English. Only randomized controlled trials (RCTs) that included both
baseline and post-intervention measures of visual-cognitive performance were
eligible. Subgroup analysis was conducted based on the presence or absence of
task similarity between training and testing conditions, to assess potential bias
introduced by the “learning effect”.

Results: The search identified 3,798 articles, of which 33 RCTs involving 1,048
participants met the inclusion criteria for meta-analysis. VT was found to
significantly improve visual attention, reaction time, decision-making time,
decision-making accuracy, and eye—hand coordination. Subgroup analyses
revealed that studies classified as “learning effect present” (LE+) consistently
reported substantially larger effect sizes than those without (LE-). Significant
between-group differences were observed for visual attention (SMD = 1.65 vs.
0.07; p = 0.00), reaction time (SMD = 2.66 vs. 0.50; p = 0.00), and decision-
making accuracy (SMD = 146 vs. 0.62; p = 0.03), indicating that task similarity
may artificially inflate performance outcomes.

Conclusion: These findings indicate that observed improvements may reflect
task familiarity rather than true cognitive enhancement. To improve evaluation
validity, future studies should avoid task redundancy, incorporate retention
testing, and adopt structurally distinct outcome measures.

digital-based training, visual-cognitive skills, practice effect, task similarity, sports vision
training
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1 Introduction

Sports vision refers to the integrated skills to perceive, process,
and respond to critical environmental information in competitive
scenarios (Erickson, 2021). It not only serves as a vital bridge
between decision-making and motor execution but also directly
impacts athletic performance under high-speed confrontations,
tactical adaptations, and extreme time pressure (Erickson et al.,
2011). Enhancing sports vision has become a major focus of research
and practice in elite athletic training (Appelbaum and Erickson,
2018; Laby and Appelbaum, 2021). The integration of sports science
and digital technology has led to the widespread adoption of diverse
visual training (VT) methods in elite sports, aiming to improve
athletes” visual function and optimize information processing and
decision-making under pressure (Kittel et al., 2024; Jothi et al., 2025).
Empirical studies and systematic reviews have shown that digital VT
methods—such as stroboscopic visual training (Jothi et al., 2025;
Zwierko et al., 2023; Zwierko et al.,, 2024), perceptual-cognitive
training (Miiller et al., 2024; Kassem et al., 2024; Zhu et al., 2024),
and virtual reality training (Liu et al., 2024; Skopek et al., 2023) —
can significantly improve key visual-cognitive skills like attention,
reaction time, and decision-making, demonstrating strong potential
for practical implementation. However, Fransen (Fransen, 2024)
argued that current scientific evidence is insufficient to support
the “far transfer” of perceptual or cognitive training to athletic
performance. Many commercial digital training tools appear to
facilitate “near transfer” but fail to improve on-field performance
(Harris et al., 2018). This discrepancy may result from structural
similarities between training and testing tasks, leading to a so-
called “learning effect” (Basner et al.,, 2020). The term “learning
effect” denotes performance improvements driven by procedural
familiarity with tasks or devices rather than genuine skill acquisition.
In such cases, repeated exposure enhances test scores through
familiarity alone, independent of true training-induced adaptation.

Recent studies (Basner et al., 2020; Chaloupka and Zeithamova,
2024) have highlighted that the structural overlap between
training and testing tasks—a common feature in cognitive training
research—can trigger a “learning effect”, whereby participants
improve on post-tests not due to true skill enhancement, but
because of familiarity with stimuli, response formats, or device
interfaces. If not adequately controlled, this bias may result in
improvements driven by faster procedural memory or task-specific
strategy optimization, rather than genuine gains in visual-cognitive
skills. Similar issues are evident in VT research. Krasich, Ramger
(Krasich et al, 2016) reported that repeated testing with digital
devices led to linear performance improvements over a short period,
largely due to growing familiarity with the equipment. Reported
high training effects in this field may not truly reflect visual system
plasticity, but may instead overestimate efficacy due to “learning
effect”. Meta-analyses by Miiller, Morris-Binelli (Miiller et al., 2024)
and Zhu, Zheng (Zhu et al., 2024) found that improvements in
decision-making through perceptual-cognitive training were greater
in laboratory tests than in field-based assessments (SMD = 1.26 vs.
0.85; 1.51 vs. 0.65), highlighting insufficient “far transfer” effects.
To date, no study has systematically examined the “learning effect”
as a moderator of VT outcomes. This gap represents an important
methodological hindrance, as task-related familiarity may artificially
inflate post-test performance and mask the true efficacy of training
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interventions. Consequently, the bias introduced by learning effects
has persisted largely unaddressed in the literature.

Therefore, based on the above research background, this study
conducted a systematic review and meta-analysis to examine whether
the “learning effect” moderates the outcomes of VT interventions.
Subgroup analyses were employed to compare studies with and
without the presence of “learning effect”, aiming to identify a potential
source of bias that may have been overlooked in previous research.
The findings are intended to provide methodological guidance and
empirical evidence for future studies in the areas of intervention design,
outcome measure selection, and interpretative frameworks.

2 Materials and methods

This systematic review and meta-analysis followed the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) guidelines (Moher et al., 2010) and was preregistered on
PROSPERO (ID: CRD420251020142).

