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Background Colonoscopy is a crucial method for the screening and diagnosis
of colorectal cancer, with the withdrawal phase directly impacting the adequacy
of mucosal inspection and the detection rate of lesions. This study establishes a
convolutional neural network-based artificial intelligence system for multitask
withdrawal quality control, encompassing monitoring of withdrawal speed,
total withdrawal time, and effective withdrawal time. Methods This study
integrated colonoscopy images and video data from three medical centers,
annotated into three categories: ileocecal part, instrument operation, and
normal mucosa. The model was built upon the pre-trained YOLOv1l series
networks, employing transfer learning and fine-tuning strategies. Evaluation
metrics included accuracy, precision, sensitivity, and the area under the curve
(AUC). Based on the best-performing model, the Laplacian operator was applied
to automatically identify and eliminate blurred frames, while a perceptual hash
algorithm was utilized to monitor withdrawal speed in real time. Ultimately, a
multitask withdrawal quality control system—EWT-SpeedNet—was developed,
and its effectiveness was preliminarily validated through human-machine
comparison experiments. Results Among the four YOLOv11 models, YOLOv1l m
demonstrated the best performance, achieving an accuracy of 96.00% and a
precision of 96.38% on the validation set, both surpassing those of the other
models. On the test set, its weighted average precision, sensitivity, specificity,
F1 score, accuracy, and AUC reached 96.58%, 96.44%, 97.64%, 96.38%, 96.44%,
and 0.9975, respectively, with an inference speed of 86.78 FPS. Grad-CAM
visualizations revealed that the model accurately focused on key mucosal
features. In human-machine comparison experiments involving 48 colonoscopy
videos, the Al system exhibited a high degree of consistency with expert
endoscopists in measuring EWT (ICC = 0.969, 95% Cl: 0.941-0.984; r = 0.972,
p < 0.001), though with a slight underestimation (Bias = —11.1s, 95% LOA:
—-70.5 to 48.3s). Conclusion The EWT-SpeedNet withdrawal quality control
system we developed enables real-time visualization of withdrawal speed
during colonoscopy and automatically calculates both the total and effective
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withdrawal times, thereby supporting standardized and efficient procedure

monitoring.

artificial intelligence, YOLO, colonoscopy, effective withdrawal time, colonoscope
withdrawal speed, blurdetection

1 Introduction

Colorectal cancer (CRC) is the third most common malignancy
worldwide, with approximately 1.93 million new cases and 930,000
deaths reported globally in 2020. These numbers are projected to rise
to 3.2 million new cases and 1.6 million deaths by 2040 (Morg et al.,
2023). As the gold standard for the diagnosis and screening of
colorectal diseases, the quality of colonoscopy procedures has a
direct impact on the adenoma detection rate (ADR) and the risk of
interval colorectal cancer (Hsu and Chiu, 2023).

In the colonoscopy procedure, quality control (QC) during
the withdrawal phase is regarded as a critical component. Studies
have demonstrated that prolonging the withdrawal time (WT)
and ensuring comprehensive and stable mucosal inspection during
withdrawal can significantly enhance the adenoma detection rate
(ADR) and reduce the risk of missed diagnoses (Rex et al., 2024).
However, in clinical practice, interventional procedures such as
biopsies and polypectomies frequently occur during withdrawal,
consuming a portion of the examination time—this is referred to
as the “negative colonoscopy withdrawal time” Additionally, certain
procedural behaviors, including bowel irrigation, close contact
between the endoscope and the intestinal wall leading to darkened
screens, or blurred frames caused by rapid lens movement, may
disrupt mucosal visualization and produce non-interpretable “blur
frames” Although these ineffective frames are counted in the total
WT, they do not contribute meaningfully to mucosal assessment.
Therefore, compared with WT, a more precise indicator of mucosal
observation quality is the effective withdrawal time (EWT)—the
actual time spent on mucosal inspection, excluding periods of
interventional manipulation and blur frames. A study by Lui et al.
(2024) found that EWT calculated by artificial intelligence had a
stronger correlation with ADR, with each additional minute of EWT
associated with a 49% increase in ADR. Moreover, the consistency
of withdrawal speed is another key metric for evaluating withdrawal
quality. Excessive speed may lead to incomplete visualization of
the mucosa and an increased risk of missed lesions (Gong et al.,
2023); conversely, even if the total recommended withdrawal time
is met, large fluctuations in withdrawal speed can compromise the
continuity and quality of mucosal observation.

