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Background Colonoscopy is a crucial method for the screening and diagnosis 
of colorectal cancer, with the withdrawal phase directly impacting the adequacy 
of mucosal inspection and the detection rate of lesions. This study establishes a 
convolutional neural network-based artificial intelligence system for multitask 
withdrawal quality control, encompassing monitoring of withdrawal speed, 
total withdrawal time, and effective withdrawal time. Methods This study 
integrated colonoscopy images and video data from three medical centers, 
annotated into three categories: ileocecal part, instrument operation, and 
normal mucosa. The model was built upon the pre-trained YOLOv11 series 
networks, employing transfer learning and fine-tuning strategies. Evaluation 
metrics included accuracy, precision, sensitivity, and the area under the curve 
(AUC). Based on the best-performing model, the Laplacian operator was applied 
to automatically identify and eliminate blurred frames, while a perceptual hash 
algorithm was utilized to monitor withdrawal speed in real time. Ultimately, a 
multitask withdrawal quality control system—EWT-SpeedNet—was developed, 
and its effectiveness was preliminarily validated through human-machine 
comparison experiments. Results Among the four YOLOv11 models, YOLOv11 m 
demonstrated the best performance, achieving an accuracy of 96.00% and a 
precision of 96.38% on the validation set, both surpassing those of the other 
models. On the test set, its weighted average precision, sensitivity, specificity, 
F1 score, accuracy, and AUC reached 96.58%, 96.44%, 97.64%, 96.38%, 96.44%, 
and 0.9975, respectively, with an inference speed of 86.78 FPS. Grad-CAM 
visualizations revealed that the model accurately focused on key mucosal 
features. In human-machine comparison experiments involving 48 colonoscopy 
videos, the AI system exhibited a high degree of consistency with expert 
endoscopists in measuring EWT (ICC = 0.969, 95% CI: 0.941–0.984; r = 0.972, 
p < 0.001), though with a slight underestimation (Bias = −11.1 s, 95% LoA: 
−70.5 to 48.3 s). Conclusion The EWT-SpeedNet withdrawal quality control 
system we developed enables real-time visualization of withdrawal speed 
during colonoscopy and automatically calculates both the total and effective
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withdrawal times, thereby supporting standardized and efficient procedure 
monitoring.

KEYWORDS

artificial intelligence, YOLO, colonoscopy, effective withdrawal time, colonoscope 
withdrawal speed, blurdetection 

1 Introduction

Colorectal cancer (CRC) is the third most common malignancy 
worldwide, with approximately 1.93 million new cases and 930,000 
deaths reported globally in 2020. These numbers are projected to rise 
to 3.2 million new cases and 1.6 million deaths by 2040 (Morg et al., 
2023). As the gold standard for the diagnosis and screening of 
colorectal diseases, the quality of colonoscopy procedures has a 
direct impact on the adenoma detection rate (ADR) and the risk of 
interval colorectal cancer (Hsu and Chiu, 2023).

In the colonoscopy procedure, quality control (QC) during 
the withdrawal phase is regarded as a critical component. Studies 
have demonstrated that prolonging the withdrawal time (WT) 
and ensuring comprehensive and stable mucosal inspection during 
withdrawal can significantly enhance the adenoma detection rate 
(ADR) and reduce the risk of missed diagnoses (Rex et al., 2024). 
However, in clinical practice, interventional procedures such as 
biopsies and polypectomies frequently occur during withdrawal, 
consuming a portion of the examination time—this is referred to 
as the “negative colonoscopy withdrawal time.” Additionally, certain 
procedural behaviors, including bowel irrigation, close contact 
between the endoscope and the intestinal wall leading to darkened 
screens, or blurred frames caused by rapid lens movement, may 
disrupt mucosal visualization and produce non-interpretable “blur 
frames.” Although these ineffective frames are counted in the total 
WT, they do not contribute meaningfully to mucosal assessment. 
Therefore, compared with WT, a more precise indicator of mucosal 
observation quality is the effective withdrawal time (EWT)—the 
actual time spent on mucosal inspection, excluding periods of 
interventional manipulation and blur frames. A study by Lui et al. 
(2024) found that EWT calculated by artificial intelligence had a 
stronger correlation with ADR, with each additional minute of EWT 
associated with a 49% increase in ADR. Moreover, the consistency 
of withdrawal speed is another key metric for evaluating withdrawal 
quality. Excessive speed may lead to incomplete visualization of 
the mucosa and an increased risk of missed lesions (Gong et al., 
2023); conversely, even if the total recommended withdrawal time 
is met, large fluctuations in withdrawal speed can compromise the 
continuity and quality of mucosal observation.