2.1 Search strategy

A comprehensive literature search up to 8 May 2025 was
conducted across five electronic databases: PubMed, Web of
Science (Core Collection), MEDLINE, SPORTDiscus, and Cochrane
Library. Boolean search operators (“AND’, “OR”) were applied with

Y

combinations of the following keywords: “visual training’,

» <« » «. »

training’, “eye training’, “visuomotor training’,

vision
visual motor training’,
« A, i, L«

perceptual training’, “perceptual-cognitive training’, “temporal
occlusion training’, “strobe training’, “stroboscopic training’, “virtual

» < »

reality training”, “VR training’,

» <

visual-spatial training”, “visual search

Y

training’,

»

multiple object tracking training’, “randomized controlled

»

trial, “random allocation”, “RCT”, “randomized” and “randomly”.
The full search strategy is provided in Supplementary Appendix 1.
Manual searches of reference lists from included studies were
conducted. In addition, narrative and systematic reviews (Jothi et al.,
2025; Miiller et al., 2024; Zhu et al., 2024; Lochhead et al., 2024)
on related topics were retrieved. Automated duplicate detection
and title-abstract screening were performed using Rayyan software
(Ouzzanietal., 2016). After all duplicates were removed, two reviewers
(YG and JQ) independently assessed the identified publications
using predetermined criteria. Any disagreements were resolved by
consultation with a third reviewer (MY). When the titles and abstracts
suggested that the article might meet the inclusion criteria, full-
text articles were retrieved. If a manuscript was unavailable, the
corresponding author was contacted by email. The study selection
process is illustrated in Figure 1.

2.2 Inclusion and exclusion criteria

Inclusion and exclusion criteria were established using a revised
PICOS framework (Amir-Behghadami and Janati, 2020). Only
English-language randomized controlled trials published in peer-
reviewed journals were included; studies in other languages or
those that were non-randomized, uncontrolled, or cross-sectional
were excluded.
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FIGURE 1
PRISMA flow diagram for study inclusion.

2.2.1 Types of population

Participants included in the study were not restricted by gender
but were required to have a certain level of sport experience
and engagement in a specific sport discipline. According to
the criteria (McKay et al., 2022), all participants were classified
at least at Tier 2 (Trained) or above, as individuals at this
level possess a relatively stable foundation in physical fitness,
technical skills, and sport-specific performance. This ensures greater
reliability and validity of performance-related data and minimizes
measurement error and bias associated with low physical activity
levels. Additionally, participants were required to be older than 10
years (Sanchez-Gonzalez et al., 2022; Leat et al., 2009) and younger
than 60 years (Mehta, 2015), in order to avoid the confounding
effects of growth, development, and age-related decline on visual and
motor functions. All participants had to be healthy individuals with
no existing musculoskeletal injuries (e.g., chronic ankle instability)
or visual impairments (e.g., high myopia) that could influence the
outcomes of visual ability assessments.

2.2.2 Types of intervention

According to a recent review (Lochhead et al, 2024), VT
should be defined as a structured, task-specific intervention
aimed at enhancing visual-perceptual and visual-cognitive skills
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that are critical to athletic performance. Based on the intended
mechanisms (Appelbaum and Erickson, 2018), digitally-based
VT can be classified into three categories: Component Skill
Training, Naturalistic Training Approaches, and Integrated Training
Batteries. Therefore, included studies must align with the core
characteristics of these training modalities. In addition, acute
intervention studies were excluded; thus, only interventions
included. This
threshold was applied to exclude acute or single-session studies,

with a minimum duration of 1week were

which primarily capture immediate practice effects rather than
training-based adaptations (Appelbaum and Erickson, 2018;
Smith and Mitroff, 2012).

2.2.3 Types of comparison

In this review, single-arm trials or two-armed VT intervention
design studies without a valid comparator were excluded. Control
groups may include either active controls (e.g., alternative training
such as regular training or training without visual intervention
condition) or passive controls (no intervention). If a study
incorporates both active and passive control (no-intervention)
conditions, the passive control group were prioritized, because they
minimize confounding effects from alternative training programs
and provide a clearer estimate of the true efficacy of VT.
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2.2.4 Types of outcomes

The visual skills measures were categorized into two main
domains: visual-perceptual and visual-cognitive skills. According
to the study by Krasich, Ramger (Krasich et al., 2016), significant
learning effects were observed in tasks with high visuomotor control
demands (Perception Span, Hand Reaction Time, Go/No Go, and
Eye-Hand Coordination), whereas no significant progress was seen
in tasks involving only visual sensitivity—measures that are also
difficult to improve through specific VT (Shekar et al., 2021). This
suggests that the observed improvements in performance due to
repeated testing with digital devices were primarily attributable
to participants’ increased familiarity with the equipment rather
than the intervention itself. Therefore, the indicators included in
the present meta-analysis were primarily visual-cognitive skills,
including visual attention, reaction time, decision-making skills, and
eye hand coordination. Studies that did not use digital devices to
assess these specific outcomes were excluded from the meta-analysis.
Digital devices were defined as electronic or computerized tools
that provide standardized visual stimuli and/or automatically record
responses, ensuring objective and reproducible measurement.
Eligible devices included video-based testing platforms, multiple-
object tracking software, light-board systems, and virtual reality
headsets. By contrast, studies relying solely on in-game performance
indicators (e.g., passing or shooting accuracy) or subjective
coach observation without digital instrumentation were excluded.
To allow for the calculation of effect sizes (ES), studies were
required to provide adequate statistical information, including pre-
post repeated measures and/or change scores along with their
corresponding standard deviations. Studies were not excluded based
on the specific methodologies employed to assess these outcomes.