In recent vyears, artificial intelligence (AI) technologies
have shown tremendous potential in enhancing quality control
(QC) during colonoscopy procedures (Chen et al, 2024).
Previous studies (De Carvalho et al., 2023) have explored the use
of Al to automatically identify the cecal landmark and measure
withdrawal duration, thereby providing an objective assessment
of whether the standard withdrawal time has been achieved and
enabling real-time procedural intervention. However, to date, no
study has systematically realized the simultaneous and real-time
monitoring of withdrawal time (WT), effective withdrawal time
(EWT), and withdrawal speed.
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Therefore, this study aims to develop an Al-assisted,
multitask colonoscopy withdrawal quality control system based
on convolutional neural networks (CNN). The system is designed
to achieve real-time, synchronized monitoring and visual feedback
of withdrawal speed, WT, and EWT, thereby promoting procedural
standardization, optimizing workflow, and ultimately improving
adenoma detection rates while reducing the risk of missed
colorectal cancers.

2 Methods
2.1 Study design and datasets

This study utilized three datasets spanning from January 2020 to
February 2025, comprising a total of 4,025 colonoscopy images and
48 videos. Dataset 1 and Dataset 2 were collected from Changshu
Hospital Affiliated to Soochow University and Changshu Shanghu
Central Hospital, respectively, containing 3,744 colonoscopy images
used for model training and validation. Dataset 3, provided by
Changshu Hospital of Traditional Chinese Medicine, included 281
images and 48 colonoscopy videos, serving as the external test set. To
ensure its independence, the test set was used solely for performance
evaluation and was not involved in model training or parameter
tuning. An overview of dataset characteristics is presented in
Figure 1. The image categories within the datasets were annotated
into three classes: ileocecal part, instrument operations, and normal
visible mucosa, with representative examples shown in Figure 2.
The three participating medical centers employed colonoscopy
equipment from three different manufacturers: six Olympus systems
(OLYMPUS CV-V1, Japan Olympus Corporation), four SonoScape
systems (HD-550, SonoScape Medical Corp., Shenzhen, China),
and two Pentax systems (EPK-i7000, Pentax Medical, a division of
HOYA Group, Japan).

2.2 Image annotation

The image annotation process in this study was conducted in
three stages (Figure 3), with each stage assigned to a distinct team
of endoscopists. Prior to annotation, all team members underwent
multiple rounds of theoretical training and hands-on practice related
to the project to ensure annotation quality and consistency. Stage
I involved the selection of video segments by endoscopists, which
were then converted into individual image frames. In Stage II, two
independent teams of endoscopists screened the images, retaining
only clear frames containing various types of lesions, followed by
cross-validation. Stage ITI was conducted by senior endoscopist, who
reviewed the annotation results and made the final determinations.
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FIGURE 1

Dataset characteristics analysis. (A) Distribution of image resolutions: Yellow indicates a higher frequency of images with a specific resolution, while
purple denotes lower frequency. The dataset includes images of various sizes, with the two most common resolutions being 664 x 479 pixels and 660
X 497 pixels. (B) Dataset partition overview.

FIGURE 2
Representative images from the dataset. (A) A1-A4 represent images of the ileocecal part; (B) B1-B4 depict various instrument operations; (C) C1-C4
show normal visible mucosa.
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Stage 11

Image annotation workflow. (A) Stage |: Endoscopists selected representative colonoscopy video segments and converted them into individual image
frames. (B) Stage II: Two independent teams of endoscopists screened the frames and retained only clear images with identifiable features. (C) Stage IlI:
A senior endoscopist reviewed and finalized the annotations to ensure consistency and accuracy.

The annotators involved in the labeling process had varying levels
of clinical experience. Specifically, the endoscopists in Stage I and
IT had 2-5 years of experience in gastrointestinal endoscopy, while
the senior endoscopist in Stage III had over 10 years of clinical
experience.