In recent years, artificial intelligence (AI) technologies 
have shown tremendous potential in enhancing quality control 
(QC) during colonoscopy procedures (Chen et al., 2024). 
Previous studies (De Carvalho et al., 2023) have explored the use 
of AI to automatically identify the cecal landmark and measure 
withdrawal duration, thereby providing an objective assessment 
of whether the standard withdrawal time has been achieved and 
enabling real-time procedural intervention. However, to date, no 
study has systematically realized the simultaneous and real-time 
monitoring of withdrawal time (WT), effective withdrawal time 
(EWT), and withdrawal speed.

Therefore, this study aims to develop an AI-assisted, 
multitask colonoscopy withdrawal quality control system based 
on convolutional neural networks (CNN). The system is designed 
to achieve real-time, synchronized monitoring and visual feedback 
of withdrawal speed, WT, and EWT, thereby promoting procedural 
standardization, optimizing workflow, and ultimately improving 
adenoma detection rates while reducing the risk of missed 
colorectal cancers. 

2 Methods

2.1 Study design and datasets

This study utilized three datasets spanning from January 2020 to 
February 2025, comprising a total of 4,025 colonoscopy images and 
48 videos. Dataset 1 and Dataset 2 were collected from Changshu 
Hospital Affiliated to Soochow University and Changshu Shanghu 
Central Hospital, respectively, containing 3,744 colonoscopy images 
used for model training and validation. Dataset 3, provided by 
Changshu Hospital of Traditional Chinese Medicine, included 281 
images and 48 colonoscopy videos, serving as the external test set. To 
ensure its independence, the test set was used solely for performance 
evaluation and was not involved in model training or parameter 
tuning. An overview of dataset characteristics is presented in 
Figure 1. The image categories within the datasets were annotated 
into three classes: ileocecal part, instrument operations, and normal 
visible mucosa, with representative examples shown in Figure 2. 
The three participating medical centers employed colonoscopy 
equipment from three different manufacturers: six Olympus systems 
(OLYMPUS CV-V1, Japan Olympus Corporation), four SonoScape 
systems (HD-550, SonoScape Medical Corp., Shenzhen, China), 
and two Pentax systems (EPK-i7000, Pentax Medical, a division of 
HOYA Group, Japan).

2.2 Image annotation

The image annotation process in this study was conducted in 
three stages (Figure 3), with each stage assigned to a distinct team 
of endoscopists. Prior to annotation, all team members underwent 
multiple rounds of theoretical training and hands-on practice related 
to the project to ensure annotation quality and consistency. Stage 
I involved the selection of video segments by endoscopists, which 
were then converted into individual image frames. In Stage II, two 
independent teams of endoscopists screened the images, retaining 
only clear frames containing various types of lesions, followed by 
cross-validation. Stage III was conducted by senior endoscopist, who 
reviewed the annotation results and made the final determinations. 
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FIGURE 1
Dataset characteristics analysis. (A) Distribution of image resolutions: Yellow indicates a higher frequency of images with a specific resolution, while 
purple denotes lower frequency. The dataset includes images of various sizes, with the two most common resolutions being 664 × 479 pixels and 660 
× 497 pixels. (B) Dataset partition overview.

FIGURE 2
Representative images from the dataset. (A) A1–A4 represent images of the ileocecal part; (B) B1–B4 depict various instrument operations; (C) C1–C4 
show normal visible mucosa.
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FIGURE 3
Image annotation workflow. (A) Stage I: Endoscopists selected representative colonoscopy video segments and converted them into individual image 
frames. (B) Stage II: Two independent teams of endoscopists screened the frames and retained only clear images with identifiable features. (C) Stage III: 
A senior endoscopist reviewed and finalized the annotations to ensure consistency and accuracy.

The annotators involved in the labeling process had varying levels 
of clinical experience. Specifically, the endoscopists in Stage I and 
II had 2–5 years of experience in gastrointestinal endoscopy, while 
the senior endoscopist in Stage III had over 10 years of clinical 
experience.