2.2.5 Types of study design

Only randomized controlled trials (RCTs) were included.

2.3 Data extraction procedures

Two reviewers (YG and JQ) independently extracted the data
using a customized Excel worksheet (Microsoft Corp., Redmond,
WA, United States). Any discrepancies during the extraction process
were resolved through discussion, with arbitration by a third
reviewer (MY) when consensus could not be reached. The following
data were extracted from each included study: (1) authors and
year of publication; (2) participant characteristics, including sample
size, sex, age, sport type, and performance level; (3) intervention
characteristics, such as training modality, frequency, and duration;
and (4) outcome measures, including the test instruments used,
as well as the reported means, standard deviations, and standard
errors for both intervention and control groups. In accordance
with the approach proposed by Thiele, Prieske (Thiele et al., 2020),
when multiple outcomes were reported, the outcome with the most
significant was prioritized. For studies lacking complete numerical
data or reporting results only in graphical form, the original authors
were contacted to obtain the necessary information. If the data
could not be retrieved through author correspondence, values were
estimated from figures using WebPlotDigitizer website (https://
automeris.io/WebPlotDigitizer) (Burda et al., 2017).
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2.4 Risk of bias

The risk of bias and methodological quality of the included
studies were independently evaluated by two reviewers (YG and JQ),
following the Cochrane Risk of Bias 2.0 framework (Burda et al.,
2017). This tool assesses potential bias across several domains,
including: random sequence generation, allocation concealment,
blinding of participants and personnel, blinding of outcome
assessors, completeness of outcome data, and selective outcome
reporting. Each domain was rated as having a low risk, high risk, or
some concerns. Any discrepancies between the two reviewers were
resolved through consensus discussions, with arbitration by a third
reviewer (MY) when necessary.

2.5 Statistical analysis

2.5.1 Data synthesis and effect measures

To evaluate the effectiveness of VT on visual-cognitive skills
and to investigate whether the “learning effect” has influenced
the outcomes of existing studies, the present meta-analysis was
conducted following the procedures outlined below. Following
data extraction based on the aforementioned procedures, the
first step involved calculating the mean difference (MDdiff) and
the corresponding standard deviation (SD ;7). The MDyy of the
intervention and control groups between the pre- and post-test
changes was calculated using Equation 1. The standard deviation
(SDgyiz) of the changes was determined using Equation 2. In
cases where the correlation coefficient (Corr) was not explicitly
reported in the studies, it was calculated through correlation
analysis based on raw data. If the original data could not be
obtained, the original research teams were contacted for provision.
If these methods were not feasible, Corr was assumed to be
0.5, as suggested by the Cochrane Handbook (Cumpston et al.,
2019). This intermediate value balances the potential under- and
over-estimation of variability in the absence of study-specific
correlation data.

MDdiff = Mpost_Mpre (1)

SDyij7 = \[SDpr? + D2 X Corrx Dy, X SDpoq (2)

In accordance with Hedges and Olkin (Hedges and Olkin, 1985),
the standardized mean differences (SMD) were adjusted for sample
size using the correction factor 1-[3/(4 N-9)]. Given that the sample
sizes of most of the included studies are small, to enhance the
reliability of the research, Hedge’s g, which has been adjusted for bias
and based on Equations 3, 4, was used as the effect size indicator for

each study.
' VT(Mchange)'CON(Mchange) 3
Hedge'sg = x| 1-
SDPDDle 4(7’11 + f’lz)-g
(3)
1,-1) x SD? + (n,-1) x SD?
D = ((n)-1) X SD] + (n,-1) X SD3) @

(n, +n,-2)

In the above formula, M, .. represents the mean change from
pre-to post-intervention in the VT and control groups, respectively.
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SD0eq denotes the pooled standard deviation of the change scores
across both groups, while #; and n,, as well as SD, and SD,, refer
to the sample sizes and standard deviations of the two groups,
respectively. Hedge’s g values were classified as small (<0.50),
medium (0.50-0.80), and large (>0.80) (Hedges and Olkin, 1985).

2.5.2 Meta-analysis and test for heterogeneity

The meta-analysis and data visualization were conducted
using the “meta” and “metafor” packages in R software (version
4.3.3, R Core Team, Vienna, Austria). A conventional two-
level meta-analysis approach was applied, utilizing the inverse-
variance weighting method. Effect sizes were synthesized under a
random-effects model based on the DerSimonian-Laird method
(DerSimonian and Laird, 1986). This model assumes that effect sizes
are drawn from a distribution of true effects rather than from a single
homogeneous population (Cumpston et al., 2019). By incorporating
between-study variability, it allows for a more generalizable and
accurate estimation of the overall effect size. To avoid unit-of-
analysis errors, when multiple intervention groups were compared
against a shared control group, the sample size of the shared group
was evenly divided across comparisons (Poon et al., 2024).

