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Blood oxygen saturation (SpO2) is a widely used oxygenation index in clinical 
and physiological settings. However, recent phenomena, such as asymptomatic 
hypoxia in COVID-19 and the superior performance of athletes in high-altitude 
conditions under hypoxia, have highlighted the significant variability in individual 
tolerance to blood oxygen saturation. Age, health status, disease, and hypoxic 
adaptation influence it. This brief review introduces the concept of the SpO2

switch as a dynamic. We also proposed a physiological compensatory response 
of SpO2 switch to SpO2 criticality that triggers compensatory responses, 
including ventilatory, autonomic, cardiovascular, and metabolic adaptations. 
Furthermore, individuals can exhibit markedly different responses to hypoxia 
at the same SpO2 value. It reflects a “threshold switch mechanism” driven by 
an individual’s internal physiological settings. This suggests that the SpO2 value 
demonstrates the onset of hypoxia symptoms and reacts to the body’s difference 
in compensatory capacity. This reconceptualisation shifts the focus from static 
thresholds to dynamic response analysis, offering new perspectives for precision 
health, mountain medicine, and personalised risk assessment of hypoxia.

KEYWORDS

SpO2 switch, physiological switch, hypoxia adaptation, autonomic nervous system 
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 1 Introduction

Oxygen saturation (SpO2) is a key indicator to assess respiratory and cardiovascular 
function (Swartz et al., 2020). Oxygen is essential for aerobic metabolism and 
maintaining cellular homeostasis (Trayhurn, 2019). The central respiratory control 
centers dynamically adjust breathing patterns and frequency in response to changes 
in arterial carbon dioxide (CO2) and oxygen concentrations (Urfy and Suarez, 2014). 
The nervous system is critical in voluntary and involuntary respiratory regulation 
(Cherniack, 1990; Health, 2022). Traditionally, SpO2 levels below 94% have been considered 
clinically alarming. However, during the COVID-19 pandemic, the phenomenon of

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1667238
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1667238&domain=pdf&date_stamp=
2025-08-29
mailto:247001@ym.nichiyaku.ac.jp
mailto:247001@ym.nichiyaku.ac.jp
mailto:hannahchung770628@gmail.com
mailto:hannahchung770628@gmail.com
https://doi.org/10.3389/fphys.2025.1667238
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1667238/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1667238/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1667238/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1667238/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1667238/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Yuri et al. 10.3389/fphys.2025.1667238

“silent hypoxemia”—in which patients exhibit significant hypoxemia 
without overt symptoms—challenged traditional understandings 
of hypoxia and exposed limitations in current monitoring and 
critical care strategies (Dhont et al., 2020; Simonson et al., 2021; 
Bartlett et al., 2020; Yang et al., 2020).

Similarly, elite athletes and people living at high altitudes 
have excellent tolerance to low blood oxygen saturation (SpO2) 
levels. Systemic hypoxic stress increases as air pressure decreases 
with increasing altitude (Barnes and Kilding, 2015; Green, 2000). 
Hypoxic training has been used for a long time to enhance aerobic 
capacity by promoting adaptation to reduced oxygen availability 
(Sinex and Chapman, 2015). Since the outstanding performance 
of athletes from East African countries at the 1968 Mexico 
Olympics, altitude training has become a cornerstone of endurance 
training (Daniels, 1979; Jackson and Balke, 1971), Although hypoxic 
exposure can stimulate erythropoiesis, mitochondrial efficiency, and 
ventilatory responses, it can also impair performance in certain 
conditions (Sinex and Chapman, 2015).

There is growing interest in individual differences in 
hypoxic tolerance. Factors such as age, sex, genotype, history 
of altitude exposure, and ethnic background contribute to 
individual susceptibility to altitude-related illnesses, including 
acute mountain sickness (AMS), high altitude pulmonary edema 
(HAPE), and high-altitude cerebral edema (HACE) (Beall, 2014; 
Villafuerte and Corante, 2016). These differences are critical in 
designing altitude training programs and predicting adaptive 
responses (McLean et al., 2013).