2.3 Model training configuration

This study adopted a transfer learning strategy (Shin et al., 
2016), utilizing four variants of the YOLOv11 model (nano, small, 
medium, and large) pre-trained on ImageNet (Khanam and Hussain, 
2024), and fine-tuned all layers using the study-specific dataset. 
The training configuration included automatic optimizer selection, 
dynamic learning rate adjustment, a maximum of 100 training 
epochs, and a batch size of 32. Evaluation metrics comprised 
accuracy, precision, recall, and F1 score. Training was accelerated 
using automatic mixed precision on GPU devices, with an early 
stopping strategy (patience = 8) employed to prevent overfitting. 
All training procedures were implemented using the PyTorch 
framework. To ensure model robustness and practical applicability, 
the performance of the four YOLOv11 variants was compared, and 
the best-performing model was selected.

The selection of YOLOv11 was based on its strong performance, 
technical maturity, and suitability for real-time medical image 
analysis. The model achieves an excellent balance between accuracy 
and inference speed, making it ideal for video-based colonoscopy 
tasks. Its modular architecture and well-established training pipeline 
also facilitate integration into multitask systems like ours, especially 
in clinical environments with limited programming resources. In 
addition, our team has previously applied YOLOv11 in another 
published study focused on auricular acupoint keypoint detection, 
where it also demonstrated robust and accurate performance 
(Wang et al., 2025) (Qiu et al., 2023), further confirming its 
versatility across medical AI applications.

To enhance the model’s generalization capability, this study 
implemented a series of image preprocessing and data augmentation 
strategies. During preprocessing, all images were uniformly 

resized to 640 × 640 pixels while preserving the original aspect 
ratio. The data augmentation techniques included: (1) random 
horizontal flipping with a 50% probability; (2) random resizing 
and cropping (RandomResize, RandomCrop); and (3) HSV-based 
random perturbation using YOLO’s HSVRandomAug algorithm to 
improve robustness to variations in lighting and color (Li et al., 
2022). All augmentation operations were performed online in 
real time (Zhang et al., 2021), eliminating the need for additional 
image storage and ensuring that the model was exposed to diverse 
variations in each training iteration. 

2.4 Development of the multitask 
withdrawal quality control system

2.4.1 Definition of effective withdrawal time
Withdrawal time (WT) is defined as the duration from the 

moment the colonoscope reaches the ileocecal region (specifically, 
the ileocecal valve at the terminal ileum) to its complete withdrawal 
through the anus. WT primarily includes two segments of non-
observational time: Time 1 refers to the duration of instrumental 
operations, such as chromoendoscopy, biopsy, and polypectomy 
procedures (e.g., endoscopic mucosal resection and cold snare 
polypectomy); Time 2 denotes periods of non-interpretable frames, 
including bowel irrigation, darkened screens, or blurred images 
caused by rapid scope movement. After excluding these ineffective 
periods, the remaining duration constitutes the actual time used by 
the endoscopist to inspect the mucosa and detect lesions, known as 
the Effective Withdrawal Time (EWT). The theoretical formula is: 
EWT = WT − Time 1 − Time 2. 

2.4.2 AI-Based automatic calculation of EWT
To enable the automated AI-based calculation of EWT, this study 

developed a multitask classification model based on a convolutional 
neural network (YOLOv11). The workflow is as follows: the system 
processes colonoscopy videos frame by frame, using the model to 
identify each frame as one of three categories in real time—ileocecal 
part, instrumental operation, or normal mucosal observation. When 
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a sequence of ileocecal frames is detected, the system automatically 
marks the beginning of withdrawal and sets that frame as the starting 
point of WT.

The model then continuously monitors subsequent frames to 
detect instrumental operation frames (Time 1). Simultaneously, to 
identify blurred frames within non-observational footage (Time 2), 
a Laplacian operator is employed for image clarity assessment. This 
method evaluates image sharpness by calculating the second-order 
derivative of the grayscale image and determining its variance, using 
the formula: VarL = Var(∇2I), where ∇2I represents the Laplacian 
response of image I, and Var denotes variance. If VarL is less than 
50, the frame is classified as blurred and counted toward Time 2. The 
system accumulates the frame counts corresponding to Time 1 and 
Time 2 in real time, subtracts them from the total WT, and converts 
the result into EWT based on the frame rate. This approach enables 
the automatic and real-time computation of key quality control 
indicators during the colonoscopy withdrawal process, eliminating 
the need for manual intervention. 

