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Objective: Managing matches and training loads is crucial for injury prevention. 
Contact load is a defining feature of rugby union, and World Rugby has proposed 
its management as a key strategy for the prevention of injuries. In fact, increased 
contact load has been associated with a higher incidence of injuries. However, 
the specific relationship between contact load and the occurrence of both 
contact and non-contact injuries remains unclear. In this study, we aimed to 
clarify the association between contact load and the occurrence of contact and 
non-contact injuries in elite rugby union players.
Methods: Sixty-six elite male rugby union players (age: 26.5 ± 3.5 years) in 
Japan were monitored over three seasons. Contact load, an indicator of training 
load, was evaluated based on collision count and collision load, measured 
using a global positioning system device. For each player, cumulative contact 
loads were calculated using time windows of 1, 2, 3, 4, 5, 6, 7, 14, 21, and 
28 days. The association between contact load and injury incidence (contact 
and non-contact) was analyzed using generalized estimating equations.
Results: A total of 193 injuries were recorded. Of these, 136 were contact injuries 
and 57 were non-contact injuries. The contact load was significantly associated 
with both types of injury. For contact injuries, the highest odds ratio for the 
collision count was observed on day 1 and gradually decreased toward day 7 (day 
1: odds ratio, 2.10 [95% confidence interval: 1.67–2.64]; day 7: 1.31 [1.15–1.48]). 
The odds ratio for collision load also declined from days 1–7 (day 1: 3.27 
[2.18–4.90]; day 7: 1.44 [1.17–1.78]). By contrast, non-contact injuries showed 
a different pattern. For collision count, the highest odds ratio was observed on 
day 2 and then gradually decreased toward day 4 (day 2: 1.38 [1.04–1.83]; day 4: 
1.35 [1.06–1.72]). The odds ratio for collision load was also the highest on day 2 
and decreased toward day 4 (day 2: 1.75 [1.16–2.65]; day 4: 1.56 [1.07–2.27]).
Conclusion: Contact load was associated with both contact and non-contact 
injuries in elite rugby union players.
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1 Introduction

Rugby union is a full-contact sport played worldwide 
(Duthie et al., 2005). It has one of the highest injury incidence 
rates among all professional team sports, with 91 and 2.8 injuries 
per 1,000 player-hours during matches and training, respectively 
(Williams et al., 2022). According to the mechanism of injury, most 
injuries can be classified as either contact or non-contact, with 
the exception of certain injuries. Contact injuries are most often 
caused by collisions, such as tackles during matches, and account 
for more than 60% of all reported injuries (Williams et al., 2022). 
Conversely, non-contact injuries without direct physical collisions 
occur more frequently during training sessions (Fuller et al., 2020). 
While contact injuries often involve accidental or unpredictable 
events and may be difficult to prevent entirely, non-contact injuries 
are considered preventable, as they are associated with modifiable 
risk factors such as aerobic capacity, strength, neuromuscular 
control, and tissue resilience (Meeuwisse et al., 2007; Gabbett, 
2016). Therefore, to reduce the overall incidence of injuries in 
rugby union, it is essential not only to address contact injuries 
but also to focus on non-contact injuries by addressing these factors 
(Meeuwisse et al., 2007; Gabbett, 2016).