Between-study heterogeneity was evaluated using both the
I? statistic and Cochrans Q (Chi-square) test. The degree of
heterogeneity, as indicated by I%, was categorized as low (<25%),
moderate (25%-50%), high (50%-75%), or considerable (>75%)
in accordance with established guidelines (Higgins et al., 2003).
These metrics provided insight into the extent to which variability
in effect sizes was attributable to true heterogeneity rather than
sampling error.

2.5.3 Subgroup analysis

To explore whether the presence of “learning effect” moderated
the observed VT outcomes, a subgroup analysis was performed.
A systematic evaluation of the full texts was conducted, focusing
on the consistency between the training tasks and the outcome
assessments, including the devices used. Studies were classified into
the Learning Effect Present (LE+) group if both of the following
criteria were met: (1) the digital device used for training and testing
was identical or highly similar (Poltavski et al., 2021), and (2) the
structure and mode of the training task closely matched those of
the outcome measure (Fransen, 2024). Studies that did not meet
both criteria—or met only one—were assigned to the Learning Effect
Absent (LE-) group. For example, studies were classified as “LE+” if
the intervention involved a multiple-object tracking task using the
same or a highly similar digital platform as the outcome test, or if a
computerized visual reaction-time training program was evaluated
with the same reaction-time software during testing. Differences in
pooled effect sizes between subgroups were tested using a mixed-
effects model (Christ, 2009). When the number of studies meeting
the inclusion criteria (n = 5) (Deeks et al., 2019) is insufficient to
perform a subgroup analysis, a systematic review were conducted
for that outcome.

2.5.4 Risk of publication bias and sensitivity
analysis

To evaluate the presence of publication bias, contour-
enhanced funnel plots (Peters et al., 2008) were generated and
Egger’s test (Fernandez-Castilla et al., 2021) was performed,
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provided that the number of included studies in the respective
analysis was ten or more. A p-value greater than 0.05 was interpreted
as indicating no significant risk of publication bias. These methods
allow for both visual and statistical assessment of asymmetry in
the distribution of effect sizes, thereby assisting in determining the
robustness and reliability of the pooled estimates. A leave-one-out
sensitivity analysis was conducted by sequentially excluding each
individual study to assess whether the overall pooled effect size was
disproportionately influenced by any single study.

3 Results
3.1 Study characteristics

A total of 3,798 studies were retrieved from PubMed (n = 589),
Web of Science™ (n = 536), MEDLINE (n = 1,150), SPORTDiscus
(n = 705), and Cochrane Library (n = 666). Additionally, 20
records were identified through manual search. After removing
duplicates and applying predefined inclusion and exclusion criteria,
33 studies (Gabbett et al., 2007; Maman et al., 2011; Paul et al., 2011;
Serpell et al., 2011; Schwab and Memmert, 2012; Lorains et al., 2013;
Murgia et al., 2014; Nimmerichter et al., 2015; Alder et al., 2016;
Alsharji and Wade, 2016; Hohmann et al., 2016; Milazzo et al., 2016;
Romeas et al., 2016; Gray, 2017; Brenton et al., 2019a; Brenton et al.,
2019b; Petri et al, 2019; Romeas et al., 2019; Liu et al., 2020;
Schumac et al.,, 2020; Bidil et al, 2021; Ehmann et al., 2022;
Harenberg et al,, 2022; Theofilou et al., 2022; Fortes et al., 2023;
Phillips et al., 2023; Zwierko et al., 2023; Di et al., 2024; Guo et al.,
2024; Lachowicz et al., 2024; Lucia et al., 2024; Mancini et al., 2024;
Rodrigues etal., 2025) were included in the meta-analysis (Figure 1).

All included studies adopted a randomized controlled trial
design, involving a total of 1,048 participants. The participants were
athletes from a variety of sports, including soccer (Lorains et al.,
2013; Murgia et al., 2014; Nimmerichter et al., 2015; Romeas et al.,
2016; Schumac et al., 2020; Ehmann et al., 2022; Harenberg et al.,
2022; Theofilou et al.,, 2022; Fortes et al., 2023; Phillips et al.,
2023; Rodrigues et al., 2025), volleyball (Zwierko et al.,, 2023;
Mancini et al., 2024), softball (Gabbett et al, 2007), tennis
(Maman et al, 2011), table tennis (Paul et al, 2011), rugby
(Serpell et al, 2011), hockey (Schwab and Memmert, 2012),
badminton (Alder et al., 2016; Romeas et al., 2019; Bidil et al.,
2021), handball (Alsharji and Wade, 2016; Hohmann et al., 2016),
karate (Milazzo et al., 2016; Petri et al., 2019), baseball (Gray, 2017;
Liu et al.,, 2020), cricket (Brenton et al., 2019a; Brenton et al.,
2019b), fencing (Di et al., 2024), skeet shooting (Guo et al., 2024),
esports (Lachowicz et al., 2024) and basketball (Lucia et al., 2024).
The sample sizes of individual studies ranged from 15 to 80,
with intervention durations spanning 1 week to 6 months. Training
frequency varied between one and seven sessions per week, and each
session lasted from 6 to 180 min.