2.4.3 Automated monitoring of withdrawal speed
To monitor withdrawal speed during colonoscopy, this study 

employed the perceptual hash (pHash) algorithm to quantify visual 
differences between consecutive video frames. Specifically, the 
pHash value of each frame I was calculated using the imagehash 
library, denoted as: H = pHash (I). The hash difference between 
adjacent frames was measured by computing the Hamming distance, 
defined as: D = H1 - H2, where H1 and H2 represent the 
pHash values of two consecutive frames. The resulting difference 
D reflects the degree of visual content change and serves as an 
indirect indicator of the colonoscope’s movement speed. To enhance 
visualization, a speed scale bar was overlaid on each video frame, 
displaying the current speed status based on the hash difference 
D. The system used a color-coded scheme: blue for normal speed 
(D ≤ 20), yellow for warning speed (21 ≤ D ≤ 30), and red for 
hazardous speed (D > 30). This approach enables intuitive, real-time 
speed monitoring without relying on positional tracking or external 
sensors, thereby supporting operational stability and improving 
mucosal observation quality during withdrawal. 

2.4.4 System integration and functionality 
implementation

Building upon the aforementioned modules, this study 
developed an integrated AI-assisted multitask colonoscopy 
withdrawal quality control system, named EWT-SpeedNet, with 
its system architecture illustrated in Figure 4. The system utilizes 
the YOLOv11 model to perform real-time image classification, 
automatically identifying the withdrawal start point while 
simultaneously calculating WT, Time 1, Time 2, and EWT. In 
addition, by incorporating perceptual hash (pHash) and Hamming 
distance analysis, the system quantitatively evaluates variations in 
withdrawal speed, which are visualized using a color-graded scale 
bar. Constructed using PyTorch and OpenCV, the system enables 
real-time display of multiple quality control metrics—including 
WT, EWT, and withdrawal speed monitoring—within a unified, 
user-friendly interface. Requiring neither additional hardware nor 
manual input, EWT-SpeedNet offers continuous, objective, and 
efficient real-time feedback to support clinical practice.

2.5 Model interpretability analysis

To enhance model transparency, this study employed 
explainable artificial intelligence techniques by using Grad-CAM 
to generate heatmaps (Barclay et al., 2006), visually illustrating the 
regions of the image the model focuses on during decision-making. 
The process involves defining a model wrapper, MyModelWrapper, 
to adapt the YOLOv11 output, selecting the penultimate layer as 
the target for visualization, and initializing Grad-CAM after loading 
and transferring the model to the GPU.

Images are then read, converted to RGB, resized to 224 × 
224 pixels, normalized, and transformed into tensors with gradient 
tracking enabled. After model inference, a grayscale heatmap is 
generated and superimposed on the original image. The original 
image, heatmap, and final visualization are saved for analysis. These 
visual outputs allow researchers and clinicians to verify whether 
the model focuses on clinically relevant anatomical or pathological 
areas, which not only enhances interpretability but also fosters trust 
in the model’s decisions. Such transparency is crucial in clinical 
environments, where explainability strongly influences the adoption 
of AI tools in routine practice. 

2.6 Human–AI comparison

This study systematically compared the performance of the 
AI system (AI group) with two teams of human endoscopists 
(junior group and senior group) in measuring EWT/WT. The 
design and methodology are as follows: A total of 48 colonoscopy 
videos, labeled 1–48, were selected. All videos were anonymized, 
randomly coded, and distributed to each physician and the AI 
system. The junior group consisted of three endoscopists with 
0–5 years of experience, while the senior group included three 
endoscopists with more than 10 years of experience. Summary 
statistics: The EWT and WT of all 48 videos were calculated for 
both the junior and senior groups. Consistency assessment: The 
intraclass correlation coefficient (ICC) was used to evaluate the 
consistency between the AI system and the mean values of the 
senior group, using a two-way random-effects model with absolute 
agreement. ICC values and their 95% confidence intervals were 
reported, with ICC >0.75 indicating good agreement. Bland–Altman 
analysis: Bland–Altman plots were constructed to compare the 
measurements of the AI system and the senior group. The mean 
difference (bias) and 95% limits of agreement (mean ±1.96 SD) 
were calculated to assess systematic bias and the range of individual 
differences. Correlation analysis: Pearson correlation coefficients 
(r) were calculated between the AI measurements and the average 
values of the senior group, with r > 0.8 indicating a strong
correlation. 

2.7 Experimental platform and statistical 
analysis

The experimental platform for this study was built on a high-
performance computing system, featuring an NVIDIA GeForce 
RTX 4090 GPU (24 GB VRAM), an Intel(R) Core(TM) i9-14900K 
processor (3.2 GHz), 32 GB RAM, and a 1.9 TB solid-state drive. 
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FIGURE 4
Schematic architecture of the multitask colonoscopy withdrawal quality control system.