2.3 Model training configuration

This study adopted a transfer learning strategy (Shin et al.,
2016), utilizing four variants of the YOLOv11 model (nano, small,
medium, and large) pre-trained on ImageNet (Khanam and Hussain,
2024), and fine-tuned all layers using the study-specific dataset.
The training configuration included automatic optimizer selection,
dynamic learning rate adjustment, a maximum of 100 training
epochs, and a batch size of 32. Evaluation metrics comprised
accuracy, precision, recall, and F1 score. Training was accelerated
using automatic mixed precision on GPU devices, with an early
stopping strategy (patience = 8) employed to prevent overfitting.
All training procedures were implemented using the PyTorch
framework. To ensure model robustness and practical applicability,
the performance of the four YOLOvI11 variants was compared, and
the best-performing model was selected.

The selection of YOLOv11 was based on its strong performance,
technical maturity, and suitability for real-time medical image
analysis. The model achieves an excellent balance between accuracy
and inference speed, making it ideal for video-based colonoscopy
tasks. Its modular architecture and well-established training pipeline
also facilitate integration into multitask systems like ours, especially
in clinical environments with limited programming resources. In
addition, our team has previously applied YOLOvI11 in another
published study focused on auricular acupoint keypoint detection,
where it also demonstrated robust and accurate performance
(Wang et al, 2025) (Qiu et al, 2023), further confirming its
versatility across medical AT applications.

To enhance the model’s generalization capability, this study
implemented a series of image preprocessing and data augmentation
strategies. During preprocessing, all images were uniformly
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resized to 640 x 640 pixels while preserving the original aspect
ratio. The data augmentation techniques included: (1) random
horizontal flipping with a 50% probability; (2) random resizing
and cropping (RandomResize, RandomCrop); and (3) HSV-based
random perturbation using YOLO’s HSVRandomAug algorithm to
improve robustness to variations in lighting and color (Li et al,,
2022). All augmentation operations were performed online in
real time (Zhang et al., 2021), eliminating the need for additional
image storage and ensuring that the model was exposed to diverse
variations in each training iteration.

2.4 Development of the multitask
withdrawal quality control system

2.4.1 Definition of effective withdrawal time

Withdrawal time (WT) is defined as the duration from the
moment the colonoscope reaches the ileocecal region (specifically,
the ileocecal valve at the terminal ileum) to its complete withdrawal
through the anus. WT primarily includes two segments of non-
observational time: Time 1 refers to the duration of instrumental
operations, such as chromoendoscopy, biopsy, and polypectomy
procedures (e.g., endoscopic mucosal resection and cold snare
polypectomy); Time 2 denotes periods of non-interpretable frames,
including bowel irrigation, darkened screens, or blurred images
caused by rapid scope movement. After excluding these ineffective
periods, the remaining duration constitutes the actual time used by
the endoscopist to inspect the mucosa and detect lesions, known as
the Effective Withdrawal Time (EWT). The theoretical formula is:
EWT =WT - Time 1 - Time 2.

2.4.2 Al-Based automatic calculation of EWT

To enable the automated AI-based calculation of EWT, this study
developed a multitask classification model based on a convolutional
neural network (YOLOv11). The workflow is as follows: the system
processes colonoscopy videos frame by frame, using the model to
identify each frame as one of three categories in real time—ileocecal
part, instrumental operation, or normal mucosal observation. When
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a sequence of ileocecal frames is detected, the system automatically
marks the beginning of withdrawal and sets that frame as the starting
point of WT.

The model then continuously monitors subsequent frames to
detect instrumental operation frames (Time 1). Simultaneously, to
identify blurred frames within non-observational footage (Time 2),
a Laplacian operator is employed for image clarity assessment. This
method evaluates image sharpness by calculating the second-order
derivative of the grayscale image and determining its variance, using
the formula: Var, = Var(VI), where VI represents the Laplacian
response of image I, and Var denotes variance. If Var; is less than
50, the frame is classified as blurred and counted toward Time 2. The
system accumulates the frame counts corresponding to Time 1 and
Time 2 in real time, subtracts them from the total WT, and converts
the result into EWT based on the frame rate. This approach enables
the automatic and real-time computation of key quality control
indicators during the colonoscopy withdrawal process, eliminating
the need for manual intervention.