One widely used method for monitoring and managing injury 
risk is the use of Global Positioning System (GPS) devices, 
which track players’ physical loads during training and matches 
(Soligard et al., 2016; Windt and Gabbett, 2017; Andrade et al., 
2020; Griffin et al., 2020; Maupin et al., 2020). In other field sports, 
such as soccer, a high running load has been linked to an increased 
incidence of non-contact injuries, particularly hamstring strains 
(Malone et al., 2017; Malone et al., 2017; Roe et al., 2018; Gómez-
Piqueras and Alcaraz, 2024). Intense running loads are considered 
a primary factor in non-contact injuries, and sudden increases in 
high-speed running distance may increase the risk of non-contact 
injuries (Jaspers et al., 2018; Malone et al., 2018). Although rugby 
union teams have also used GPS technology to monitor non-
contact variables such as overall distance (Cousins et al., 2019; 
Taylor et al., 2021; Ren et al., 2024), rugby union involves a shorter 
total running distance and less high-speed running compared 
to other field sports. In addition, rugby union features frequent 
and high-intensity contact plays instead of extensive high-speed 
running (Paul et al., 2022). World Rugby, the international governing 
body of rugby union, has proposed managing and limiting contact 
practice by monitoring “contact load” from the perspective of injury 
prevention (Starling et al., 2023). This guideline indicates that 
“contact load” comprises elements such as intensity (the magnitude 
of contact events), volume (the total amount of contact), density 
(the frequency of contacts), and unpredictability (the degree to 
which a player can anticipate their direct opponent’s actions during 
contact activities). Although contact is a defining feature of rugby 
union, the relationship between “contact load” and injury risk 
has not yet been fully clarified. Additionally, a 2023 systematic 
review of training loads in rugby football players reported a strong 
relationship between training loads and each athlete’s capacity for 

Abbreviations: GPS, Global Positioning System; CI, confidence interval; 
GEE, generalized estimating equation; ACWR, acute chronic workload ratio; 
CK, creatine kinase.

and tolerance of those loads. However, contact load has not yet 
been systematically quantified as a component of training load, 
the relationship between contact load, physical performance, and 
physiological adaptations in rugby players (Paiva et al., 2023).

Recent technological advancements have enabled some 
GPS devices to measure not only running metrics but also 
contact-related variables, such as contact intensity and volume 
(MacLeod et al., 2018; Tierney et al., 2020). Our previous study 
showed that higher “contact load”, as calculated using these GPS 
devices, was associated with an increase in the overall incidence 
of injuries (Iwasaki et al., 2024). However, the specific relationship 
between GPS-measured “contact load” and the mechanism of injury, 
whether contact or non-contact, remains unclear. Therefore, we 
aimed to investigate the association between “contact load” and the 
occurrence of both contact and non-contact injuries in elite rugby
union players. 

2 Materials and methods

2.1 Study design

In this retrospective observational study, we used load data from 
GPS devices and injury records of 66 elite male rugby union players. 
The participants were rugby union players who belonging to and 
playing in Japan Rugby League One, the highest level of rugby 
union league in Japan recognized by World Rugby. All participants 
were informed of the purpose, methods, procedures, and risks 
of the study and were provided with an opportunity to opt out. 
This study was conducted in accordance with the Declaration of 
Helsinki and was approved by the Ethics Committee for Human 
Experiments of Juntendo University (No. 2023-58). The observation 
period covered three rugby seasons, from 30 August 2021 to
25 May 2024. 

2.2 Load data in matches and training

Load data during matches and field-based training sessions were 
obtained using a GPS device (STATSports Apex, Northern Ireland) 
(Beato et al., 2018; Thornton et al., 2019). This device collected 
data from a GPS, accelerometer, magnetometer, and gyroscope at 
frequencies of 10, 952, 10, and 952 Hz, respectively. The participants 
wore a specially designed vest which placed the GPS device on the 
upper back, that is, over the thoracic spine, between the left and 
right scapulae and the same device during the study to eliminate 
inter-unit variability and errors. Then, several load indicators were 
calculated using STATSports Sonra (STATSports): collision count, 
collision load, distance, and high-speed running. Collision was 
detected when the GPS device registered an impact greater than 8 g 
on the wearer’s body, accompanied by a shift in axial load direction. 
Collision count represents the frequency of collision events, and 
collision load is a composite metric representing the cumulative 
intensity of these events. Collision load metric is calculated using 
a proprietary weighted algorithm that combines the maximum 
velocity into the collision, peak impact force, and collision duration 
(MacLeod et al., 2018). In this study, collision count and collision 
load were quantified as “contact load”. Distance and high-speed 
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running data were collected using GPS at a 10 Hz rate; high-
speed running was defined as the distance covered at speeds 
>5.5 m/s (Beato et al., 2018). 