The software environment was centered on PyTorch 2.5.1 for model 
construction and training, with OpenCV 4.10.0.84 used for image 
processing. Additional tools included Pandas 2.2.3, NumPy 2.0.2, 
Matplotlib 3.9.2, and Plotly 5.16.1 for data analysis and visualization. 
The entire experimental workflow was monitored and visualized in 
real time using Weights & Biases (wandb 0.18.7).

Model performance was comprehensively evaluated using the 
following metrics: sensitivity, specificity, precision, accuracy, F1 
score, average precision (AP), area under the receiver operating 
characteristic curve (AUC), and weighted average. The calculation 
formulas are shown as Equations 1–8.

Sensitivity = TP
TP+ FN

(1)

Speci ficity = TN
TN+ FP

(2)

Precision = TP
TP+ FP

(3)

Accuracy = TP+TN
TP+TN+ FP+ FN

(4)

F1Score = 2×
Precision× Sensitivity
Precision+ Sensitivity

(5)

Pweighted =
k

∑
i=1

wi · Pi (6)

AveragePrecision(AP): AP = ∫
1

0
p(r)dr (7)

AUC = 1
2

n−1

∑
i=1
(FPRi+1 − FPRi) × (TPRi+1 +TPRi) (8)

TP denotes the number of true positives, TN the number of true 
negatives, FP the number of false positives, and FN the number of 
false negatives; Pi represents the performance metric for the i− th
class, and wi denotes the corresponding weight of the i− th class. 

3 Results

3.1 Model training and validation

A total of 4,025 images were included in this study, categorized 
into three classes: ileocecal part, instrument operations, and 
normal visible mucosa. Among them, 3,744 images were used for 
model development, while an independently collected set of 281 
images and 48 videos was reserved for testing. Four YOLOv11 
neural network models of varying scales—YOLOv11n, YOLOv11s, 
YOLOv11 m, and YOLOv11l—were trained on the same dataset. 
The entire training process was tracked using Weights & Biases 
(wandb). As the training steps progressed, model loss steadily 
decreased and eventually stabilized, indicating convergence toward 
optimal performance (Figure 5A). Figures 5B–D illustrate the 
trends of accuracy, precision, and sensitivity across different 
models during training. These performance metrics initially 
showed gradual improvement with considerable fluctuations but 
later stabilized at high levels. Although YOLOv11 m exhibited 
slightly lower sensitivity (93.79%) compared to other models, it 
achieved the highest accuracy (96.00%), precision (96.38%), and 
F1 score (94.97%), demonstrating the best overall performance. 
Consequently, YOLOv11 m was selected as the final model for 
deployment. Detailed results are presented in Table 1.
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FIGURE 5
Trends in performance metrics of different models with increasing training steps. (A) Loss curve; (B) Accuracy trend; (C) Precision trend; (D) Sensitivity 
trend; An early stopping strategy was applied in this study, which may result in varying training step counts across different models.

TABLE 1  Performance comparison of different models on the validation set (%).

Model Accuracy% Precision% Sensitivity % F1 score%

yolov11n 95.47 94.04 95.95a 94.92

yolov11s 94.93 93.12 95.51 94.24

yolov11 m 96.00a 96.38a 93.79 94.97a

yolov11l 95.33 94.27 94.77 94.51

aindicates the best performance.

3.2 Testing and visual interpretability of the 
best-performing model

Table 2 presents the performance of the best-performing model, 
YOLOv11 m, on 281 test images, including precision, sensitivity, 
specificity, F1 score, accuracy, average precision (AP), and AUC 
values for the three classes, along with a weighted average as 
a summary metric. Figure 6 shows the confusion matrix of the 
YOLOv11 m model, illustrating the distribution of predictions 
across all classes. The model achieved an inference speed of 86.78 
FPS on the test set. Figure 7 further illustrates key evaluation curves 
of the YOLOv11m model: Figure 7A shows the ROC curves, with 
all class-specific curves closely approaching the top-left corner, 
indicating excellent classification performance; Figure 7B displays 
the precision-recall (PR) curves, where curves approaching the 

top-right corner reflect superior detection capabilities. Figure 8 
presents Grad-CAM–based visualizations of the model's decision-
making process. Figures 8A,D correspond to the ileocecal part 
and instrument operation categories, respectively. Figures 8B,C 
show activation heatmaps and overlay results for the ileocecal 
region, while Figures 8E,F illustrate the corresponding heatmaps 
and overlays for instrument operation frames. Warm-colored areas 
(such as red and yellow) highlight the critical lesion regions the 
model focused on. These visualizations help clinicians intuitively 
verify whether the model is focusing on medically relevant areas, 
which can build trust in its predictions and support clinical 
acceptance. For instance, in the ileocecal part category, Grad-CAM 
heatmaps consistently focused on the ileocecal valve—an important 
anatomical landmark used by endoscopists to confirm successful 
cecal intubation. This clear alignment between model attention and 
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TABLE 2  Classification performance of the YOLOv11 m model on the test set.

