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Blood flow restriction resistance training enhances athletic adaptations via
distinct mechano-metabolic pathways. This review synthesizes evidence
comparing three blood flow restriction resistance training modalities: Low-load
resistance training with blood flow restriction (using 20%—-30% of one-repetition
maximum) prioritizes metabolic stress (lactate and hydrogen ion accumulation,
cellular swelling), activating growth hormone (GH)/insulin-like growth factor
1 (IGF-1)/mechanistic target of rapamycin (mMTOR) pathways to promote type
I muscle fiber hypertrophy, making it suitable for joint-sparing rehabilitation
scenarios. Supplemental blood flow restriction resistance training programs
combine high-load tension (utilizing 75%—-90% of one-repetition maximum)
with additional blood flow restriction to produce an acute synergistic effect.
This method enhances the recruitment of type Ila/x muscle fibers and prolongs
mTOR phosphorylation. Combined blood flow restriction resistance training
employs alternating cycles of high-load phases (70%-85% 1RM) and blood
flow restriction phases (hypoxia-inducible factor l-alpha (HIF-la)-mediated
angiogenesis), optimizing phosphocreatine resynthesis and neural drive to
achieve specialization of type lIx muscle fibers. Periodized application requires
matching modalities with training phases: combined blood flow restriction
training for hypertrophy during the preparatory phase, supplemental blood
flow restriction training for strength maintenance during the competitive
phase, and low-load resistance training with blood flow restriction for active
recovery. This mechanistic framework supports evidence-based blood flow
restriction resistance training programming to maximize athletic adaptations
while mitigating injury risk.

blood flow restriction, resistance training, muscle hypertrophy, skeletal muscle, athletes

1 Introduction

Blood Flow Restriction Training (BFRT) applies external pressure to the proximal
limbs to partially restrict arterial inflow and fully occlude venous return (Centner et al.,
2019). First introduced by Yoshiaki Sato in 1983, the method alters local hemodynamics
to induce metabolite accumulation, cellular swelling, and hypoxia, thereby activating
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high-threshold motor units and stimulating muscle adaptation
under low mechanical loads (Fahs et al., 2015). BFRT resistance
enhances skeletal muscle strength with distinctive practical
value. Compared to traditional high-load resistance training,
combining BFRT with low-intensity loads (typically 20%-50%
IRM) vyields similar hypertrophy and strength gains while
minimizing joint stress—making it particularly suitable for athlete
rehabilitation and in-season strength maintenance (Huang and
Park, 2024; Pignanelli et al., 2021).

Based on the combination of training load and blood flow
restriction, BFRT resistance training modalities described in
the literature can be categorized into three main types: low-
intensity resistance training with blood flow restriction (BFR-
LIRT) (Korkmaz et al., 2022), high-intensity resistance training
supplemented with BFRT (HIRT-BFRT, involving high-load
resistance exercises followed by low-load BFRT) (Luebbers et al.,
2014), and integrated high-intensity resistance training combined
with BFRT (HIRT + BFRT, characterized by periodic alternation
between high- and low-load sessions, e.g., one high-load session
plus two low-load BFRT sessions per week) (Sarfabadi et al., 2023).
Existing evidence suggests that these BFRT resistance modalities
exert differential effects on skeletal muscle strength (Scott et al.,
2023). Over medium-to long-term interventions, all three have been
shown to increase muscle cross-sectional area (CSA) and enhance
maximal strength.

To evaluate BFRT resistance effects in athletes, we systematically
searched CNKI, PubMed, and Web of Science, including only
studies involving athletes with structured BFRT interventions and
control groups. From 412 initially identified articles, 14 met the
inclusion criteria. This narrative review compares the physiological
mechanisms and practical efficacy of these BFRT resistance
modalities and offers evidence-based rationale for their use across
rehabilitation, competitive, and preparatory phases. We outline
underlying neuromuscular, metabolic, and molecular mechanisms;
evaluate empirical effectiveness; and discuss implications for
individualized training and future research.

2 Physiological mechanisms of BFRT

Blood flow restriction resistance training significantly enhances
athletes muscle strength, and this improvement is strongly
correlated with an increase in the CSA (Wilk et al., 2018). Exercise-
induced metabolic stress and mechanical tension are key drivers of
muscle hypertrophy, and these mechanisms act synergistically to
collectively act to significantly elevate the rate of protein synthesis
(Li et al., 2024). Traditional resistance training primarily relies
on mechanical tension to stimulate myofibrillar protein synthesis
through mechanotransduction pathways. In contrast, blood flow
restriction training uniquely induces significant metabolic stress,
leading to comparable muscle growth but with lighter loads than
those required for HLRT (Dong et al., 2025). However, the relative
contribution of these two primary mechanisms varies considerably
depending on the specific BFRT modality employed. To elucidate
these distinctions, the following sections are organized according to
the three predominant BFRT modalities—BFR-LIRT, S-BFRRT, and
C-BFRRT—as this framework most clearly delineates their unique
mechanistic signatures and adaptive outcomes.
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2.1 BFR-LIRT: metabolic stress-dominated
adaptation