Hypoxia is caused by a mismatch between oxygen supply 
and tissue metabolic demand (Maltepe and Saugstad, 2009). Of 
note, intense exercise under normoxic conditions also produces 
hypoxia-like responses due to the dramatic increase in oxygen 
demand (Radak et al., 2013). These responses span cognitive, 
visual, emotional, motor, and autonomic domains, and are 
influenced by physiological status, stress reactivity, exposure 
duration, and altitude, resulting in substantial interindividual 
variability (Asshauer, 2006). Although molecular biomarkers for 
predicting hypoxia tolerance have been explored, no reliable 
pre-exposure markers have been validated in humans or animal 
models (Dzhalilova and Makarova, 2020). Furthermore, ventilatory 
parameters such as tidal volume or respiratory rate may not fully 
capture the core drivers of respiration (Mortola, 2019).

These observations prompt reevaluating how SpO2 thresholds 
function and why individual tolerance varies. In this context, we 
introduced the concept of SpO2 dependence as a physiological 
switch that describes how changes in metabolic and ventilatory 
compensation shape individual hypoxic responses. This “switch” is 
a threshold-triggered response mechanism, indicating that SpO2
tolerance is not static, but can be dynamically adjusted and 
hierarchically trained.

Notably, even at similar or similar SpO2, individuals exhibit 
significant variability in their responses to hypoxia symptoms. Some 
people rapidly experience symptoms like dizziness and dyspnea, 
while others experience little to no symptoms. This phenomenon 
suggests that there may be an adjustable physiological threshold or 
“switch mechanism” that determines when to initiate the hypoxic 
compensatory response.

2 Individual differences in SpO2
tolerance

Individual tolerance to SpO2 varies significantly 
and is influenced by multiple factors, including age, 
physical condition, chronic diseases, genetics, and ethnic
background.

•  Age Factor

In healthy adults, resting SpO2 remains between 97% and 99%, 
with values below (Ceylan et al., 2016; Collins et al., 2015). SpO2
tends to decline with aging. Studies have shown that the mean 
arterial oxygen partial pressure (PaO2) in people over 80 years 
of age is approximately 66 mmHg, corresponding to an SpO2 of 
approximately 90%–92% (Malmberg et al., 1987; Sorbini et al., 1968; 
Cerveri et al., 1995; Madan, 2017).

• Chronic Disease Factors

Resting SpO2 values in patients with chronic diseases, including 
diabetes (Laursen et al., 2022), chronic cough (Sumanto and 
Ningtyas, 2022), chronic obstructive pulmonary disease (COPD) 
(Furian et al., 2018), and COVID-19 infection (Dhont et al., 2020; 
Simonson et al., 2021; Fuglebjerg et al., 2020), often range from 
88% to 92%.

• Fitness and Training Status

Well-trained athletes typically have a delayed and smaller 
physiological response to decreased SpO2. During intense 
exercise, individuals often maintain elevated SpO2 levels 
(Rojas-Camayo et al., 2018; Eroglu et al., 2018; Martín-
Escudero et al., 2021). Furthermore, individuals who engage in 
long-term high-altitude training, even with low resting SpO2, 
demonstrate high efficiency of their cardiopulmonary and oxygen 
transport systems (Rojas-Camayo et al., 2018).

• Ethnic and social factors

Ethnic differences may influence the clinical assessment 
and treatment strategies for hypoxemia. For example, oxygen 
therapy regimens in intensive care units vary across ethnic groups, 
and pulse oximetry may underestimate hypoxemia in patients 
with darker skin (Giovanelli et al., 2023; Sjoding et al., 2020; 
Fawzy et al., 2022). Furthermore, genetic background (such 
as high-altitude acclimatization; (Beall, 2007; Nishimura et al., 
2022), access to healthcare, and socioeconomic status (Shi et al., 
2022) also influence the diagnosis and prognosis of
hypoxemia.

In summary, the triggering of hypoxic symptoms depends not 
only on the absolute SpO2 value but also on the individualised 
“SpO2 threshold switch.” In other words, even at the same blood 
oxygen concentration, different individuals may exhibit completely 
different symptomatic responses or no symptoms due to different 
threshold settings.
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3 Physiological mechanisms of 
hypoxic compensation

When the body senses hypoxia, it initiates a series of 
compensatory mechanisms to maintain oxygen homeostasis, 
including increased respiratory rate, heart rate, sympathetic 
nerve activity, and redistribution of blood flow to vital organs 
(Grimminger et al., 2017). These responses are mainly mediated by 
chemoreceptors, especially those in the carotid arteries and aortic 
bodies, which can sense the decrease in arterial blood oxygen and 
trigger downstream physiological pathways (Prabhakar et al., 2015; 
Prabhakar and Semenza, 2015; Heymans and Heymans, 1927).