The VT interventions were classified into the following
categories: (1) perceptual-cognitive training [n 10 studies
(Gabbett et al., 2007; Serpell et al., 2011; Lorains et al., 2013;
Murgia et al., 2014; Nimmerichter et al., 2015; Alder et al., 2016;
Alsharji and Wade, 2016; Hohmann et al., 2016; Brenton et al., 2019a;
Schumac et al., 2020)]; (2) visuomotor coordination training [n = 13
studies (Maman et al., 2011; Paul et al., 2011; Schwab and Memmert,
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Ehmann et al. 2022 14 -14 50 13 -29 53 —l-‘—“ 0.30 [-0.46; 1.06] 9.2%
Harenberg et al. 2022 16 5 13 15 70N — -0.15  [-0.86; 0.55] 9.4%
Fortes et al. 2023 14 4 8 14 2 8 —*—:h 032 [-0.42;1.07] 9.3%
Guo etal. 2024 10 -1 131 10 28 130 —+—E -029 [-1.17,0.59] 8.6%
< .

H
Romeas et al. 2019 [1] 8 1 0 5 0 1 —— 133 [0.06;2.60] 6.8%
Romeas et al. 2019 [2] 8 1 1 5 0 1 +—a— 080 [-0.29;2.09] 7.2%
Romeas et al. 2019 [3] 8 0 5 0 1 —— 119 [-0.05;243] 7.0%
Ehmann et al. 2022 14 28 9 13 2 9 v —E— 282 [1.71;3.83 7.6%
Harenberg et al. 2022 16 0 15 -0 0 E—.— 1.70  [0.86;2.54] 8.8%
Phillips et al. 2023 12 1 0 10 o 0 —E— 170 [0.70;271]  8.0%

I

H
Random effects model 152 127 ‘ 0.77 [0.25;1.30] 100.0%
Heterogeneity: P= 74%, “=0 6353, p <001 ' ' !
Test for subgroup differences 7f =28.04,df=1(p <0.01) 4 2 0 2 4
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FIGURE 2
Random-effects meta-analysis of the comparative effects of visual training on visual attention between the "LE-"and "LE+" groups.

2012; Brenton et al., 2019a; Brenton et al., 2019b; Liu et al., 2020;
Bidil et al., 2021; Theofilou et al., 2022; Di et al., 2024; Guo et al.,
2024; Lucia et al., 2024; Mancini et al., 2024; Rodrigues et al., 2025)];
(3) multiple object tracking training [n = 4 studies (Romeas et al.,
2016; Romeas et al., 2019; Ehmann et al., 2022; Phillips et al.,
2023)]; (Laby and Appelbaum, 2021); stroboscopic visual training
[n = 3 studies (Liu et al., 2020; Fortes et al., 2023; Zwierko et al.,
2023)]; (Kittel et al., 2024); virtual reality training [n = 3 studies
(Gray, 2017; Petri et al., 2019; Lachowicz et al., 2024)]. Furthermore,
upon detailed evaluation of the methodological rigor across studies,
only eleven were ultimately considered to report outcome measures
that were not confounded by potential “learning effect”. Further
details regarding study characteristics and intervention protocols are
summarized in Supplementary Appendix Table 2.1.

3.2 Risk of bias

The risk of bias was evaluated using the Cochrane
Risk of Bias 2.0 (RoB 2) the
presented in Supplementary Appendix Figures 3.1

results are
and 3.2
Although all included studies identified themselves as randomized

tool, and

controlled trials, only 11 clearly described the method used for
random sequence generation. Consequently, the domain DI
(randomization process) was rated as “low risk” in these studies,
while the others were judged as having “some concerns” due
to insufficient reporting on randomization procedures. For D3
(missing outcome data), six studies were classified as “high risk”
owing to substantial attrition that resulted in marked imbalance
between groups. In terms of D4 (measurement of the outcome),
most studies (n = 23) were rated as having “high risk” due to
employing subjective evaluation methods and the presence of
“learning effect”. In addition, nine other studies were judged as
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having “some concerns” due to the lack of blinding in outcome
assessment. All included studies were marked as having “some
concerns” for D5 (selection of the reported result), primarily
due to incomplete reporting or absence of pre-specified analysis
plans. Overall, 22 studies were deemed to be at “high risk’
and the remaining were categorized as having “some concerns”
It should be noted that the high proportion of studies rated
as “high risk” was primarily driven by Domain 4, where the
presence of “learning effects” compromised the validity of
outcome measures. In addition, several studies suffered from
high attrition rates. These limitations may have inflated the
reported effects and should be considered when interpreting the
overall findings.

3.3 Main analyses

Regarding the impact of VT on visual attention (Figure 2), eight
studies comprising twelve intervention groups and a total of 269
participants were included. The meta-analysis revealed a statistically
significant improvement [SMD = 0.77; 95% CI = (0.25-1.30); I* =
74%; p = 0.00], indicating a medium effect size. High heterogeneity
was observed. Egger’s test indicated potential publication bias in the
primary pooled effect size (p = 0.03), supported by asymmetry in the
funnel plot (Figure 7a). Sensitivity analysis confirmed the robustness
of the pooled estimate (Supplementary Appendix Figure 4.1).
Subgroup analysis showed that the “LE-" group did not exhibit
a statistically significant improvement [k = 6, n = 160, SMD = 0.07;
95% CI = (~0.25 to 0.38); I2 = 0% (low); p > 0.05], while the “LE+”
group demonstrated a significant improvement with a large effect
size [k = 6, n = 109, SMD = 1.65; 95% CI = (1.15-2.15); I* = 24%
(low); p < 0.05]. A significant between-group difference was detected
(p =0.00).
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Random-effects meta-analysis of the comparative effects of visual training on reaction time between the "LE-" and "LE+" groups.