2.1.1 Metabolite induced fatigue

During BFR-LIRT, metabolites such as lactate, H, ATP, and
inorganic phosphate accumulate locally within the limb owing
to impaired venous outflow (Loenneke et al, 2012). These
metabolites impair excitation-contraction coupling and enhance
the recruitment of type II muscle fibers (Wernbom and Aagaard,
2020). Accumulating metabolic stress reduces contraction velocity
while enhancing muscle activation, a phenomenon that promotes
anabolic signaling (Takarada et al., 2000). Additionally, accumulated
metabolites activate group III-IV afferents, which enhance motor
unit recruitment through gamma-loop feedback to sustain force
production. This activation also increases synaptic activity within
the central nervous system, thereby elevating perceived exertion
(RPE) (Amann et al, 2015). At the molecular level, lactate
stimulates muscle hypertrophy by inhibiting histone deacetylase
activity (Pearson and Hussain, 2015). Additionally, H" accumulation
redistributes the workload to type I fibers through altered
calcium sensitivity (Hostrup et al., 2021), promoting preferential
hypertrophy of slow-twitch fibers (Bjornsen and Wernbom, 2019b).
While existing evidence highlights metabolic stress as a key driver
of BFRT-induced adaptations, the direct role of metabolites in
mediating muscle hypertrophy requires further investigation to be
fully understood. Further research is required to elucidate the fiber-
type-specific molecular mechanisms underlying these processes.

2.1.2 Cell swelling

BFR-LIRT induces marked cellular swelling, primarily involving
fluid retention owing to venous occlusion (Cleary et al., 2022).
Acute increases in muscle thickness result from plasma-to-
cell fluid shifts driven by osmotic gradients. Exercise-induced
swelling is associated with multiple factors, including local
hypoxia, metabolite accumulation, and reactive hyperemia, which
collectively enhance type II fiber recruitment (Mouser et al.,
2017). BFRT-induced swelling produces similar hypertrophic
effects to HLRT (Alvarez et al.,, 2020). At the molecular level,
swelling activates mechanosensitive pathways (e.g., mTORC1),
and fluid-induced cytoskeletal stress triggers anabolic signaling
cascades. However, passive swelling alone fails to upregulate
mTORC1 expression (Nyakayiru et al, 2019), indicating that
mechano-metabolic synergy is essential. Chronic BFRT counteracts
disuse atrophy by sustaining exercise-induced cellular swelling,
thereby creating a favorable anabolic environment that helps
maintain net protein balance even under low-load resistance stimuli
(Manimmanakorn et al., 2013; Martin-Herndndez et al., 2013).
This mechanistic insight into how BFRT preserves muscle mass
underlies its growing application in both rehabilitation and athletic
training settings.

2.1.3 Mechanical tension

Existing evidence indicates that mechanical tension mediates
muscle hypertrophy during moderate-to-HLRT. Evidence has
confirmed that mechanical load prevents denervation atrophy
(Goldberg et al., 1975). This confirms the crucial role of mechanical
stimuli in muscle development. Subsequent animal (Spangenburg,
2005) and human studies (Schoenfeld, 2013b) have validated this
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FIGURE 1

Mechanism of resistance training load/pattern on muscle hypertrophy (Pearson and Hussain, 2015). Note: The relative contributions of mechanical
tension and metabolic stress in mediating muscle hypertrophy, depending on the training load and/or modality. The arrows highlight the potential
degrees of activation of the resultant intermediate secondary mechanisms and their possible relationships. Vertical arrows (]) represent higher/lower
degrees of activation; horizontal arrows (&) represent no effect; interconnecting arrows represent potential relationships between secondary
mechanisms; and dotted interconnecting arrows indicate equivocal relationships. HSP, heat shock proteins; NOS, nitric oxide synthase; ROS, reactive

oxygen species.

dose-response relationship. At the molecular level, mechanical
tension promotes muscle growth through multiple pathways,
including the activation of mechanotransduction (e.g., the
mTOR pathway), upregulation of local growth factor expression,
induction of moderate muscle microdamage, modulation of
NOS, HSP, and ROS production, and promotion of selective fast-
twitch fiber hypertrophy (Cook et al.,, 2013). These mechanisms
ultimately activate satellite cells and increase the rate of protein
synthesis (Wernbom and Aagaard, 2020). BFR-LIRT generates less
mechanical tension but compensates through metabolic stress,
achieving similar hypertrophic effects (Oliveira and Campos,
2020). Training modes differ significantly in their tension/stress
profiles: HLRT is characterized by high tension and low stress,
whereas moderate-load training achieves a balance between the
two. This dose-response variation implies distinct strategies, as
moderate conventional training, HLRT, and low-load BFRT induce
muscle hypertrophy through distinct mechanistic pathways. These
findings provide a scientific foundation for the development
of personalized training strategies. Figure 1 summarizes the
conceptual interplay between mechanical tension and metabolic
stress across different training modalities. It illustrates how
HLRT primarily activates mechanisms via high mechanical
tension (e.g., mechanotransduction, microdamage), whereas BERT
augments metabolic stress pathways (e.g., cellular swelling, ROS
signaling) to achieve hypertrophy even at low loads. This model
provides a visual framework for understanding the distinct yet
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synergistic mechanistic emphasis of the BFRT modalities discussed
herein.