The autonomic nervous system (ANS) plays a central role 
in hypoxic adaptation. Increased sympathetic nervous system 
activity enhances cardiac output and pulmonary ventilation, while 
parasympathetic nervous system activity is typically suppressed 
to support the acute stress response (Hainsworth et al., 2007; 
Schagatay et al., 2000). Respiratory centres within the brainstem 
are highly sensitive to hypoxia and rapidly initiate a hypoxic 
ventilatory response (HVR) to increase ventilation and partially 
compensate for decreased blood oxygen levels (Pamenter and 
Powell, 2016). Prolonged hypoxia can cause a shift in baseline 
autonomic function, and individual differences in this response 
are closely related to genetic background, physical status, age, and 
sex (Puri et al., 2021). Previous studies have shown that exercise 
training can help improve autonomic stability, enhancing hypoxic 
tolerance (Calbet et al., 2003).

Acute hypoxia causes a decrease in arterial oxygen content, 
affecting multiple physiological functions. Under moderate hypoxic 
conditions, peripheral muscles are prone to fatigue and inhibit 
motor output through sensory afferent centres to reduce energy 
expenditure and maintain physiological stability. This is also one 
of the core assumptions of the “perception-limited fatigue theory” 
(Amann et al., 2006; Amann et al., 2007; Gandevia, 2001). Under 
more severe hypoxic conditions, even if muscles have not reached 
maximal fatigue, the body will actively reduce exercise output to 
avoid systemic instability (Fulco et al., 1994).

Under constant perceived exertion (RPE) conditions, exercise 
intensity and duration decrease significantly as ambient oxygen 
concentration decreases. This phenomenon is closely associated 
with a rapid decrease in SpO2 and a premature increase in 
respiratory rate, indicating that SpO2 levels and respiratory 
compensation are important physiological signals regulating 
perceived exertion (Jeffries et al., 2019). Exercise-induced 
hypoxemia still significantly limits aerobic capacity (Faoro et al., 
2017). Low baseline SpO2 at rest is a significant risk factor for severe 
exercise-induced desaturation (EID) (Gao et al., 2025).

There is also significant inter-individual variability in ventilatory 
responses to intense exercise, which is difficult to predict using 
resting hypoxic or hypercapnic stimulation tests. Previous literature 
has generally suggested that trained endurance athletes exhibit 
blunted chemoreceptor responsiveness, but this phenomenon is 
highly heterogeneous and may be related to baseline SpO2 (Dempsey 
and Wagner, 1999).

At high altitude, the decrease in ambient oxygen partial pressure 
with increasing altitude naturally causes SpO2 to decrease. Despite 
this, most healthy adults can acclimate within hours to days, 
maintaining arterial oxygen saturation (SaO2) within the functional 

range of 80%–90% (Shaw et al., 2021). In contrast, elderly individuals 
exhibit blunted respiratory and cardiovascular responses to hypoxia 
and hypercapnia, suggesting that their oxygen dependence may 
increase (Kronenberg and Drage, 1973). Elderly individuals and 
those with chronic medical conditions are more affected by hypoxia-
related symptoms and complications (Albert and Swenson, 2014; 
Chapman, 2013; Havalko et al., 2022).

Notably, an individual’s physiological response to hypoxia is 
highly related to their resting SpO2 level. Studies have shown 
that non-pharmacological interventions such as acupuncture may 
help improve hypoxemia-related symptoms by lowering SpO2 levels 
(Sumanto and Ningtyas, 2022). Intermittent hypoxia (IH) training is 
a non-pharmacological method for preventing and treating hypoxia 
in patients with various diseases and healthy adults (Serebrovskaya 
and Xi, 2016; Verges et al., 2015).