Class Precision % Sensitivity % Specificity % F1 score % Accuracy % AP % AUC

Ileocecal part 99.97 86.21 99.96 92.59 97.15 98.13 99.39 [0.93,0.99]

Instrument 94.07 98.23 95.83 96.1 96.8 99.55 99.69 [0.94,0.99]

Normal 97.35 99.88 98.25 98.65 98.93 99.98 99.99 [0.96,1.00]

Overall (weighted average) 96.58 96.44 97.64 96.38 96.44 99.42 99.75 [0.98,0.99]

Weighted average metrics take into account the number of samples in each class, assigning greater weight to classes with larger sample sizes.

FIGURE 6
Confusion matrix of the YOLOv11 m model on the test set.

clinical reasoning further enhances trust and supports real-time 
clinical decisions.

3.3 Application of the multitask withdrawal 
quality control system

Based on the best-performing YOLOv11 m model, this study 
developed a multitask colonoscopy withdrawal quality control 
system named EWT-SpeedNet. The system integrates image 
classification and speed evaluation modules to achieve three core 
quality control functions: automatic identification and recording of 
WT, automated calculation of EWT, and real-time monitoring and 
visual display of withdrawal speed. EWT-SpeedNet supports parallel 
multitask processing and provides efficient, objective, and real-
time feedback without the need for manual intervention. Figure 9A 
shows the system’s user interface, where WT, EWT, and withdrawal 
speed are displayed in real time in the upper-left corner of the 
endoscopic video.

Case 1 (Figure 9B): During a colonoscopy procedure lasting 
13 min and 35 s, once the endoscope reaches the cecum, the EWT-
SpeedNet system’s WT and EWT timing modules are automatically 

activated. Between 5 min and 59 s and 6 min and 18 s, the patient 
underwent a polyp biopsy with forceps. The AI system automatically 
detects and subtracts the duration of this interventional procedure, 
enabling a more precise calculation of the EWT. Additionally, 
the system features an integrated visual speed scale that provides 
real-time feedback on withdrawal speed, helping the endoscopist 
maintain a controlled and appropriate withdrawal pace. With AI 
assistance, clinicians can focus more on mucosal observation, 
which may improve the detection rate of adenomatous polyps and 
other lesions.

Case 2 (Figure 9C): In another colonoscopy video with a 
total duration of 6 min and 19 s, the EWT-SpeedNet system 
automatically measured a WT of 2 min and 31 s and an EWT 
of 1 min and 55 s. During the procedure, the withdrawal speed 
scale repeatedly indicated in red that the withdrawal speed was in 
the “danger zone,” signaling that the scope was being withdrawn 
too quickly and that the procedure was not following standard 
protocols. With the support of the EWT-SpeedNet system, especially 
for novice or less experienced endoscopists, there is a promising 
potential to standardize withdrawal techniques, thereby enhancing 
overall examination quality and increasing the detection rate
of adenomas. 

3.4 Human–AI comparative experiment

A total of 48 colonoscopy videos from the independent test 
set were included to evaluate the performance of the AI system 
in measuring effective withdrawal time (EWT) compared with 
endoscopists of varying experience levels, with all measurements 
conducted independently. The results demonstrated strong 
agreement between the AI system and the senior endoscopist 
group (ICC = 0.969, 95% CI: 0.941–0.984) and a high correlation 
(Figure 10A, Pearson r = 0.972, p < 0.001). However, the Wilcoxon 
test revealed a statistically significant difference (W = 329.5, p = 
0.0074), and Bland–Altman analysis (Figure 10B) showed a slight 
underestimation by the AI system (Bias = −11.1 s, 95% LoA: −70.5 
to 48.3 s),. In comparison with the junior endoscopist group, the AI 
system showed lower agreement (ICC = 0.838, 95% CI: 0.755–0.896) 
but still maintained strong correlation (Figure 10C, Pearson r = 
0.883, p < 0.001); the Wilcoxon test indicated a significant difference 
(W = 360.0, p = 0.0187), and Bland–Altman analysis (Figure 10D) 
revealed an overall overestimation by the AI system (Bias = 23.5 s, 
95% LoA: −105.4–152.5 s).
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FIGURE 7
Prediction performance of YOLOv11 m on the external test set. (A) Receiver operating characteristic (ROC) curves; (B) precision–recall (PR) curves.