Through a systematic analysis of existing studies, significant
differences exist in the dominant mechanisms by which different
BER resistance training modes promote muscle strength gains (see
Figure 2). Currently, blood flow restriction resistance training is
primarily divided into three core modes: the first modality, BFR-
LIRT, operates primarily through metabolic pathways, utilizing
20%-30% 1RM loads. The resulting GH secretion (3-5x baseline)
and type I fiber activation are characteristic responses to BFR-
LIRT, suggesting that this modality is particularly well-suited for
rehabilitation settings and off-season strength maintenance, where
high mechanical loads are contraindicated (Hanke et al., 2020).

2.2 S-BFRRT: sequential
mechano-metabolic synergy

S-BFRRT combines high-load mechanical tension (75%-90%
1RM) with supplemental blood flow restriction (20%-30% 1RM) in
a sequential manner, creating synergistic effects through metabolic
and mechanical stimuli. The initial high-intensity phase induces
sarcomere microtears and calcium-dependent mTOR activation,
priming the muscle for metabolic amplification (Schoenfeld,
2013a). Subsequent BFR supplementation traps reactive oxygen
species (ROS) and lactate in damaged fibers, prolonging mTOR
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Comparative physiological signatures of BFRT modalities: Postulated fiber-type-specific hypertrophy mechanisms. Note: 1RM, One-repetition
maximum; ECM, Extracellular matrix; ROS, Reactive oxygen species; HIF-1a, Hypoxia-inducible factor 1-alpha; mTOR, Mechanistic target of rapamycin;
type |, Slow-twitch oxidative fibers (endurance-oriented); Type lla, Fast-twitch oxidative-glycolytic fibers; Type IIx, Fast-twitch glycolytic fibers

(power-oriented).

phosphorylation for >48 h through a markedly enhanced activation
of ribosomal S6K1 compared to BFR-LIRT alone (Oliveira and
Campos, 2020). This process enhances satellite cell recruitment
into type ITa/x fibers, resulting in significantly greater hypertrophy
compared to traditional high-load training (Wilk et al., 2018).

2.3 C-BFRRT: combined training -
spatiotemporal collaborative adaptation

C-BFRRT establishes cross-adaptive loops through periodized
alternation of high-intensity resistance training (HLRT; 70%-85%
IRM) and BFR phases (20%-30% 1RM). Phase A upregulates
PGC-1a pathways to enhance mitochondrial biogenesis in type IIx
fibers, While Phase B activates HIF-1la-mediated angiogenesis, it
significantly increases capillary density (Li et al., 2024). Crucially,
metabolic phases clear interleukin-6 via muscle-pump-driven
lymphatic drainage, a recovery mechanism absent in BFR-LIRT
(Korkmaz et al, 2022). This rapid clearance is thought to
be beneficial because, while IL-6 is a multifunctional cytokine
released during exercise, its prolonged elevation can contribute to
sustained inflammatory signaling and fatigue (Zhu et al., 2025). By
promoting its efficient removal, C-BFRRT may potentially accelerate
recovery between training sessions, allowing for a more favorable
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adaptive response. This Spatiotemporal Collaborative optimizes
phosphocreatine resynthesis and neural drive, significantly enhance
the rate of force development (Sarfabadi et al., 2023).

2.4 Coherent adaptation hierarchy

The proposed fiber-type-specific hypertrophy mechanisms for
the three BFRT modalities are synthesized in Figure 2. This figure
serves as a graphical summary, hypothesizing the dominant adaptive
pathways (fiber type recruitment) prioritized by each modality
(BFR-LIRT, S-BFRRT, C-BFRRT), based on inferences drawn from
the physiological mechanisms in the existing literature reviewed in
the preceding sections. The adaptation continuum ranges from
the metabolically dominant BFR-LIRT to the acute synergy of
S-BFRRT and the chronic, integrated adaptations of C-BFRRT.
While all modalities share core metabolic drivers (lactate/HIF-
la), their adaptive scope diverges, with BFR-LIRT prioritizing type
I fibers through GH/IGF-1/mTOR signaling. S-BFRRT amplifies
type IIa/x hypertrophy via mechanical-metabolic crosstalk.
The C-BFRRT systematizes adaptations into angiogenic-neural
loops for type IIx specialization. Hypertrophic efficacy varies by
modality, with C-BFRRT inducing the greatest muscle hypertrophy
(Scott et al., 2023; Wilk et al, 2018), These findings affirm the
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mechanistic reciprocity between metabolic stress and mechanical
tension. Current evidence supports BFR-LIRT for tissue-sparing
metabolic stimulus, S-BFRRT for concurrent strength-hypertrophy
adaptation, and C-BFRRT for maximal morphological changes,
providing clinicians and coaches with a mechanistic framework for
evidence-based implementation of these methods.