2.4.3 Automated monitoring of withdrawal speed

To monitor withdrawal speed during colonoscopy, this study
employed the perceptual hash (pHash) algorithm to quantify visual
differences between consecutive video frames. Specifically, the
pHash value of each frame I was calculated using the imagehash
library, denoted as: H = pHash (I). The hash difference between
adjacent frames was measured by computing the Hamming distance,
defined as: D = HI - H2, where HI and H2 represent the
pHash values of two consecutive frames. The resulting difference
D reflects the degree of visual content change and serves as an
indirect indicator of the colonoscope’s movement speed. To enhance
visualization, a speed scale bar was overlaid on each video frame,
displaying the current speed status based on the hash difference
D. The system used a color-coded scheme: blue for normal speed
(D < 20), yellow for warning speed (21 < D < 30), and red for
hazardous speed (D > 30). This approach enables intuitive, real-time
speed monitoring without relying on positional tracking or external
sensors, thereby supporting operational stability and improving
mucosal observation quality during withdrawal.

2.4.4 System integration and functionality
implementation

Building upon the aforementioned modules, this study
developed an integrated Al-assisted multitask colonoscopy
withdrawal quality control system, named EWT-SpeedNet, with
its system architecture illustrated in Figure 4. The system utilizes
the YOLOvI11 model to perform real-time image classification,
automatically identifying the withdrawal start point while
simultaneously calculating WT, Time 1, Time 2, and EWT. In
addition, by incorporating perceptual hash (pHash) and Hamming
distance analysis, the system quantitatively evaluates variations in
withdrawal speed, which are visualized using a color-graded scale
bar. Constructed using PyTorch and OpenCV, the system enables
real-time display of multiple quality control metrics—including
WT, EWT, and withdrawal speed monitoring—within a unified,
user-friendly interface. Requiring neither additional hardware nor
manual input, EWT-SpeedNet offers continuous, objective, and
efficient real-time feedback to support clinical practice.
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2.5 Model interpretability analysis

To enhance model transparency, this study employed
explainable artificial intelligence techniques by using Grad-CAM
to generate heatmaps (Barclay et al., 2006), visually illustrating the
regions of the image the model focuses on during decision-making.
The process involves defining a model wrapper, MyModelWrapper,
to adapt the YOLOV11 output, selecting the penultimate layer as
the target for visualization, and initializing Grad-CAM after loading
and transferring the model to the GPU.

Images are then read, converted to RGB, resized to 224 x
224 pixels, normalized, and transformed into tensors with gradient
tracking enabled. After model inference, a grayscale heatmap is
generated and superimposed on the original image. The original
image, heatmap, and final visualization are saved for analysis. These
visual outputs allow researchers and clinicians to verify whether
the model focuses on clinically relevant anatomical or pathological
areas, which not only enhances interpretability but also fosters trust
in the model’s decisions. Such transparency is crucial in clinical
environments, where explainability strongly influences the adoption
of AI tools in routine practice.

2.6 Human—Al comparison

This study systematically compared the performance of the
AT system (AI group) with two teams of human endoscopists
(junior group and senior group) in measuring EWT/W'T. The
design and methodology are as follows: A total of 48 colonoscopy
videos, labeled 1-48, were selected. All videos were anonymized,
randomly coded, and distributed to each physician and the Al
system. The junior group consisted of three endoscopists with
0-5 years of experience, while the senior group included three
endoscopists with more than 10 years of experience. Summary
statistics: The EWT and WT of all 48 videos were calculated for
both the junior and senior groups. Consistency assessment: The
intraclass correlation coefficient (ICC) was used to evaluate the
consistency between the AI system and the mean values of the
senior group, using a two-way random-effects model with absolute
agreement. ICC values and their 95% confidence intervals were
reported, with ICC >0.75 indicating good agreement. Bland—-Altman
analysis: Bland-Altman plots were constructed to compare the
measurements of the AI system and the senior group. The mean
difference (bias) and 95% limits of agreement (mean +1.96 SD)
were calculated to assess systematic bias and the range of individual
differences. Correlation analysis: Pearson correlation coefficients
(r) were calculated between the AI measurements and the average
values of the senior group, with > 0.8 indicating a strong
correlation.

2.7 Experimental platform and statistical
analysis

The experimental platform for this study was built on a high-
performance computing system, featuring an NVIDIA GeForce
RTX 4090 GPU (24 GB VRAM), an Intel(R) Core(TM) i9-14900K
processor (3.2 GHz), 32 GB RAM, and a 1.9 TB solid-state drive.
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FIGURE 4

Schematic architecture of the multitask colonoscopy withdrawal quality control system.