The extent and duration of the decrease in SpO2 at low oxygen 
doses (F(IO)2) can reflect an individual’s compensatory capacity. 
SpO2 levels remain stable in tolerant individuals, whereas SpO2
decreases rapidly and recovers slowly in dependent individuals, 
suggesting increased oxygen sensitivity (Peltonen et al., 1999). 
Furthermore, patients undergoing obesity surgery experienced 
elevated cardiopulmonary parameters and decreased SpO2 after a 
6-min walk (Shrivastava, 2025). A study of sprinters undergoing 
high-intensity intermittent hypoxic training demonstrated 
that higher mean SpO2 levels were associated with improved 
performance, highlighting how changes in SpO2 influence training 
responses (Takei et al., 2025).

In summary, when the body senses hypoxia, it triggers 
a compensatory response through chemoreceptors, including 
increased respiratory and heart rates, sympathetic activity, and 
redistribution of blood flow to maintain oxygen homeostasis. The 
intensity of this response is influenced by genetics, age, physical 
fitness, and health status. 

4 Regulation and adaptation of the 
SpO2 switch

Aerobic capacity—the ability to sustain prolonged exercise 
under normoxic conditions—is a key determinant of endurance 
performance (Feng et al., 2023; Girard et al., 2020). The brain 
and skeletal muscle have different oxygen requirements, and 
physiological or pathological states can alter tissue sensitivity 
to oxygen supply (Kulkarni et al., 2007). Although well-trained 
individuals typically have a low resting heart rate, they can still 
exhibit a pronounced heart rate response to hypoxic or high-
intensity exercise (Goorakani et al., 2020; Patel and Zwibel, 2024).

Among various exercise training methods, interventions 
such as intermittent hypoxic training (IHT), breath-hold 
diving, and paced breathing exercises have significantly 
improved tolerance to low SpO2. These exercises can enhance 
autonomic balance (Rybnikova et al., 2022), ventilatory 
efficiency and metabolic regulation, oxygen transport and 
utilisation (Park et al., 2018; Park et al., 2018), and even exert 
neuroprotective effects (Rybnikova et al., 2022).

Intermittent hypoxia (IH) training, with the development and 
widespread use of equipment that induces systemic or localised 
hypoxia, has recently seen considerable research on related training 
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methods. Methods such as “hypoxic living-hyperoxic training” have 
gained widespread popularity and become effective and efficient 
training methods for various professional athletes (Millet et al., 2010; 
Girard et al., 2017; Girard et al., 2020).

Well-trained freedivers can maintain a 1:1 apnea-to-
repnea ratio while stationary without experiencing progressive 
hypoxia, and their physiological responses adapt with 
repeated pauses (Mulder et al., 2025). Furthermore, elite 
divers can tolerate prolonged apnea with minimal anaerobic 
metabolic burden (Drviš et al., 2025), suggesting that training 
strengthens the ability to regulate the SpO2 switch and prolongs 
tolerance. We believe this is due to the regulation of the SpO2 switch, 
resulting in adaptation after training.

In this study, arterial oxygen saturation was measured in healthy 
subjects and patients with chronic heart failure during spontaneous 
breathing, at 15, 6, and 3 breaths per minute, at rest, and during 
exercise (Bernardi et al., 1998). These exercises help maintain 
calmness and physiological stability under low oxygen pressure, 
supporting that spontaneous respiratory regulation can enhance 
autonomic function (Jerath, 2016). Even brief, conscious control of 
breathing rate and depth is considered a health-promoting strategy, 
similar to the mechanisms of altitude acclimatisation. In hypoxic 
emergencies, these techniques may help delay the onset of severe 
hypoxemia (Miles, 1964).

Acute hypoxia increases cardiac output and sympathetic drive 
to maintain oxygen delivery to vital organs (Heinonen et al., 2016; 
Fox et al., 2006). In severe COVID-19, the concurrent decrease 
in oxygen saturation and increased heart rate are associated with 
autonomic dysfunction or enhanced baroreflex sensitivity (Swenson 
and Hardin, 2023). Interestingly, despite metabolic changes under 
hypoxia, VO2 during fatigue was similar across normoxia, hypoxia, 
and hyperoxia, suggesting oxygen availability may not limit short-to 
moderate-duration exercise (Adams and Welch, 1980).