3 Practical applications and
advantages of different BFRT
modalities

Table 1 synthesizes key findings from existing research on blood
flow restriction resistance training (BFRT) and its effects on skeletal
muscle strength and morphology in athletes. The studies included
in this table were selected to provide a representative overview
of the empirical evidence available for each modality. Selection
was primarily based on the following criteria: (1) investigation
in athletic or highly trained populations; (2) inclusion of a
BFRT intervention group with clearly defined parameters (load,
pressure, volume); and (3) measurement of relevant outcomes
related to strength and/or morphological adaptations. This approach
aimed to capture a range of evidence across different sports
to illustrate practical applications, rather than to constitute an
exhaustive systematic inventory. This study systematically compared
different BFRT modalities (BFR-LIRT, S-BFRRT, and C-BFRRT),
highlighting their respective training parameters and performance.
The compiled evidence demonstrates that BERT effectively enhances
muscle hypertrophy, strength gains, and sport-specific performance.
Additionally, it provides practical insights into optimal pressure
application, exercise selection, and program design for athletes.
These findings underscore the potential of BFRT as a valuable
adjunct to traditional resistance training.

3.1 BFR-LIRT

Based on the empirical findings summarized in Table 1, blood
flow restriction combined with low-load resistance training (BFR-
LIRT) demonstrates superior efficacy compared with conventional
resistance training. A recent meta-analysis (Su et al., 2025)
revealed moderate improvements in muscle strength (ES = 0.65),
providing robust evidence of the benefits of BFR-LIRT in athletes.
Korkmaz et al. (2022) observed greater rectus femoris thickness and
knee flexion/extension strength in soccer players using progressive
pressure (130->150 mmHg), with improvements significantly
surpassing high-load training outcomes (p < 0.05). Similarly,
another study reported (Li et al., 2019) enhanced isokinetic knee
strength and lower limb maximal strength after 4-week BFR-
LIRT (200 mmHg, 30% IRM). Ugur et al. (2023) reported a
16.2% strength improvement alongside muscle thickness gains
in elite canoeists using incremental pressure (1805230 mmHg).
Collectively, these findings suggest accelerated muscle adaptation
through metabolic stress and cell swelling. This supports the view
that BFR-LIRT resulted in greater muscle mass accumulation,
highlighting its unique advantage in promoting muscle growth.
BFR-LIRT has distinct advantages in athletic rehabilitation.
Evidence from Lubowitz et al. (2022) demonstrated that 20%
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1RM BFR-LIRT enhances functional recovery and reduces pain in
athletes with talar fractures. For athletes with patellar tendinopathy,
this intervention increased tendon thickness by 8.3% and lower
extremity strength by 15.4% (Cuddeford and Brumitt, 2020) with
marked improvements in VISA-P scores. These outcomes establish
BFR-LIRT as an effective alternative for pain-restricted athletes,
offering three key benefits: minimizing joint stress through low
mechanical loads, maintaining anabolic stimulation via metabolic
stress, and promoting tissue repair through enhanced local
circulation.

Current evidence on BFR-LIRT shows notable heterogeneity.
One study (Laurentino et al, 2012) found no significant effect
on knee extensor stiffness with constant-pressure protocols
(20% 1RM), while another study reported (Mitchell et al., 2019)
inferior muscle thickness gains compared to high-load training
after 5-week BFR-LIRT (110 mmHg). The divergent efficacy
outcomes across BFR-LIRT studies may be attributed to three key
methodological variables: (1) nonprogressive pressure application:
fixed pressures (e.g., 110 mmHg; Martin-Hernandez et al., 2013)
fail to accommodate adaptive increases in limb circumference
and arterial flow; studies implementing pressure progression
(e.g., 180>230 mmHg; (Ugur et al, 2023)) have demonstrated
greater hypertrophy, likely due to sustained metabolic challenge
and type II fiber recruitment (Counts et al., 2016; Hanke et al.,
2020). (2) Interindividual AOP variability: Prescribing absolute
pressures (mmHg) ignores differences in arterial occlusion
pressure (AOP), which varies by 40%-80% between athletes
owing to limb composition and training status (Patterson et al.,
2019). Relative pressures (50%-80% AOP) optimize stimulus
individualization, as evidenced by 23% higher strength gains
compared to fixed-pressure protocols (Zhang, Gao, et al., 2025). (3)
Inadequate intervention duration: Adaptations require 4-6 weeks
to achieve measurable hypertrophy (Luebbers et al., 2024). Shorter
interventions (<3 weeks) primarily elicit neural adaptations, which
explains the null morphological findings (Laurentino et al.,, 2012).
We hypothesize that optimizing BFR-LIRT requires: (1) pressure
titration based on %AOP, (2) progressive overload (increasing
pressure or volume by 10%-15% weekly), and (3) a minimum
4-week intervention to exploit metabolic and swelling synergy.
While BFR-LIRT offers advantages for rehabilitation and tissue-
sparing maintenance due to its low mechanical stress, its reliance
on metabolic pathways alone may limit maximal strength and
power development compared with protocols incorporating higher
mechanical tension.