The software environment was centered on PyTorch 2.5.1 for model
construction and training, with OpenCV 4.10.0.84 used for image
processing. Additional tools included Pandas 2.2.3, NumPy 2.0.2,
Matplotlib 3.9.2, and Plotly 5.16.1 for data analysis and visualization.
The entire experimental workflow was monitored and visualized in
real time using Weights & Biases (wandb 0.18.7).

Model performance was comprehensively evaluated using the
following metrics: sensitivity, specificity, precision, accuracy, F1
score, average precision (AP), area under the receiver operating
characteristic curve (AUC), and weighted average. The calculation
formulas are shown as Equations 1-8.

TP
Sensitivity = ———— 1
ensitivity TP+ EN (1)
TN
Speci ficity = ———— 2
peci ficity TN FP (2
TP
Precision = ——— 3
recision TP+ FP (3)
Accuracy = __ TP+TN (4)
TP+ TN +FP+FN
Precision x Sensitivity
F1Score =2 x — — (5)
Precision + Sensitivity
k
Pweighted = Zwi <P, (6)
i-1
1
AveragePrecision(AP): AP = J p(rdr (7)
0
=
AUC= - > (FPRy,, — FPR;) x (TPR,,, + TPR;) (8)
i=1
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TP denotes the number of true positives, TN the number of true
negatives, FP the number of false positives, and FN the number of
false negatives; P; represents the performance metric for the i —th
class, and w; denotes the corresponding weight of the i — th class.

3 Results
3.1 Model training and validation

A total of 4,025 images were included in this study, categorized
into three classes: ileocecal part, instrument operations, and
normal visible mucosa. Among them, 3,744 images were used for
model development, while an independently collected set of 281
images and 48 videos was reserved for testing. Four YOLOv11
neural network models of varying scales—YOLOv11n, YOLOv11s,
YOLOv11 m, and YOLOv11l—were trained on the same dataset.
The entire training process was tracked using Weights & Biases
(wandb). As the training steps progressed, model loss steadily
decreased and eventually stabilized, indicating convergence toward
optimal performance (Figure 5A). Figures 5B-D illustrate the
trends of accuracy, precision, and sensitivity across different
models during training. These performance metrics initially
showed gradual improvement with considerable fluctuations but
later stabilized at high levels. Although YOLOv1l m exhibited
slightly lower sensitivity (93.79%) compared to other models, it
achieved the highest accuracy (96.00%), precision (96.38%), and
F1 score (94.97%), demonstrating the best overall performance.
Consequently, YOLOvI1 m was selected as the final model for
deployment. Detailed results are presented in Table 1.
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FIGURE 5
Trends in performance metrics of different models with increasing training steps. (A) Loss curve; (B) Accuracy trend; (C) Precision trend; (D) Sensitivity
trend; An early stopping strategy was applied in this study, which may result in varying training step counts across different models.

TABLE 1 Performance comparison of different models on the validation set (%).

Accuracy% Precision% Sensitivity % F1 score%
yolovlin 95.47 94.04 95.95° 94.92
yolovlls 94.93 93.12 95.51 94.24
yolovll m 96.00° 96.38* 93.79 94.97°
yolov11l 95.33 94.27 94.77 94.51

“indicates the best performance.

3.2 Testing and visual interpretability of the
best-performing model

top-right corner reflect superior detection capabilities. Figure 8
presents Grad-CAM-based visualizations of the model's decision-
making process. Figures 8A,D correspond to the ileocecal part
Table 2 presents the performance of the best-performing model,  and instrument operation categories, respectively. Figures 8B,C
YOLOvV11 m, on 281 test images, including precision, sensitivity,
specificity, F1 score, accuracy, average precision (AP), and AUC

values for the three classes, along with a weighted average as

show activation heatmaps and overlay results for the ileocecal
region, while Figures 8E,F illustrate the corresponding heatmaps
and overlays for instrument operation frames. Warm-colored areas
a summary metric. Figure 6 shows the confusion matrix of the  (such as red and yellow) highlight the critical lesion regions the
YOLOv11 m model, illustrating the distribution of predictions
across all classes. The model achieved an inference speed of 86.78
FPS on the test set. Figure 7 further illustrates key evaluation curves
of the YOLOv11m model: Figure 7A shows the ROC curves, with