FIGURE 8
Grad-CAM Visualization of the AI Model’s Decision-Making Process. (A,D) Original endoscopic images; (B,E) Pixel activation heatmaps generated using 
Grad-CAM; (C,F) Overlay of original images and activation heatmaps.
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FIGURE 9
Multitask AI-Based withdrawal quality control system. (A) User interface of the developed multitask AI withdrawal quality control system; (B) & (C) Two 
example cases demonstrating colonoscopy withdrawal procedures assisted by the system.

4 Discussion

Based on a colonoscopy image dataset encompassing three 
categories—ileocecal part, instrument operation, and normal visible 
mucosa—this study applied transfer learning to fine-tune four 
pre-trained YOLOv11 models of varying scales (nano, small, 
medium, and large), completing the processes of model training, 
validation, and testing, and ultimately selecting the best-performing 
model. Subsequently, the Laplacian operator was used to identify 
blurred frames in colonoscopy videos, and the pHash algorithm 
was employed to monitor withdrawal speed in real time. These 
components were integrated into the development of EWT-
SpeedNet, an AI-assisted multitask colonoscopy withdrawal quality 
control system. Built on the PyTorch and OpenCV frameworks, the 
system operates without manual intervention and provides real-time 
display of key quality control indicators, including WT, EWT, and 
withdrawal speed, all presented within a unified visual interface. 
In a human–AI comparative experiment involving 48 complete 
colonoscopy videos, the EWT-SpeedNet system demonstrated 
promising clinical applicability.

In 2006, a prospective observational study by Barclay et al. 
(Keswani et al., 2021) demonstrated that an average WT of no 
less than 6 minutes significantly increased the ADR, supporting 
its adoption as the minimum WT standard for colonoscopy. The 
American Gastroenterological Association (AGA) released a clinical 
practice update in 2021 (Rex et al., 2024), recommending longer 
withdrawal times during routine colonoscopy to enhance ADR, 
with a suggested average WT of no less than 6 minutes and an 
ideal target of 9 minutes. Guidelines jointly issued by the American 
Society for Gastrointestinal Endoscopy (ASGE) and the American 
College of Gastroenterology (ACG) (Li et al., 2024) further specify 
that for patients aged ≥45 undergoing screening, surveillance, 
or diagnostic colonoscopy—without biopsy or polypectomy—the 
average WT should be no less than 8 minutes. In recent years, 

both research and clinical guidelines have increasingly emphasized 
quality control during the colonoscopy withdrawal phase. On one 
hand, they advocate for longer withdrawal times to improve ADR; 
on the other, they stress that interventional durations, such as 
those spent on biopsy or polypectomy, should be excluded from 
total WT, placing greater emphasis on EWT—the actual time 
spent inspecting the colonic mucosa. In clinical practice, “blurred 
frames” during withdrawal are common and unavoidable, often 
caused by mucosal folds obstructing the view, rapid endoscope 
movement, or interference from fecal fluid or residue. These frames 
compromise mucosal visibility and do not meaningfully contribute 
to lesion detection; hence, they should also be excluded from EWT 
calculation. To address these issues, this study developed the EWT-
SpeedNet system, capable of displaying both WT and EWT in real 
time. It not only automatically identifies and subtracts the duration 
of instrumental procedures, but also accurately detects and excludes 
non-informative blurred frames, providing a more precise and 
objective tool for withdrawal quality assessment in clinical practice.

Although EWT provides a more accurate reflection of 
mucosal inspection quality during colonoscopy, traditional manual 
measurement of EWT is time-consuming, labor-intensive, and 
prone to subjective bias. There is an urgent need for automated, 
objective, and real-time monitoring enabled by technological 
solutions. Lui et al. (2024) proposed a novel AI-based EWT 
quality metric and, after analyzing 350 withdrawal videos, found 
a significant correlation between EWT and ADR: each additional 
minute of EWT increased ADR by 49% (aOR = 1.49, 95% CI: 
1.36–1.65), and the AUC for predicting ADR based on EWT 
was significantly higher than that based on standard withdrawal 
time (0.80 vs 0.70, P < 0.01). Similarly, Li et al. (Rex et al., 2024) 
developed an EWT automatic calculation system using the YOLOv5 
model, achieving a high level of agreement between AI and manual 
verification (r = 0.92). Unlike these prior studies, the present 
research innovatively introduced the Laplacian operator to quantify 
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FIGURE 10
Comparison of EWT measurements between the AI System and Endoscopists of Different Experience Levels. (A) & (B) Pearson correlation analysis and 
Bland–Altman consistency analysis between the AI system and senior endoscopists. (C) & (D) Pearson correlation analysis and Bland–Altman 
consistency analysis between the AI system and junior endoscopists.