3.2 S-BFRRT

Unlike BFR-LIRT, which relies solely on metabolic stress,
Supplementary blood flow restriction resistance training integrates
high-load resistance exercise with subsequent low-load BFRT (1-
2 exercises per muscle group) to optimize muscular adaptations
through combined mechanical tension and metabolic stress.
This approach effectively recruits typically under activated type I
muscle fibers (Yasuda et al., 2011), as demonstrated by significant
vastus lateralis hypertrophy in national weightlifters following
6-week S-BFRRT (30% 1RM squats post HLRT) (Bjornsen and
Wernbom, 2019b). Supporting evidence from Paralympic skiers
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shows that 2-week high-frequency S-BFRRT (200300 mmHg, 30%
1RM) preferentially improved weaker-leg MVC (p < 0.05), with
female athletes exhibiting greater neuromuscular enhancements
(RMS and RFD) than males (Geng et al., 2021). Yamanaka et al.
(2012) found that 4-week S-BFRRT improved strength (bench
press +7.0%, squat +8.0%) without limb hypertrophy, whereas
Luebbers et al. (2014) later reported significant squat 1RM gains
(p < 0.05) after 7 weeks. However, later findings (Scott et al,
2017) benefits
S-BFRRT during preseason training, potentially due to training

indicated no  additional from  5-week
saturation or fatigue. Collectively, these findings demonstrate
the context-dependent efficacy of S-BFRRT, which is particularly
valuable for rehabilitation, neuromuscular compensation, and
in-season strength development when implemented with
progressive pressure (150300 mmHg) and a moderate load
(30% 1RM). However, the current limitations, including small
sample sizes and uncontrolled confounders, warrant further
investigations.

Compared to BFR-LIRT, which primarily relies on metabolic
stress for adaptation with minimal mechanical load, S-BFRRT
leverages the synergy of high mechanical tension followed by
amplified metabolic stress within one session. This dual-phase
stimulus is uniquely suited for competitive phases in which
concurrent strength and hypertrophy gains are prioritized, and
frequent high-load sessions may interfere with sport-specific
training. Unlike C-BFRRT, which distributes different stimuli across
separate weekly sessions, S-BFRRT delivers a combined mechano-

metabolic stimulus acutely.

3.3 C-BFRRT

Distinct from both BFR-LIRT (solely metabolic focus) and
S-BFRRT (single-session combination), C-BFRRT is a periodic
training method that combines HLRT with blood flow restriction
resistance training in a specific proportion (e.g., two HLRT +
one BFR session per week). Evidence from a previous study
(Che et al., 2022) demonstrated superior gains in maximal strength
and isokinetic knee strength in female wrestlers after 6-week
C-BFRRT (180 mmHg, 30% 1RM) compared to conventional
training. Subsequent research (Sarfabadi et al, 2023) reported
greater lower-body strength and hypertrophy in long jumpers
following 6-week C-BFRRT (140 mmHg, 20% 1RM) compared
to high-load training alone. Further investigation (Zhu, 2021)
confirmed these findings in tackwondo athletes, with C-BFRRT
(200 mmHg, 20%-30%
adaptation.

Current evidence preliminarily supports C-BFRRT as an

IRM) producing superior muscular

effective training strategy, particularly during preparatory phases
aimed at maximizing muscle hypertrophy (especially in type II
fibers) and strength. Its core advantage lies in the spatiotemporal
integration of mechanical and metabolic stimuli achieved through
the periodized alternation of high-load sessions (which generate
significant mechanical tension, microdamage, and satellite cell
activation) and low-load BFRT phases (which prolong the
anabolic window and enhance metabolic stress and cellular
swelling). This unique combination endows C-BFRRT with
the potential to induce superior morphological adaptations
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compared to isolated HLRT or BFR-LIRT modes (Che et al.,
2022; Sarfabadi et al.,, 2023; Zhu, 2021). However, it must be
emphasized that the current body of high-quality research
specifically on the C-BFRRT modality remains limited (with only a
few studies identified in this review), and significant heterogeneity
in outcomes has not yet been reported. Future research requires
more rigorously designed studies with larger sample sizes to
validate its efficacy across diverse sports and populations (e.g.,
males vs. females, varying training backgrounds), assess long-term
benefits, and further explore optimal implementation parameters
(such as the specific ratio of high-to-low loads and alternation
frequency).

4 Designing BFRT programs

This section translates the mechanistic insights and empirical
findings discussed previously into evidence-informed practical
guidelines. Table 2 serves as the central reference, synthesizing
recommended training parameters for the three BERT modalities.
These recommendations are the product of a qualitative synthesis
of studies identified through targeted searches of academic
databases (e.g., PubMed, Google Scholar) using keywords related
to BFRT, athletes, strength, and hypertrophy. Priority was given
to randomized controlled trials, longitudinal studies, and high-
quality case studies conducted in athletic populations. The primary
objective of these distinct approaches is to achieve specific
adaptive outcomes: BFR-LIRT aims for rehabilitation and tissue-
sparing maintenance, S-BFRRT for concurrent strength and
hypertrophy during demanding phases, and C-BFRRT for maximal
morphological adaptations during dedicated preparation periods.
The following subsections (4.1-4.8) provide a detailed rationale and
discussion for the parameters summarized in Table 2.