all class-specific curves closely approaching the top-left corner,

model focused on. These visualizations help clinicians intuitively
verify whether the model is focusing on medically relevant areas,
which can build trust in its predictions and support clinical
acceptance. For instance, in the ileocecal part category, Grad-CAM
heatmaps consistently focused on the ileocecal valve—an important
indicating excellent classification performance; Figure 7B displays ~ anatomical landmark used by endoscopists to confirm successful

the precision-recall (PR) curves, where curves approaching the  cecal intubation. This clear alignment between model attention and
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TABLE 2 Classification performance of the YOLOv11l m model on the test set.

Precision % | Sensitivity %  Specificity % Flscore % | Accuracy % AP %
Tleocecal part 99.97 86.21 99.96 92.59 97.15 98.13 | 99.39[0.93,0.99]
Instrument 94.07 98.23 95.83 96.1 96.8 99.55 | 99.69 [0.94,0.99]
Normal 97.35 99.88 98.25 98.65 98.93 99.98 | 99.99[0.96,1.00]
Overall (weighted average) 96.58 96.44 97.64 96.38 96.44 99.42 | 99.75[0.98,0.99]

Weighted average metrics take into account the number of samples in each class, assigning greater weight to classes with larger sample sizes.

t
2 100
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FIGURE 6
Confusion matrix of the YOLOv11 m model on the test set.

clinical reasoning further enhances trust and supports real-time
clinical decisions.

3.3 Application of the multitask withdrawal
quality control system

Based on the best-performing YOLOv11 m model, this study
developed a multitask colonoscopy withdrawal quality control
system named EWT-SpeedNet. The system integrates image
classification and speed evaluation modules to achieve three core
quality control functions: automatic identification and recording of
WT, automated calculation of EWT, and real-time monitoring and
visual display of withdrawal speed. EW T-SpeedNet supports parallel
multitask processing and provides efficient, objective, and real-
time feedback without the need for manual intervention. Figure 9A
shows the system’s user interface, where WT, EWT, and withdrawal
speed are displayed in real time in the upper-left corner of the
endoscopic video.

Case 1 (Figure 9B): During a colonoscopy procedure lasting
13 min and 35 s, once the endoscope reaches the cecum, the EWT-
SpeedNet system’s WT and EWT timing modules are automatically
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activated. Between 5 min and 59 s and 6 min and 18 s, the patient
underwent a polyp biopsy with forceps. The Al system automatically
detects and subtracts the duration of this interventional procedure,
enabling a more precise calculation of the EWT. Additionally,
the system features an integrated visual speed scale that provides
real-time feedback on withdrawal speed, helping the endoscopist
maintain a controlled and appropriate withdrawal pace. With AI
assistance, clinicians can focus more on mucosal observation,
which may improve the detection rate of adenomatous polyps and
other lesions.

Case 2 (Figure 9C): In another colonoscopy video with a
total duration of 6 minand 19s, the EWT-SpeedNet system
automatically measured a WT of 2minand 31s and an EWT
of 1 minand 55s. During the procedure, the withdrawal speed
scale repeatedly indicated in red that the withdrawal speed was in
the “danger zone,” signaling that the scope was being withdrawn
too quickly and that the procedure was not following standard
protocols. With the support of the EWT-SpeedNet system, especially
for novice or less experienced endoscopists, there is a promising
potential to standardize withdrawal techniques, thereby enhancing
overall examination quality and increasing the detection rate
of adenomas.

3.4 Human—-Al comparative experiment

A total of 48 colonoscopy videos from the independent test
set were included to evaluate the performance of the AI system
in measuring effective withdrawal time (EWT) compared with
endoscopists of varying experience levels, with all measurements
conducted independently. The results demonstrated strong
agreement between the AI system and the senior endoscopist
group (ICC = 0.969, 95% CI: 0.941-0.984) and a high correlation
(Figure 10A, Pearson r = 0.972, p < 0.001). However, the Wilcoxon
test revealed a statistically significant difference (W = 329.5, p =
0.0074), and Bland-Altman analysis (Figure 10B) showed a slight
underestimation by the AI system (Bias = —11.1's, 95% LoA: -70.5
to 48.3 s),. In comparison with the junior endoscopist group, the AI
system showed lower agreement (ICC = 0.838, 95% CI: 0.755-0.896)
but still maintained strong correlation (Figure 10C, Pearson r =
0.883, p < 0.001); the Wilcoxon test indicated a significant difference
(W =360.0, p = 0.0187), and Bland-Altman analysis (Figure 10D)
revealed an overall overestimation by the AI system (Bias = 23.5s,