2.3 Data processing and missing data

Collision count, collision load, distance, and high-speed 
running were used as load indicators for each participant during 
the matches and training. For each player, cumulative loads were 
calculated using time windows of 1, 2, 3, 4, 5, 6, 7, 14, 21, and 28 
days for collision count, collision load, total distance, and high-speed 
running distance. Missing GPS data were imputed using the mean 
value from players in the same positional group (forward or back) 
for each session. This accounts for the varying training loads among 
positions in rugby union and was accomplished by adapting the 
Daily Team Mean (DTMean) method (Griffin et al., 2021). 

2.4 Definition of injury

Injury was defined as physical discomfort that occurred during 
training or a match that prevented full participation in a training 
session or match. Injuries were diagnosed and classified by the 
team medical staff according to the 2007 consensus statement of 
the International Rugby Board (Fuller et al., 2007). Furthermore, the 
severity (number of days unavailable for training and/or matches), 
mechanism of injury (contact or non-contact), session in which 
the injury occurred (training or match), and type of injury were 
categorized as previously reported (Fuller et al., 2007). In accordance 
with the 2007 consensus statement, contact injuries were defined 
as those arising from contact with another player or object at the 
moment of injury. Any instances of indirect contact (e.g., a tackle 
to the upper body causing a knee ligament injury from the resulting 
twist) were also classified as contact injuries, as the statement does 
not differentiate a separate “indirect contact” category. Non-contact 
injuries were defined as those occurring in the absence of direct 
physical contact at the moment of injury. To reach a consensus on 
classification, all injury diagnoses and mechanisms were reviewed 
by at least two members of the medical team. 

2.5 Statistical analysis

Odds ratios with 95% confidence intervals (CI) were calculated 
using multiple logistic regression analysis to determine the 
association between each load metric (collision count, collision load, 
distance, and high-speed running) across various time windows 
(1, 2, 3, 4, 5, 6, 7, 14, 21, and 28 days) and injury occurrence. 
As this study included repeated matches and training load data 
during the observation period, generalized estimating equations 
(GEE) were used to model the population-averaged effects of all 
data. First, athletes were treated as the subject variable, with the 
date of measurement as the within-subject variable, to account for 
the correlation between repeated injury incidence observations 
within subjects, using an autoregressive correlation matrix. The 
calculated model included injury occurrence (injury/no injury) as 
the dependent variable; each load metric within each time window 

as the independent variable; and position (forward/back), season 
(2021–2022/2022–2023/2023–2024), and age as confounders. All 
statistical analyses were performed using SPSS Statistics version 
25 (IBM, Armonk, NY, USA), with statistical significance set at 
P < 0.05. 

3 Results

All data from the 66 male elite rugby union players (36 forwards 
and 30 backs) included in the study were used (mean [SD], age: 
26.5 [3.5] years, height: 181.0 [7.9] cm, weight: 98.7 [12.4] kg). 
The demographic characteristics of the participants are presented in 
Table 1. The number and types of injuries are shown in Tables 2, 3, 
respectively. During the cumulative observation period of 36,547 
player-days, 193 injuries occurred (6.26 injuries/1000 player-hours), 
including 136 (70.5%) contact injuries and 57 (29.5%) non-contact 
injuries. In total, the cumulative number of days lost was 4,465 
(12.2%). Of the 136 contact injuries, 75.0% (102 cases) occurred 
during matches, and 64.9% (37 out of 57) of the non-contact injuries 
occurred during training. Muscle and tendon injuries were the 
most common (74 cases) and accounted for 84.2% of non-contact 
injuries. By contrast, 69.1% of contact injuries occurred in the joint 
(non-bone)/ligament and brain/central peripheral nervous system.