4.1 Exercise load

A comprehensive analysis of BFRT parameters revealed that
low-load BFR-LIRT (20%-50% of 1RM or 20%-50% MVC) elicits
muscular hypertrophy comparable to traditional HLRT while
maintaining superior safety and reduced joint stress (Hanke et al.,
2020). The most effective load range appears to be 20%-50% 1RM,
as loads below 20% demonstrate diminished hypertrophic effects,
and those exceeding 50% provide no additional benefits despite
increased discomfort. The progression of load in BFR resistance
training remains controversial in the sports science literature.
Current evidence suggests differential approaches based on training
modality and athletic population.

For BFR-LIRT, maintaining 20%-30% 1RM throughout the
cycle appears optimal, as evidenced by a study (Li et al, 2019)
that showed consistent strength gains (10%-15% isokinetic torque)
without load progression in handball players. The metabolic stress
mechanism (lactate 7T2.5-3.8 mmol/L) dominates the adaptation
pathways at these loads, making absolute load increases unnecessary.
Conversely, S-BFRRT may benefit from progressive overload in
the high-load component; a previous study (Luebbers et al.,
2014) reported superior outcomes when increasing HLRT loads
from 65% to 90% IRM over 7 weeks while keeping BFRT
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TABLE 2 Recommendations for BFR resistance training for athletes based on relevant studies.

Category BFR-LIRT

Training parameters

S-BFRRT ’ C-BFRRT

Load 20%-30% 1RM HLRT: 75590%1RM + BFRT: Periodized: 70>85% < 20%-30%1RM
20%-30%1RM
Volume 4 sets (30-15-15-15 reps) HLRT: (35 sets)x(5—10 reps) + BFRT: HLRT: 3 sets x (6-8 reps) + BFRT:
4 setsx(30-20-20-20 reps) 4setsx(30-15-15-15 reps)
Frequency 2-3 sessions/week 3-4 sessions/week HLRT:2-3 + BFRT:1-2 sessions/week
Rest Intervals 30-60s 45-60s 30-90s
Tempo Not specified (NA) E:C 1.5:1.5-2:1s E:Cl:1-1.5:1.5s
Exercise Type Multi-joint or single-joint Combining both Combining both

BFRT Parameters

Pressure

40->80% AOP(Biweekly increase <10%)

Cumulative BFRT Duration

Total time:<30 min upper limbs:15-20 min lower limbs:20-30min

Clinical Applications « Postoperative rehab

« In-season maintenance

« Strength-power athletes
« Concurrent training phases

« Hypertrophy-focused athletes
« Off-season strength building

Adaptation Timeline 4-6 weeks

6-8 weeks 8-12 weeks

These recommendations are based on the authors’ synthesis of the existing evidence presented in this review and should be interpreted as practical guidelines rather than unequivocal

prescriptions; E:C, Eccentric:Concentric; 20%-30%: numerical range; 75 90%: progressively increasing.

bouts at 20% 1RM, likely due to the preserved contrast of the
metabolic-mechanical stimulus. Current data support alternating
and progressive intensities for C-BFRRT. Che et al. (2022) found
that alternating HLRT (70>85% 1RM) with BFRT (20%-30%
1RM) yielded greater muscle maximal strength gains versus linear
progression in wrestlers. This periodization strategy enhances both
mTOR phosphorylation and type II fiber hypertrophy, suggesting
that mechanical tension remains crucial in hybrid protocols.

4.2 Training volume, frequency and
recovery

Regarding set and repetition schemes, two primary protocols
have emerged as effective: the 30/15/15/15 protocol (total 75 reps)
and the 4x (15-20 reps) protocol (total 60-80 reps), both of
which are typically performed to volitional fatigue (Rolnick and
Kamis, 2023; Wang et al., 2022). Current research recommends
relatively short rest intervals (30-90s) between sets to maintain
metabolic stress while allowing sufficient recovery for subsequent
sets (Ugur et al., 2023; Yang et al., 2022). For training frequency, 2-3
sessions per week appears optimal, with studies showing significant
morphological adaptations after only 3 weeks of consistent training
(Bjornsen and Wernbom, 2019a). The minimum effective dose for
measurable hypertrophy is approximately 12 sessions (3 weeks at 4
sessions/week or 4 weeks at 3 sessions/week) (Luebbers et al., 2024).
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4.3 Repetition tempo

Repetition tempo optimization in blood flow restriction
resistance training should be precisely tailored to specific training
objectives. For hypertrophy-oriented training, a controlled
tempo of 3-4s for the eccentric (ECC) phase combined
with 1-2s for the concentric (CON) phase is recommended
to maximize the time under tension and metabolic stress,
thereby promoting muscular growth (Centner et al, 2019).
When targeting strength and power development, a faster
tempo of 1-2s for the ECC phase with explosive CON
contractions (<1 s) is more effective for enhancing neuromuscular
recruitment and type II fiber activation
2016). Rehabilitation and endurance applications benefit from
slower tempos (4-6s for the ECC phase with 2s for the
CON phase) to minimize joint loading while preventing