Regarding the impact of VT on reaction time (Figure 3),
thirteen studies involving thirteen intervention groups and a total
of 392 participants were included. The meta-analysis revealed
a statistically significant improvement [SMD = 0.91; 95% CI =
(0.36-1.47); I* = 77%; p = 0.00], indicating a large effect size.
Considerable heterogeneity was observed. Eggers test did not
indicate significant publication bias (p = 0.07), although visual
inspection revealed asymmetry in the funnel plot (Figure 7b).
Sensitivity analysis confirmed the robustness of the pooled
effect size (Supplementary Appendix Figure 4.2). Subgroup analysis
showed that the “LE-" group exhibited a statistically significant
improvement with a moderate effect size [k = 10, n = 319, SMD =
0.50; 95% CI = (0.23-0.78); I* = 31% (moderate); p > 0.05], while
the “LE+” group demonstrated a large and significant effect [k =
3, n=73, SMD = 2.66; 95% CI = (1.23-4.09); I* = 75% (high);
p > 0.05]. A statistically significant difference was observed between
the two subgroups (p = 0.00).

Regarding the impact of VT on decision-making time (Figure 4),
eight studies comprising eight intervention groups and a total of 171
participants were included. The meta-analysis showed a statistically
significant improvement [SMD = 0.63; 95% CI = (0.27-1.00); I?
= 22%; p = 0.00], with low heterogeneity observed. Egger’s test
indicated no significant publication bias (p = 0.55), which was
consistent with the symmetrical distribution observed in the funnel
plot (Figure 7¢). Sensitivity analysis supported the robustness of the
pooled effect size (Supplementary Appendix Figure 4.3). Subgroup
analysis revealed that the “LE-” group did not show a statistically
significant improvement [k = 2, n = 58, SMD = 0.41; 95% CI =
(=0.30-1.12); I* = 46% (moderate); p > 0.05], while the “LE+” group
exhibited a significant improvement with a moderate effect size
[k =6, n =113, SMD = 0.74; 95% CI = (0.30-1.19); I* = 18% (low);
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p < 0.05]. No significant difference was detected between the two
subgroups (p = 0.44).

Regarding the impact of VT on decision-making accuracy
(Figure 5), seventeen studies comprising twenty-one intervention
groups and a total of 471 participants were included. The meta-
analysis revealed a statistically significant improvement [SMD =
1.15 95% CI = (0.69-1.61); I> = 77%; p = 0.00], indicating
a large effect size. Considerable heterogeneity was observed.
0.01),
consistent with the asymmetry observed in the funnel plot

Egger’s test indicated potential publication bias (p

(Figure 7d). Sensitivity analysis confirmed the robustness of the
pooled effect size (Supplementary Appendix Figure 4.4). Subgroup
analysis showed that the “LE-" group demonstrated a statistically
significant improvement with a moderate effect size [k = 7, n =
194, SMD = 0.62; 95% CI = (0.23-1.00); I? = 47% (moderate); p<
0.05], while the “LE+” group exhibited a significant improvement
with a large effect size [k = 14, n = 277, SMD = 1.46; 95% CI
= (0.80-2.12); I = 80% (considerable); p < 0.05]. A statistically
significant difference was observed between the two subgroups
(p=0.03).

Regarding the impact of VT on eye-hand coordination (Figure 6),
three studies comprising three intervention groups and a total of 110
participants were included. The meta-analysis revealed a statistically
significant improvement [SMD = 0.83; 95% CI = (0.44-1.22); I* =
0%; p = 0.00], indicating a large effect size with low heterogeneity.
Egger’s test indicated no evidence of publication bias (p = 0.39), which
was consistent with the symmetrical distribution observed in the
funnel plot (Figure 7e). Sensitivity analysis supported the robustness
of the pooled effect size (Supplementary Appendix Figure 4.5). As
the number of included studies was fewer than five, subgroup
analysis was not conducted.
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FIGURE 4
Random-effects meta-analysis of the comparative effects of visual training on decision-making time between the "LE-" and "LE+" groups.

4 Discussion

4.1 Influence of “learning effect” on the
effectiveness of visual training

This study conducted a systematic subgroup analysis to examine
the moderating role of the “learning effect” on the efficacy of
VT across various visual-cognitive outcomes. Among the 33 RCTs
included, 22 studies met the predefined criteria for the presence
of a “learning effect” (LE+). Across four key outcomes—visual
attention, reaction time, decision-making time, and decision-
making accuracy—the “LE+” group consistently exhibited larger
effect sizes compared to the “LE-" group. Notably, significant
between-group differences were observed for visual attention (p
= 0.00), reaction time (p =0.00), and decision-making accuracy
(p =0.03).