95% LoA: —105.4-152.5 s).
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Multitask Al-Based withdrawal quality control system. (A) User interface of the developed multitask Al withdrawal quality control system; (B) & (C) Two
example cases demonstrating colonoscopy withdrawal procedures assisted by the system.

4 Discussion

Based on a colonoscopy image dataset encompassing three
categories—ileocecal part, instrument operation, and normal visible
mucosa—this study applied transfer learning to fine-tune four
pre-trained YOLOv11l models of varying scales (nano, small,
medium, and large), completing the processes of model training,
validation, and testing, and ultimately selecting the best-performing
model. Subsequently, the Laplacian operator was used to identify
blurred frames in colonoscopy videos, and the pHash algorithm
was employed to monitor withdrawal speed in real time. These
components were integrated into the development of EWT-
SpeedNet, an Al-assisted multitask colonoscopy withdrawal quality
control system. Built on the PyTorch and OpenCV frameworks, the
system operates without manual intervention and provides real-time
display of key quality control indicators, including WT, EWT, and
withdrawal speed, all presented within a unified visual interface.
In a human-AI comparative experiment involving 48 complete
colonoscopy videos, the EWT-SpeedNet system demonstrated
promising clinical applicability.

In 2006, a prospective observational study by Barclay et al.
(Keswani et al., 2021) demonstrated that an average WT of no
less than 6 minutes significantly increased the ADR, supporting
its adoption as the minimum WT standard for colonoscopy. The
American Gastroenterological Association (AGA) released a clinical
practice update in 2021 (Rex et al,, 2024), recommending longer
withdrawal times during routine colonoscopy to enhance ADR,
with a suggested average WT of no less than 6 minutes and an
ideal target of 9 minutes. Guidelines jointly issued by the American
Society for Gastrointestinal Endoscopy (ASGE) and the American
College of Gastroenterology (ACG) (Li et al., 2024) further specify
that for patients aged 245 undergoing screening, surveillance,
or diagnostic colonoscopy—without biopsy or polypectomy—the
average WT should be no less than 8 minutes. In recent years,
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both research and clinical guidelines have increasingly emphasized
quality control during the colonoscopy withdrawal phase. On one
hand, they advocate for longer withdrawal times to improve ADR;
on the other, they stress that interventional durations, such as
those spent on biopsy or polypectomy, should be excluded from
total WT, placing greater emphasis on EWT—the actual time
spent inspecting the colonic mucosa. In clinical practice, “blurred
frames” during withdrawal are common and unavoidable, often
caused by mucosal folds obstructing the view, rapid endoscope
movement, or interference from fecal fluid or residue. These frames
compromise mucosal visibility and do not meaningfully contribute
to lesion detection; hence, they should also be excluded from EWT
calculation. To address these issues, this study developed the EWT-
SpeedNet system, capable of displaying both WT and EWT in real
time. It not only automatically identifies and subtracts the duration
of instrumental procedures, but also accurately detects and excludes
non-informative blurred frames, providing a more precise and
objective tool for withdrawal quality assessment in clinical practice.

Although EWT provides a more accurate reflection of
mucosal inspection quality during colonoscopy, traditional manual
measurement of EWT is time-consuming, labor-intensive, and
prone to subjective bias. There is an urgent need for automated,
objective, and real-time monitoring enabled by technological
solutions. Lui et al. (2024) proposed a novel Al-based EWT
quality metric and, after analyzing 350 withdrawal videos, found
a significant correlation between EWT and ADR: each additional
minute of EWT increased ADR by 49% (aOR = 1.49, 95% CI:
1.36-1.65), and the AUC for predicting ADR based on EWT
was significantly higher than that based on standard withdrawal
time (0.80 vs 0.70, P < 0.01). Similarly, Li etal. (Rex et al., 2024)
developed an EWT automatic calculation system using the YOLOv5
model, achieving a high level of agreement between AI and manual

verification (r = 0.92). Unlike these prior studies, the present

research innovatively introduced the Laplacian operator to quantify
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Comparison of EWT measurements between the Al System and Endoscopists of Different Experience Levels. (A) & (B) Pearson correlation analysis and
Bland—Altman consistency analysis between the Al system and senior endoscopists. (C) & (D) Pearson correlation analysis and Bland—Altman

consistency analysis between the Al system and junior endoscopists.