(Counts et al.,

premature fatigue. Critical considerations include avoiding
excessive ECC durations (>65), which may compromise the
technique or induce ischemic fatigue, and ensuring that the
CON velocity is sufficient to maintain the benefits of neural
adaptation (Korkmaz et al., 2022). Optimal tempo selection
must integrate three key factors: (1) primary training goals
(hypertrophy/power/rehabilitation), (2) exercise characteristics
(single/multi-joint), and (3) individual athlete factors (training
status integrity) to ensure both

and joint efficacy and

safety.
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4.4 Single-joint vs. multi-joint exercises

Exercise selection for BFRT depends on training goals and
individual adaptability. Both single-joint (e.g., leg extension) and
multi-joint (e.g., squat) exercises effectively promote muscular
adaptations during BFRT. Single-joint movements are suitable
for rehabilitation and isolated muscle training because of their
precise targeting (Diao et al., 2025). Multi-joint exercises enhance
functional capacity and systemic strength through increased muscle
recruitment (Pope et al,, 2013). Training goals dictate the selection
of exercises: rehabilitation favors single-joint exercises, whereas
functional training prioritizes multi-joint movements. Combining
both (e.g., BFRT squats + leg extensions) provides comprehensive
benefits (Huang and Park, 2024) but requires an adjusted cuff
pressure and programming (Slysz et al., 2016).

4.5 Pressure progression

The progression of occlusion pressure in BFRT remains
debatable, with current evidence suggesting context-dependent
strategies. For athletic populations, pressure prescription should
consider limb composition, training phase, and individual arterial
occlusion pressure (AOP). Recent studies have demonstrated
that fixed relative pressures (40%-80% AOP) maintain efficacy
throughout 6-8-week cycles without requiring progressive
increases, as metabolic stress mechanisms (lactate accumulation
and cellular swelling) remain effective at consistent pressures
(Patterson et al., 2019). However, Evidence in reference (Hanke et al.,
2020) reported greater strength gains when progressively increasing
pressure (50->70% AOP) in resistance-trained athletes, likely due
to enhanced type II fiber recruitment under escalating metabolic
challenge.

Practical considerations for pressure progression in BFRT
should account for: (1) limb circumference changes, requiring
periodic pressure adjustments to maintain relative occlusion as
muscle mass increases (Huang and Park, 2024); (2) training
phase specificity, where higher pressures (70%-80% AOP) optimize
hypertrophy phases, whereas lower pressures (40%-50% AOP)
are more suitable for reloading periods; and (3) individual
tolerance, with gradual pressure increases (~10% every 2 weeks)
demonstrating improved compliance in novice athletes (Zhang and
Xu, 2025). Notably, excessive pressure progression (>80% AOP)
may impair technical execution and increase the risk of thrombosis
without augmenting adaptations (Su et al., 2025). Current evidence
supports individualized pressure titration over rigid progression
models, particularly when combined with load progression in
hybrid protocols.

4.6 Cumulative BFRT duration

For athlete BFRT, the total occlusion time per session should
be 15-30 min, including intermittent pressure release between the
sets. Upper-limb BFRT typically requires shorter durations than
lower limbs. For lower limb training, a total occlusion time of
20-30 min is recommended; exceeding 30 min may increase the
risk of venous thrombosis. Upper limb sessions should limit
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occlusion to 15-20 min, with continuous single-limb occlusion not
exceeding 10 min of occlusion. The total session occlusion must
remain under 30 min. Pressure should be immediately released if
paresthesia occurs (Wortman et al., 2021).

4.7 Intermittent vs. continuous pressure

The application of BFRT during resistance training presents
distinct physiological and practical implications when intermittent
and continuous protocols are compared. Intermittent BFRT
(typically
demonstrates superior safety characteristics, with evidence from a

employing 30-60s occlusion/30s release cycles)
previous study (Wang et al., 2022) documenting significantly lower
vascular stiffness markers in athletes than in those with continuous
application. This protocol effectively maintains metabolic stress
(lactate >8 mmol/L) while permitting partial metabolite clearance,
thereby reducing the perceptual discomfort. In contrast, continuous
BFRT induces more pronounced cellular swelling and enhanced
acute mTOR phosphorylation responses (Wang et al., 2023).

For athletic implementation, protocol selection should be
guided by specific training objectives and environmental factors of
the sport. Intermittent BFRT is particularly effective for (1) technical
skill integration during sport-specific movements, (2) extended
training sessions (>30 min), and (3) heat-acclimated environments
where periodic pressure release mitigates cardiovascular strain
(Scott et al,, 2023). Conversely, continuous BFRT offers distinct
advantages for (1) brief hypertrophy-focused sessions (<20 min)
and (2) post-activation potentiation strategies (Zheng et al., 2022).
This dichotomy reflects the fundamental trade-off between the
superior safety profile of intermittent BFRT and the enhanced
metabolic and mechanical stimuli of continuous BFRT.

Notable performance outcomes include findings from
(Smith et al, 2022), who reported 4.1% greater VO2max
improvements with intermittent BFRT in endurance athletes
versus 6.3% CM] enhancement with continuous protocols
Practical

in power athletes. implementation considerations

include equipment constraints, with pneumatic systems
facilitating intermittent cycling, whereas elastic wraps typically
require continuous application. Emerging hybrid models (e.g.,
cycles)

optimizing both safety and efficacy, although they require further

5:2 min intermittent: ~continuous show promise for

investigation (Su et al., 2025).