These findings suggest that when test tools and procedures
are structurally similar to the training tasks, participants tend
to exhibit better performance, likely due to familiarity with the
device interface, stimulus presentation, and response format. Such
improvements do not necessarily reflect genuine enhancement of
neural processing capabilities but may instead result from task-
dependent procedural memory activation or strategic response
optimization, known as the “learning effect” (Basner et al., 2020).
This also supports the argument of Fransen (Fransen, 2024),
who emphasized that the benefits of VT fail to demonstrate
robust “far transfer” effects to actual athletic performance. In VT
interventions—particularly in perceptual-cognitive and visuomotor
coordination training—the “learning effect” has emerged as
a systematically overlooked source of bias. It systematically
inflates training outcomes through task structural overlap, thereby
obscuring the actual extent of neuroplasticity in the visual system
(Krasich et al., 2016; Yoon et al., 2019). For example, in the case
of visual attention, studies (Romeas et al., 2019; Ehmann et al.,
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2022; Harenberg et al., 2022; Phillips et al., 2023) in the “LE+” group
included multiple object tracking tasks during training and reported
significant improvements (SMD = 1.65). In contrast, when training
tasks lacked similarity to the tests—even when they contained
attention-related components (Ehmann et al., 2022; Harenberg et al.,
2022; Guo etal., 2024) —no meaningful improvement was observed
(SMD =0.07). While our previous studies (Guo etal., 2024) reported
no significant effects of VT on reaction time, the current analysis
showed different results, potentially due to the inclusion of Tier
2 trained individuals who have greater room for improvement
compared to athletes. A similar pattern was observed for reaction
time: the “LE+” group showed markedly stronger effects, and all
three studies (Schwab and Memmert, 2012; Bidil et al., 2021;
Mancini et al, 2024) in this group used choice reaction time
tasks. Choice reaction time tasks typically involve discriminating
and matching multiple stimuli and making rule-based judgments,
making them more complex than simple reaction time tasks
(Rosenbaum, 2010). As a result, participants may develop specific
strategies or response patterns through repeated exposure, relying
on strategic responses rather than genuine improvements in neural
conduction speed or visual-cognitive processing. In addition, this
type of test may be influenced by participants’ compensatory
mechanisms for slower responses (Guo et al., 2024), further
contributing to inflated test scores.

In decision-making assessments, both response time and
accuracy appeared to be affected by the “learning effect”, suggesting
that improvements in decision-making following VT may be
substantially influenced by test design and task structure. Decision-
making inherently involves the rapid identification of external
cues, judgment based on experiential rules, and the selection
of appropriate behavioral responses—a process requiring the
coordination of visual perception (Zhu et al, 2024; Klatt and
Smeeton, 2022), working memory (Glavas et al., 2023; Wu et al,,
2025), attentional allocation (Silva et al, 2022), and cognitive
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FIGURE 5
Random-effects meta-analysis of the comparative effects of visual training on decision-making accuracy between the "LE-" and "LE+" groups.
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FIGURE 6
Random-effects meta-analysis of the comparative effects of visual training on eye-hand coordination.

control (Heilmann et al, 2024). Decision-making tests often
simulate realistic competitive scenarios—such as anticipating an
opponent’s movement direction (Milazzo et al., 2016; Petri et al.,
2019; Di et al, 2024), predicting ball trajectories (Lucia et al.,
2024), or selecting optimal responses from multiple alternatives
(Lucia et al., 2024; Mancini et al., 2024; Rodrigues et al., 2025). The
complexity of such tasks means that test validity largely depends
on the logic and realism of the testing context. However, when test
tasks closely resemble the training conditions in terms of stimulus
presentation, number and structure of decision options, or feedback
mechanisms, participants may develop fixed decision pathways or
strategy templates through repeated exposure. Such gains, rooted
in familiarity and procedural memory, differ from true cognitive
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transfer and instead reflect automation in processing specific tasks,
rather than improvements in generalized decision-making under
dynamic conditions (Cretton et al., 2025). For example, in the
“LE+” group, most studies (Gabbett et al., 2007; Lorains et al., 2013;
Nimmerichter et al., 2015; Alder et al., 2016; Alsharji and Wade,
2016; Milazzo et al., 2016; Brenton et al., 2019a; Brenton et al.,
2019b) employed test stimuli and discrimination formats nearly
identical to those used in training—often utilizing the same
visual simulation software or platforms. While this setup ensured
procedural alignment between training and testing, it also
substantially increased the likelihood of test-dependent learning,
thereby inflating the observed effect sizes. This bias was particularly
evident in decision accuracy, where the “LE+” group exhibited a
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notably higher effect size compared to the “LE-" group (SMD =
1.46 vs. 0.62), with the between-group difference reaching statistical
significance (p = 0.03).
task

not only compromise the external validity of VT evaluations

Therefore, structure-dependent performance gains
but also pose challenges for the development of subsequent
intervention strategies. If researchers overlook the influence
of the “learning effect” on assessment outcomes, they may
mistakenly interpret structurally closed and task-specific training
protocols as having generalizable transfer value and extend them
to other sports or populations. In reality, the true effectiveness
of VT hinges on its ability to promote the generalization
of cognitive processing and the enhancement of strategic

decision-making skills.