3.1 Association between load by time 
window and injury

The odds ratios of injuries associated with each load by time 
window are shown in Figure 1; Supplementary Table S1. Injuries 
were significantly associated with both collision count (Figure 1A) 
and collision load (Figure 1B) from days 1–7 (p < 0.01, respectively). 
For the collision count, the highest odds ratios were observed on 
day 1, and the odds ratio gradually decreased toward day 7 (day 1: 
odds ratio, 2.00 [95% CI: 1.57–2.54], day 7: 1.27 [1.15–1.48]). For 
collision load, the odds ratio also decreased from days 1–7 (day 
1: 2.99 [1.98–4.54], day 7: 1.38 [1.17–1.78]). Regarding distance 
(Figure 1C), a weak but significant association was observed on 
day 6. However, these associations were not observed for high-
speed running (Figure 1D). After day 14, no significant associations 
were observed between any of the load variables and injuries.

3.2 Association between load and contact 
or non-contact injuries

The odds ratios of contact injuries associated with each load 
by time window are shown in Figure 2; Supplementary Table S2, 
whereas those of non-contact injuries are presented in Figure 3; 
Supplementary Table S3. The pattern of contact injuries largely 
matched that of overall injuries. For the collision count (Figure 2A), 
the highest odds ratio was observed on day 1, then gradually 
decreased toward day 7 (day 1: odds ratio, 2.10 [1.67–2.64], day 
7: 1.31 [1.15–1.48]). For collision load (Figure 2B), the odds ratio 
also declined from days 1–7 (day 1: 3.27 [2.18–4.90], day 7: 1.44 
[1.17–1.78]). No significant associations were observed after day 
14. Although distance (Figure 2C) showed a weak but significant 
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TABLE 1  Demographic details of the study participants.

Total (n = 66) Forwards (n = 36) Backs (n = 30)

Age, years 26.5 (3.5) 26.5 (3.4) 26.5 (3.6)

21–25 30 (45.5%) 16 (53.3%) 14 (46.7%)

26–30 27 (40.9%) 16 (59.3%) 11 (40.7%)

31–35 9 (13.6%) 4 (44.4%) 5 (55.6%)

Height, cm 181.0 (7.9) 183.8 (8.7) 177.6 (5.0)

Body weight, kg 98.7 (12.4) 107.7 (7.5) 88.0 (7.6)

Data are expressed as number (%) or mean (standard deviation).

TABLE 2  Total number and mechanism of injuries according to session type.

Total Injury/1000 player-hours (95% CI) In matches In training

Total number of injuries 193 6.26 (5.4–7.1) 122 (63.2%) 71 (36.8%)

Contact injuries 136 4.41 (3.7–5.1) 102 (75.0%) 34 (25.0%)

Non-contact injuries 57 1.85 (1.4–2.3) 20 (35.1%) 37 (64.9%)

Data are expressed as number (%) or median (95% CI).

link on day 6 (1.08 [1.01–1.16]), high-speed running (Figure 2D) 
was not associated with contact injuries at any point. By contrast, 
non-contact injuries showed a different pattern. For collision count 
(Figure 3A), the highest odds ratio was observed on day 2, gradually 
decreasing toward day 4 (day 2: 1.38 [1.04–1.83], day 4: 1.35 
[1.06–1.72]). For collision load (Figure 3B), the odds ratio was also 
the highest on day 2 and decreased toward day 4 (day 2: 1.75 
[1.16–2.65], day 4: 1.56 [1.07–2.27]). No significant associations 
were found after day 5. Neither total distance (Figure 3C) nor high-
speed running (Figure 3D) was associated with noncontact injuries 
in any time window.

4 Discussion

In this study, we investigated the association between “contact 
load” calculated using contact intensity and volume, and the 
occurrence of injuries in elite rugby union players. A total 
of 136 contact injuries and 57 non-contact injuries occurred 
during the study, both of which were significantly associated 
with “contact load,” regardless of injury type. In recent years, 
World Rugby has emphasized managing training load as a key 
strategy for player welfare and injury prevention. Specifically, 
they have developed and recommended the use of guidelines for 
monitoring and managing the “contact load” (Starling et al., 2023). 
Our previous study demonstrated that an increased acute:chronic 
workload ratio (ACWR) of “contact load” is associated with 
injury risk (Iwasaki et al., 2024). In this study, we also showed 
that “contact load” was associated with the occurrence of both 
contact and non-contact injuries in elite rugby union players. Our 

findings provide additional evidence supporting the importance of 
monitoring “contact load” for predicting and preventing all rugby 
union injuries.