In summary, the best way to explain the varying manifestations 
of symptoms at the same SpO2 level is to view SpO2 as a dynamic 
physiological switch. Its individualised critical threshold (SpO2-CR) 
determines when compensatory responses are initiated. 

5 Discussion

5.1 SpO2 switch: critical response range 
and regulation of hypoxia tolerance

SpO2 is commonly used to quantify oxygen transport status. 
However, recent studies suggest that a decrease in SpO2 can 
trigger a series of physiological compensatory responses, potentially 
acting as a “switch.” For example, high-altitude studies have shown 
that men with higher BMIs are more susceptible to hypoxemia 
during winter mountaineering (Vignati et al., 2021), and BMI is 
negatively correlated with SpO2 (Ceylan et al., 2016; Gupta et al., 
2014). Obese subjects also have worse altitude sickness scores and 
nighttime SpO2 at a simulated altitude of 3,658 m (Ri-Li et al., 
2003), reflecting limited respiratory acclimatisation and hypoxia 
tolerance (Caravedo et al., 2022). Furthermore, exercise testing 
has shown that a significant decrease in SpO2 shortens exercise 
time and reduces performance (Jeffries et al., 2019). Some non-
pharmacological interventions, such as acupuncture, can also adjust 

FIGURE 1
Physiological responses to declining SpO2: activation of the SpO2-CR 
switch. Note: When SpO2 remains within the normal range 
(approximately 97% ± 2%), the body is in a stable “baseline zone.” As 
SpO2 slowly decreases and approaches the individual’s critical point 
(But this varies from person to person), the SpO2-CR switch is 
triggered, entering the “compensatory zone.” Central and peripheral 
regulatory systems work together within this zone, including increased 
ventilation, heart rate, cardiac output, and metabolic rate.

SpO2 levels and alleviate hypoxia-related symptoms (Sumanto and 
Ningtyas, 2022).

In addition to high-altitude exposure, SpO2 during exercise 
also exhibits intensity-dependent characteristics. Cycling exercise 
studies showed that SpO2 after anaerobic exercise decreased 
significantly compared to before and after warm-up (Tahhan et al., 
2018). Henslin Harris et al. (2013) and Campbell et al. (2009) 
noted that the decrease increased with increasing exercise intensity 
(Campbell et al., 2009; Henslin Harris et al., 2013); however, no 
significant changes were observed during warm-up or low-to-
moderate-intensity aerobic exercise, SpO2 usually remains close 
to resting levels (Rowell et al., 1964). This may be because the 
respiratory and circulatory systems can maintain stability, keeping 
SpO2 close to resting levels (Tahhan et al., 2018).

Nikooie et al. (2009) used SpO2 to measure the anaerobic 
threshold (AT) noninvasively. They found that when exercise 
intensity reaches AT, SpO2 drops sharply and is highly correlated 
with the lactate threshold (LT), reaching its lowest point at maximal 
oxygen uptake (VO2max). Similar phenomena are observed in 
different types of exercise: for example, a rapid drop in SpO2 during 
the high-intensity phase can be observed in both short-distance, 
high-intensity anaerobic sprints (100 m) and medium- and long-
distance aerobic events (400 m and 800 m).

These changes in SpO2 are not simply due to insufficient oxygen 
supply but result from coordinated regulation between the central 
and peripheral systems. This leads us to propose the “SpO2-CR 
switch” hypothesis: baseline SpO2 remains stable. When exercise 
intensity approaches VO2max, SpO2 drops to an individualised 
nadir, but does not deviate significantly from baseline. This 
“switch” may trigger the hypoxic response, determining the body’s 
compensation pattern under high load (see Figure 1).

Furthermore, the hypoxic threshold may vary among 
individuals. Modulating this threshold “switch” through medication, 
acupuncture, or other non-pharmacological approaches may further 
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optimise hypoxia-related physiological responses and athletic 
performance.

These responses aim to maintain tissue oxygen delivery and 
exercise performance in hypoxic environments. When SpO2 rises 
and exceeds the critical point, the switch “resets,” and physiological 
functions gradually return to baseline levels.