4.2 Recommendations for research design
and outcome assessment

The findings of this study suggest that when test tasks closely
resemble training content in structural design, the “learning effect”
may substantially inflate the observed benefits of VT, thereby
compromising the validity and interpretability of experimental
outcomes. This issue is particularly salient in current studies
that extensively use digital tools and standardized test methods,
where performance gains driven by task familiarity and procedural
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memory—rather than actual ability—have emerged as a critical
source of bias in evaluating training effectiveness (Fransen, 2024).
Therefore, proactively identifying and mitigating the influence of
“learning effect” during the research design phase has become
a crucial prerequisite for improving the methodological quality
of VT intervention studies. To this end, researchers should
make more deliberate and systematic decisions regarding the
structural design of intervention and testing tasks, the selection
of outcome measures, and the implementation of evaluation
procedures.

First, researchers should avoid selecting test tools and designing
tasks that closely resemble the training conditions in terms of
interface layout, stimulus type, response format, or feedback
mechanisms. When training and testing share the same platform,
procedures, or task logic, participants may rely on previously formed
procedural strategies during testing, potentially masking the true
effects of the intervention on visual-cognitive skills (Lloyd et al.,
2025). In contrast, using structurally dissimilar but functionally
equivalent heterogenous tasks as assessment tools can better capture
transferable improvements and enhance the interpretability and
generalizability of research findings. The “learning effect” is typically
most pronounced in the early stages of repeated testing and tends
to diminish as participants become more familiar with the task
(Hammers et al., 2024). Therefore, researchers should carefully plan
the timing of interventions and test sessions, ensuring that key
evaluations are conducted after participants have adapted to the
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task and the “learning effect” has stabilized or dissipated. To more
accurately assess the true effects of VT, researchers should also
prioritize the use of gold-standard visual assessment tools with high
reliability and validity. These gold-standard tests should not only
demonstrate robust psychometric properties but also distinguish
between ability-based improvements and strategy-based gains
driven by task familiarity. Additionally, only seven of the included
studies conducted retention tests ranging from 1 to 10 weeks
post-intervention. To comprehensively evaluate the long-term value
of VT, future studies should incorporate retention assessments,
which help distinguish short-term strategy-based gains from true
neural adaptation and ability consolidation, thereby reflecting the
durability and stability of training effects (Willey and Liu, 2018).
In addition, future trials should adopt standardized protocols to
minimize potential learning effects, such as randomizing device
configurations and employing alternate stimulus sets across training
and testing”

The ultimate goal of VT is to enhance sport-specific
performance. Therefore, relying solely on laboratory-based visual
metrics may be insufficient to fully capture the practical benefits of
such training (Fransen, 2024). Study designs should incorporate
field-based assessments of sport-specific skills, such as motor
responses, decision-making execution, and technical performance
under competitive conditions, to evaluate whether improvements
in visual abilities effectively transfer to athletic performance.
Integrating laboratory-based evaluations with field tests that
offer higher ecological validity allows for a more comprehensive
assessment of VT outcomes and provides a stronger foundation
for optimizing and scaling intervention programs (Laby and
Appelbaum, 2021).

4.3 Limitations of the present study

The present study has several limitations as follows: (1)
Although relatively clear criteria were established to classify the
presence of the “learning effect’, this process still involved a degree
of subjective judgment. Some included studies lacked detailed
reporting of training and testing task characteristics, which may
have led to misclassification bias. This subjectivity could have
influenced the subgroup comparisons and potentially inflated or
underestimated the differences observed between LE+ and LE-
groups. Future studies should provide more standardized and
transparent reporting of task characteristics to allow for more
objective classification and replication across reviews; (2) Although
all included participants were experienced athletes at Tier 2 or
above, considerable heterogeneity existed in terms of sport type,
training background, age, and gender. These factors may influence
participants’ receptiveness to training and learning rates, thereby
moderating intervention outcomes. Furthermore, variations in
training frequency, and intervention duration across studies posed
challenges to the accuracy of effect synthesis; (3) This review
included only peer-reviewed RCTs published in English-language
databases, excluding studies in other languages, which may have
introduced both language and publication bias. This restriction
could have led to the exclusion of potentially relevant studies
published in other languages or in the gray literature, where
null or negative findings are more likely to appear. As a result,
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the pooled estimates presented in this review may be somewhat
inflated. Future reviews should consider incorporating multilingual
databases and trial registries to reduce the risk of such bias and
provide a more comprehensive evidence base. Finally, the potential
for small-study effects should also be acknowledged. Although we
performed leave-one-out sensitivity analyses to test the robustness
of the findings, the limited number of studies and participants in
some subgroups increases the likelihood that effect sizes may have
been inflated by small-study effects. Therefore, these results should
be interpreted with caution until they can be confirmed by larger,
well-controlled trials.

5 Conclusion

This meta-analysis examined the moderating role of the
“learning effect” on the outcomes of VT across different
visual-cognitive skills. The results revealed that when the “learning
effect” was present, the effectiveness of VT was significantly
overestimated. When training and testing tasks shared high
structural similarity, participants likely developed task-specific
response strategies due to familiarity with the interface, procedures,
and task format, leading to inflated test performance that
did not reflect genuine improvements in sports vision. These
findings suggest that the “learning effect” may constitute a
significant source of systematic bias that warrants greater attention
and control in future research. To improve the validity and
interpretability of future findings, researchers are advised to avoid
high structural overlap between training and testing tasks, or
to incorporate sufficient familiarization periods and retention
tests to distinguish between short-term strategic gains and true
neural adaptations.
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