One of the most important findings of this study is that 
“contact load” was associated not only with contact injuries 
but also with non-contact injuries. Among the 57 non-contact 
injuries identified, 84.2% involved muscle or tendon injuries. It 
has been reported that accumulated “contact load” may cause 
muscle damage, neuromuscular fatigue, and decreased performance 
(Takarada, 2003; Johnston et al., 2014; Naughton et al., 2018). For 
example, Takarada found that players performing more tackles 
had higher myoglobin and creatine kinase (CK) levels 24 h post-
match (Takarada, 2003), whereas Johnston et al. showed that 
greater volumes of full-contact tackling elevated CK and reduced 
upper body neuromuscular function (Johnston et al., 2014). 
Similarly, Naughton et al. observed that sprint times and jump 
heights remained impaired for 48–72 h following contact play 
(Naughton et al., 2018). Such temporary increases in muscle 
damage and decreases in muscle strength, speed, and jump 
performance over several days may negatively affect modifiable 
risk factors (e.g., aerobic capacity, strength, neuromuscular control, 
and tissue resilience) and potentially increase the risk of non-
contact injuries (Windt and Gabbett, 2017). However, running 
loads such as running distance and high-speed running were 
not clearly associated with non-contact injuries in this study. 
This finding is inconsistent with those of previous studies on 
soccer, which suggested that high running loads are linked to an 
increased incidence of non-contact injuries, particularly hamstring 
strains (Malone et al., 2017; Malone et al., 2017; Roe et al., 2018; 
Gómez-Piqueras and Alcaraz, 2024). Professional soccer players 
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TABLE 3  Type of injuries according to the mechanism of injuries.

Main group Category Total (n = 193, %) Contact (n = 136, %) Non-contact (n = 57, %)

Bone

All injuries 16 (8.3%) 15 (11.0%) 1 (1.8%)

Fracture 15 (7.8%) 15 (11.0%) 0 (0.0%)

Other bone injuries 1 (0.5%) 0 (0.0%) 1 (1.8%)

Joint (non-bone)/ligament

All injuries 68 (35.2%) 60 (44.1%) 8 (14.0%)

Dislocation/subluxation 3 (1.6%) 3 (2.2%) 0 (0.0%)

Sprain/ligament injury 49 (25.4%) 46 (33.8%) 3 (5.3%)

Lesion meniscus/cartilage/disc 16 (8.3%) 11 (8.1%) 5 (8.8%)

Muscle/tendon

All injuries 74 (38.3%) 26 (19.1%) 48 (84.2%)

Muscle tear/strain/cramps 56 (29.0%) 10 (7.4%) 46 (80.7%)

Tendon 
injury/rupture/tendinopathy/bursitis

5 (2.6%) 3 (2.2%) 2 (3.5%)

Hematoma/contusion/bruise 13 (6.7%) 13 (9.6%) 0 (0.0%)

Skin
All injuries 1 (0.5%) 1 (0.7%) 0 (0.0%)

Laceration 1 (0.5%) 1 (0.7%) 0 (0.0%)

Brain/CPNS

All injuries 34 (17.6%) 34 (25.0%) 0 (0.0%)

Concussion 29 (15.0%) 29 (21.3%) 0 (0.0%)

Nerve injury 5 (2.6%) 5 (3.7%) 0 (0.0%)

Data are expressed as numbers (%). Percentages for “Total,” “Contact,” and “Non-Contact” columns are calculated out of 193, 136, and 57 injuries, respectively.
CPNS, Central Peripheral Nervous System (spinal cord/peripheral nervous system).

typically cover approximately 10,000–13,000 m per match, of 
which approximately 1,000–1,200 m are run at speeds exceeding 
5.5 m/s (high-speed running) (Barnes et al., 2014). By contrast, 
professional rugby union players typically cover approximately 
5,000–7,500 m in total, with backs running approximately 
300–600 m of high-speed running and forwards running 
approximately 100–300 m (Quarrie et al., 2013; Reardon et al., 
2015). Thus, professional rugby union players might not reach the 
threshold for increased injury risk. In addition, rugby union features 
frequent and high-intensity contact play, instead of extensive high-
speed running (Paul et al., 2022). Therefore, these sport-specific 
demands suggest that in elite rugby union, “contact load” might 
be a more significant risk factor for non-contact injuries than 
running load.