image sharpness by calculating the variance of the second-order
derivative of grayscale values (VarL). When VarL falls below a
defined threshold, the frame is classified as blurred and counted
toward ineffective observation time. This method requires no
additional model training and offers better interpretability and
generalizability, making it more suitable for real-time deployment.
Although the Al system demonstrated strong agreement with senior
endoscopists in EWT measurement (ICC = 0.969, r = 0.972),
Bland-Altman analysis revealed a slight underestimation (Bias =
—11.1'5;95% LoA: —70.5 to 48.3 s). However, this difference of 11.1 s
is clinically acceptable, especially given that the minimum standard
for effective withdrawal time in colonoscopy is typically 6 min.
Such a minor deviation is unlikely to affect quality assessments
or clinical decision-making. Moreover, compared with junior
endoscopists, the Al system showed greater consistency with senior
experts, underscoring its potential to support standardization and
training in real-world practice. To reduce the underestimation
bias and improve accuracy, we plan to refine the blur detection
threshold and introduce post-processing calibration models based
on expert annotations. Moreover, considering the interrelationship
between withdrawal speed and withdrawal time, this study uniquely
integrated withdrawal speed monitoring with EWT calculation
within a unified system. This multitask integration not only
enables real-time evaluation of EWT but also dynamically monitors
withdrawal speed, effectively reducing the risk of missed lesions
due to localized rapid withdrawal. Compared with previous
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studies, this system offers greater practicality and enhanced clinical
applicability.

To further contextualize the strengths and innovations of our
system, Table 3 provides a comparative summary of EWT-SpeedNet
with two representative Al-based systems previously proposed by
Lui et al. (2024) and De Carvalho et al. (2023). The comparison
highlights major differences in task coverage, real-time capabilities,
withdrawal speed monitoring, and intended clinical application.

Nevertheless, this study has certain limitations. First, our current
dataset remains relatively limited for deep learning applications.
To enhance model generalizability, we plan to expand the dataset
through partnerships with five geographically diverse medical
centers, enabling access to a broader range of clinical settings,
endoscopy equipment, and patient populations. Second, we are
currently preparing for a prospective, multicenter clinical trial aimed
at further validating the adaptability and clinical utility of the EWT-
SpeedNet system. This study will involve real-time implementation
of the system in clinical workflows and assess its impact on
key quality indicators such as ADR. Third, to support clinical
deployment, the EWT-SpeedNet system is designed for seamless
integration into existing workflows. It processes colonoscopy video
in real time, overlays withdrawal speed and timing information,
and provides immediate feedback to endoscopists without requiring
additional hardware. Future versions will incorporate a user
interface and reporting features to enhance usability and support
quality control.
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TABLE 3 Comparison of EWT-SpeedNet with prior Al systems.

10.3389/fphys.2025.1666311

Feature EWT-SpeedNet (this study) ’
Tasks performed Multitask (WT, EWT, speed monitoring) Single-task (EWT) Single-task (EWT)
Real-time capability Yes No No
Blur frame detection Yes (Laplacian operator) No No

Interventional time exclusion Yes (Al-detected)

Yes (manual annotation) Not mentioned

Withdrawal speed monitoring Yes (pHash algorithm + scale bar)

No No

Target use Real-time quality control

Real-time quality control Offline post-analysis

Based on the comparison with Lui et al. (2024) and De Carvalho et al. (2023).

5 Conclusion

This study proposed a multitask withdrawal quality control
system that integrates real-time monitoring of withdrawal time,
effective withdrawal time, and withdrawal speed. The system is
capable of assisting endoscopists during the colonoscopy withdrawal
process by proactively prompting control over withdrawal speed and
stability. It holds promise for reducing inter-operator variability and
enhancing the overall quality of routine colonoscopy procedures.
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