image sharpness by calculating the variance of the second-order 
derivative of grayscale values (VarL). When VarL falls below a 
defined threshold, the frame is classified as blurred and counted 
toward ineffective observation time. This method requires no 
additional model training and offers better interpretability and 
generalizability, making it more suitable for real-time deployment. 
Although the AI system demonstrated strong agreement with senior 
endoscopists in EWT measurement (ICC = 0.969, r = 0.972), 
Bland–Altman analysis revealed a slight underestimation (Bias = 
−11.1 s; 95% LoA: −70.5 to 48.3 s). However, this difference of 11.1 s 
is clinically acceptable, especially given that the minimum standard 
for effective withdrawal time in colonoscopy is typically 6 min. 
Such a minor deviation is unlikely to affect quality assessments 
or clinical decision-making. Moreover, compared with junior 
endoscopists, the AI system showed greater consistency with senior 
experts, underscoring its potential to support standardization and 
training in real-world practice. To reduce the underestimation 
bias and improve accuracy, we plan to refine the blur detection 
threshold and introduce post-processing calibration models based 
on expert annotations. Moreover, considering the interrelationship 
between withdrawal speed and withdrawal time, this study uniquely 
integrated withdrawal speed monitoring with EWT calculation 
within a unified system. This multitask integration not only 
enables real-time evaluation of EWT but also dynamically monitors 
withdrawal speed, effectively reducing the risk of missed lesions 
due to localized rapid withdrawal. Compared with previous 

studies, this system offers greater practicality and enhanced clinical
applicability.

To further contextualize the strengths and innovations of our 
system, Table 3 provides a comparative summary of EWT-SpeedNet 
with two representative AI-based systems previously proposed by 
Lui et al. (2024) and De Carvalho et al. (2023). The comparison 
highlights major differences in task coverage, real-time capabilities, 
withdrawal speed monitoring, and intended clinical application.

Nevertheless, this study has certain limitations. First, our current 
dataset remains relatively limited for deep learning applications. 
To enhance model generalizability, we plan to expand the dataset 
through partnerships with five geographically diverse medical 
centers, enabling access to a broader range of clinical settings, 
endoscopy equipment, and patient populations. Second, we are 
currently preparing for a prospective, multicenter clinical trial aimed 
at further validating the adaptability and clinical utility of the EWT-
SpeedNet system. This study will involve real-time implementation 
of the system in clinical workflows and assess its impact on 
key quality indicators such as ADR. Third, to support clinical 
deployment, the EWT-SpeedNet system is designed for seamless 
integration into existing workflows. It processes colonoscopy video 
in real time, overlays withdrawal speed and timing information, 
and provides immediate feedback to endoscopists without requiring 
additional hardware. Future versions will incorporate a user 
interface and reporting features to enhance usability and support 
quality control. 
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TABLE 3  Comparison of EWT-SpeedNet with prior AI systems.

Feature EWT-SpeedNet (this study) Lui et al. (2024) De Carvalho et al. (2023)

Tasks performed Multitask (WT, EWT, speed monitoring) Single-task (EWT) Single-task (EWT)

Real-time capability Yes No No

Blur frame detection Yes (Laplacian operator) No No

Interventional time exclusion Yes (AI-detected) Yes (manual annotation) Not mentioned

Withdrawal speed monitoring Yes (pHash algorithm + scale bar) No No

Target use Real-time quality control Real-time quality control Offline post-analysis

Based on the comparison with Lui et al. (2024) and De Carvalho et al. (2023).

5 Conclusion

This study proposed a multitask withdrawal quality control 
system that integrates real-time monitoring of withdrawal time, 
effective withdrawal time, and withdrawal speed. The system is 
capable of assisting endoscopists during the colonoscopy withdrawal 
process by proactively prompting control over withdrawal speed and 
stability. It holds promise for reducing inter-operator variability and 
enhancing the overall quality of routine colonoscopy procedures.
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