We also showed that contact injuries were strongly associated 
with “contact load” from day 1 (the day of injury) through day 
7, with the highest odds ratio on day 1. Although this odds ratio 
gradually decreased on each subsequent day, it remained significant 
until day 7. On the other hand, non-contact injuries showed a 
significant relationship with “contact load” from days 2–4, the odds 
ratio on day 1 was not highest. Duration of acute load “time 
window” is defined as the load within 7 days according to the IOC 
(Impellizzeri et al., 2020), and a 7-day time window is generally 

recognized and widely used. However, there is a lack of clear 
scientific evidence supporting the optimality of this 7-day window, 
and the appropriate time window may vary depending on the sport 
and schedule (Impellizzeri et al., 2020). The findings of this study 
align with those of previous studies in that shorter time windows can 
more effectively capture injury risk (Carey et al., 2017; West et al., 
2021). However, as not all injuries may be caused solely by 
loads within these time windows, and some may result from 
more chronic load accumulation. Therefore, future research using 
analytical approaches that consider sport-specific, schedule-specific 
and athlete factors need to clarify more optimal time windows for 
injury prevention.

This study has several limitations. First, collision events were 
detected using a GPS device based on an algorithm that incorporates 
changes in axis orientation and impacts exceeding 8 g; however, 
the exact details of this proprietary algorithm are not publicly 
available. Therefore, specific collision characteristics (such as the 
direction of impact) and compare with contact lad using different 
technologies or GPS device cannot be evaluated. Further discussion 
is needed on the detailed interpretation of “contact load”. Second, 
the load data were presented as absolute value and have not been 
normalized according to the duration of individual training or 
match. In order to provide injury risk assessments based on load 
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FIGURE 1
Association between match and training load at each time window and total injuries. Data are presented as odds ratio (points) and 95% confidence 
intervals (solid line) for the incidence of total injuries in each time window for (A) collision count, (B) collision load, (C) total distance, and (D)
high-speed running. 

FIGURE 2
Association between match and training load at each time window and contact injuries. Data are presented as odds ratio (points) and 95% confidence 
intervals (solid line) for the incidence of contact injuries in each time window for (A) collision count, (B) collision load, (C) total distance, and (D)
high-speed running.
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FIGURE 3
Association between match and training load at each time window and non-contact injuries. Data are presented as odds ratio (points) and 95% 
confidence intervals (solid line) for the incidence of non-contact injuries in each time window for (A) collision count, (B) collision load, (C) total 
distance, and (D) high-speed running.

relative to practice or match duration, the data may need to be 
normalized based on exposure time. Third, because only external 
loads that can be measured by GPS were considered, indoor sessions 
such as gym training were not included. Fourth, although we 
adjusted for basic confounding factors, such as playing position, 
season, and age, other potential risk factors, such as injury history, 
internal load (e.g., session rating of perceived exertion or subjective 
fatigue), individual recovery practices, technical skills, and body 
composition were not considered and may also influence injury 
risk. Finally, because this was an observational study and injury 
incident has various factor, a direct causal link between “contact 
load” management and a reduction in injury incidence cannot be 
established. Therefore, intervention-based research or observational 
studies that include multiple factors are needed to verify this causal
relationship.

In conclusion, our study showed that “contact load” is associated 
with not only contact injuries but also non-contact injuries in elite 
rugby union players. The monitoring and management of “contact 
load” should be a key consideration in reducing injury risk and 
enhancing performance.
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