4.8 Periodized training

The periodized application of BFRT modalities follows a
logical temporal sequence that is aligned with specific training
objectives. During the 8-12 weeks preparation phase, C-BFRRT
optimally induces hypertrophy by alternating high-load mechanical
tension and metabolic stress stimuli. As athletes transition into
the 4-6 weeks competitive phase, S-BFRRT effectively maintains
neuromuscular performance by preserving mTOR activation and
type II fiber recruitment, despite reduced training volumes. Finally,
during the 2-4 weeks transition phase, BFR-LIRT facilitates active
recovery by enhancing metabolic clearance while maintaining
protein synthesis. This systematic approach ensures biological
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BFR Training Modalities

‘Annual Training
Periodization

+ Hypertrophy-focused
HIRT+BFRT

={ C-BFRRT '—Prep Phase—»

alternation
+ 3-dsessions/week

Preparation Phase (8-12wk)

\ Competitive Phase 1 (4-6wk) /

\* Transition Phase (2-4wk)

/, Competitive Phase 2 (4-6wk)

« Strength maintenance
HIRT+BFRT
supplementation
+ 2sessions/week

S-BFRRT omp Phase—»

« Injury prevention

=|| BFR-LIRT }»Trans Phase———»

+ 30%1RM+BFR
+ 1-2sessions/week

FIGURE 3
Application of different BFRT modes in annual cycle.

synchronization between the imposed training stimuli and
desired physiological adaptations while respecting the minimum
effective durations required for each modality (8, 6, and 4 weeks
for C-BFRRT, S-BFRRT, and BFR-LIRT, respectively). Figure 3
conceptualizes this periodized application, aligning each BFRT
modality with the specific objectives of different training phases
within an annual cycle (preparatory, competitive, transition). It
should be interpreted as a proposed model for integration based on
the theoretical rationale and limited empirical evidence available,
rather than a universally validated prescription.

The periodized application of BFRT modalities follows a logical
temporal sequence aligned with specific training objectives. Taking
the annual training cycle of basketball players as an example,
during the 8-12 weeks preparation phase, athletes focus on muscle
hypertrophy and foundational strength development by adopting
the C-BFRRT modality. This involves alternating high-intensity
training sessions (e.g., squats and deadlifts at 70%-85% 1RM)
with low-intensity BFRT sessions (e.g., leg press at 30% 1RM)
on a weekly basis, effectively activating type II muscle fibers and
increasing muscle cross-sectional area. Upon entering Competition
Phase 1 (4-6 weeks), the training emphasis shifts to maintaining
maximal strength, making S-BFRRT the preferred modality. For
instance, after technical training during game weeks, high-intensity
bench presses (90% 1RM) combined with low-load BFR bench
presses (20% 1RM) can be implemented to prolong mTOR pathway
activation and preserve type ITa/x muscle fiber function. If the season
comprises multiple segments (e.g., regular season and playoffs),
S-BFRRT may continue to be used in Competition Phase 2, with
a transition to BFR-LIRT during the interval between competitive
periods to maintain muscle metabolic activity with low joint load,
thereby preserving strength while minimizing excessive fatigue.
During the transition phase (2-4 weeks) after the season, BFR-LIRT
is prioritized, involving 1-2 weekly sessions of full-body low-
intensity circuit training (30% 1RM) to promote neuromuscular
recovery and injury repair while sustaining basal anabolic

levels.
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5 Conclusion

This review synthesizes the current literature to compare the
theoretical mechanisms and practical applications of three primary
BFRT modalities (BFR-LIRT, S-BFRRT, C-BFRRT). Based on a
narrative synthesis of available studies, it appears that BFRT can
achieve unique physiological effects by modulating mechanical
tension and metabolic stress pathways to varying degrees. The
evidence suggests that BFR-LIRT may primarily induce type I
fiber hypertrophy through metabolic stress, making it a valuable
tool for rehabilitation. S-BFRRT seems to create acute synergy by
combining high-load tension with metabolic stimuli, potentially
benefiting strength maintenance. C-BFRRT, through its periodized
structure, holds promise for inducing integrated adaptations,
potentially favoring type II fiber specialization during preparatory
phases.

However, these conclusions must be interpreted with
caution due to several key limitations. The current body
of evidence is characterized by studies with small sample
(e.g.
selection,

sizes, significant methodological heterogeneity in

pressure application  protocols,  exercise and
intervention duration), and a lack of direct comparative
meta-analyses. Furthermore, important safety considerations,
particularly regarding thrombosis risk in athletes with potential
hypercoagulable states and the long-term effects of repetitive
BFRT, remain underexplored and warrant careful attention in
practice.

Therefore, the proposed hierarchical system for targeting fiber-
type-specific adaptations across training phases should be viewed
as a preliminary framework grounded in mechanistic rationale and
emerging empirical evidence, rather than a definitive prescription.
Future high-quality research with larger samples, standardized
protocols, longer follow-ups, and direct comparative designs is
urgently needed to validate these findings, establish clearer efficacy
hierarchies, and elucidate optimal implementation parameters.
Prioritizing individualized remain

safety and application

paramount.
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