It is important to note that the “baseline zone” and “critical 
point” are not fixed values but can be adjusted through training, 
environmental adaptation, and even pharmacological or non-
pharmacological interventions. Training adaptation can lower 
baseline SpO2 levels or delay the triggering of the critical point, 
thereby improving hypoxic tolerance and exercise performance.

Based on this, we propose the concept of the SpO2 switch 
and critical range as individualised indicators for inducing 
compensatory responses. Its core components include: 

1. Baseline SpO2: The average SpO2 range of an individual’s stable 
SpO2 at rest and normal pressure.

2. Critical Range (SpO2-CR): A certain drop below the baseline 
value is considered a threshold that may trigger a response.

3. Switch Activation: When SpO2 enters the critical range, 
compensatory mechanisms such as increased respiratory and 
heart rates, sympathetic nerve activation, and blood flow 
redistribution are triggered.

4. Trainability: Interventions such as breathing training, 
endurance exercise, high-altitude exposure, or acupuncture 
can adjust baseline and critical ranges to improve hypoxia 
tolerance.

This concept can be applied to athletic performance monitoring, 
chronic disease management, and altitude acclimatisation 
assessment. Future research could explore its feasibility as a clinical 
predictive and training indicator. 

6 Future research directions and 
clinical applications

SpO2 should not be understood simply as a passive reflection 
of oxygen delivery but as a dynamic physiological switch that 
controls the body’s compensatory response to hypoxic stress. This 
switch influences the individualised SpO2 critical threshold (SpO2-
CR). Below this threshold, the body initiates a series of adaptive 
mechanisms, including increased ventilation, increased heart 
rate, sympathetic nervous system activation, and redistribution 
of blood to vital organs. This switch-like behaviour of SpO2
has important implications for understanding exercise tolerance, 
fatigue, and resilience under both hypoxic and non-hypoxic 
conditions. It is expected to be a comprehensive physiological 
indicator encompassing multiple fields, including altitude 
acclimatisation, physiological monitoring, exercise training, and
critical care.

Although previous research has explored the significance of 
SpO2 in clinical and environmental physiology, its regulation, 
modelling, and systematic validation remain limited.

Future research should explore various interventions to 
modulate the SpO2 switch. Breathing training, structured exercise 
in hypoxic conditions, and high-altitude exposure may help lower 
the critical threshold and enhance hypoxic tolerance. Furthermore, 

previous studies have shown preliminary efficacy in modulating 
SpO2 responses, particularly in individuals with irregular 
blood pressure or chronic respiratory symptoms, warranting 
further investigation as a non-pharmacological intervention. 
Pharmacological modulation of the SpO2 switch response also 
represents an emerging area, promising therapies to enhance oxygen 
utilisation or prevent hypoxic injury.

This approach could be applied to high-altitude travel, aviation 
medicine, geriatric care, sports training, and rehabilitation medicine 
to develop personalised health management and risk prevention 
strategies. Integrating genetic, epigenetic, and environmental 
exposure profiles can help better understand the cross-scale 
mechanistic integration of individual differences in hypoxic 
adaptation. 

7 Conclusion

Blood oxygen saturation (SpO2) should not be viewed solely as 
a passive indicator of oxygen delivery. Instead, it acts as an active 
physiological switch, regulating the body’s compensatory response 
to hypoxic stress. This conceptual model redefines the SpO2 switch 
as a dynamic and trainable trait, determined by an individual’s 
baseline level and a critical threshold (SpO2-CR). When SpO2 levels 
fall below this personalized threshold, a series of compensatory 
mechanisms are activated to maintain physiological and functional 
stability.

This conceptual model redefines SpO2 tolerance as a dynamic 
and adjustable trait, offering new perspectives for preventive 
medicine and precision health. Moving beyond a static threshold 
model and toward a personalized SpO2 response model can enhance 
early intervention, optimize training outcomes, and improve 
human adaptability and resilience to various physiological and 
environmental challenges.

In summary, even at the same or similar SpO2 percentages, 
significant differences exist between individuals in their 
physiological and symptomatic responses to hypoxia. This variability 
reflects the individualized SpO2 switching mechanism, whose 
critical threshold (SpO2-CR) determines when to initiate respiratory 
and circulatory compensatory responses.
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