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Acute lung injury (ALl) and acute respiratory distress syndrome (ARDS) are a
group of conditions characterized by acute episodes of pulmonary inflammation
and increased pulmonary vascular permeability. These conditions often result
in severe morbidity and high mortality rates. Increased alveolar-capillary barrier
permeability is a pivotal factor in the pathogenesis of ALI/ARDS, and diffuse
alveolar epithelial cell (AEC) death is a salient feature of ALI/ARDS. Alveolar
epithelium is composed of alveolar type | epithelial cells (AECI) and alveolar
type Il epithelial cells (AECII), with AECII playing a more critical role. These cells
contain a high density of mitochondria in their cytoplasm, and their function
depends on mitochondrial quality control (MQC). Existing reviews either focus
solely on the mechanisms of AECs and their relationship to lung injury/fibrosis or
broadly explore the role of mitochondrial dynamics in lung diseases. However,
neither review comprehensively addresses AECIlI's MQC and related molecules
and signaling pathways. The objective of this study is to investigate the MQC
characteristics of AECII in ALI/ARDS, elucidate their role as a regulatory hub
for oxidative stress, inflammation, and fibrosis, summarize progress in related
clinical trials, and highlight the need for further research to develop effective
therapies.

alveolar type Il epithelial cells, mitochondrial quality control, acute lung injury, acute
respiratory distress syndrome, oxidative stress, inflammation, fibrosis

1 Introduction

Acute lung injury (ALI) is a severe respiratory disease with global prevalence, primarily
triggered by endogenous and exogenous pathogenic factors (Li J. et al., 2022). The principal
clinical manifestations of the condition include uncontrolled oxidative stress, pulmonary
oedema, and inflammatory cell infiltration (Fan et al., 2018). ALI has been demonstrated
to result in the development of acute respiratory distress syndrome (ARDS) in critical
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conditions, which is also recognized as a primary cause of mortality
in critically ill patients (LiJ. et al, 2022; Kraft et al., 2023). As
demonstrated in previous studies, the mortality rate for patients with
ARDS can reach 34.9%-46.3% (Bellan et al., 2016; Huang et al,
2020). Moreover, even among survivors, a high rate of disability
is observed (Moss et al., 2019). Increased permeability of the
alveolar-capillary barrier is a key component of the pathogenesis
of ALI/ARDS (WangZ. et al, 2020). Disruption of alveolar
epithelial barrier repair has been demonstrated to result in the
development of fibrosis in patients with lung injury and to worsen
prognosis (Budinger and Sznajder, 2006). To a certain extent, the
alveolar epithelial barrier exhibits greater resistance to damage in
comparison with the adjacent endothelium (Matthay et al., 1993).
As demonstrated in the existing literature, the widespread death of
alveolar epithelial cells (AECs) occurs during ALI (Qi et al., 2023;
Sha et al., 2024). AECs are considered to be essential parenchymal
cells for maintaining the structural and functional integrity of the
lungs (Ruaro et al., 2021). The classification of AECs is primarily
into two distinct types: alveolar type I epithelial cells (AECI) and
alveolar type II epithelial cells (AECII). AECI and AECII are
connected via plasma membrane structures (including adherens
junctions and tight junctions) (Bhattacharya and Matthay, 2013) to
form the alveolar epithelial barrier, a highly compact barrier that
restricts solute passage while facilitating carbon dioxide and oxygen
diffusion (Matthay et al., 2019a). Of these, the function of AECII is
of particular importance.

As is well established, AECII, which possess secretory,
proliferative, and innate immune functions, are small cuboidal
cells with the anatomical characteristics of actively metabolizing
epithelial cells, containing a high density of mitochondria and
possessing distinctive apical microvilli (Ruaro et al., 2021). In terms
of their functions, they have been observed to secrete surfactants,
which have been demonstrated to reduce surface tension, prevent
alveolar collapse, and promote efficient gas exchange (Wu and
Tang, 2021). Secondly, due to the limited proliferative capacity
of AECI, the differentiation and regenerative capacity of AECII
is required to restore the barrier function of the alveolar epithelial
barrier (Ruaro et al., 2021; Wu and Tang, 2021; Zhang and Liu,
2024; Chong et al., 2023). Research has demonstrated that AECI are
particularly vulnerable to damage during the course of ALI/ARDS.
Concurrently, AECII undergo cell death when subjected to severe
or specific forms of damage. This damage ultimately impairs the
ability of AECII to proliferate and differentiate into AECI in a
timely manner to repair the extensively damaged alveolar epithelial
barrier (Qi et al, 2023). Research has indicated that the lung
tissue of animals affected by pneumonia exhibits an increase in the
proliferation of AECIL. However, these cells have been observed
to undergo a loss of mitochondria (Fredenburgh et al, 2015).
Finally, it has been demonstrated that AECII may also promote
fibrotic responses through the secretion of growth factors and pro-
inflammatory molecules following injury (Ruaro et al., 2021). AECII
cells that evade cell death adopt a mesenchymal cell fate through a
process known as epithelial-mesenchymal transition (EMT). EMT
has been demonstrated to maintain the generation of pathologically
‘activated’” ATII cells, which in turn amplify the fibrotic response
by secreting pro-fibrotic factors, thereby impairing normal post-
injury alveolar re-epithelialization (Chilosi et al., 2017; Katzen
and Beers, 2020; Paris et al., 2020). Concurrently, studies have
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demonstrated that tracheal transplantation of human induced-
differentiated AECII can terminate and reverse the process of
pulmonary fibrosis (Alvarez-Palomo et al., 2020). Therefore, there is
a necessity to understand the mechanisms underlying AEC damage
during ALI/ARDS and to identify effective intervention strategies.
It has been demonstrated that mitochondrial quality control in
pulmonary epithelial cells is disrupted during sepsis, leading to
mitochondrial dysfunction and the subsequent development of
ALI/ARDS (Ning et al,, 2022). As demonstrated by the available
animal models of ALI, the maintenance of alveolar function by
AECII is contingent upon the initiation of MQC (Suliman et al.,
2017). The process of MQC is contingent not only on mitochondrial
dynamics (fission and fusion) (Shi et al., 2024), but also specifically
on mitochondrial autophagy (Zhong et al., 2024).

It is evident that preceding reviews have, in some cases,
merely summarized the molecular mechanisms of AECs and their
relationship with ALI and fibrosis in isolation. For instance, Katzen
provided a comprehensive review of the relationship between AECs
quality control and pulmonary fibrosis in 2000 (Katzen and Beers,
2020). Meanwhile, Qi conducted a review in 2023 discussing the
interplay between AECII programmed cell death and ALI (Qi et al,,
2023). Conversely, there have been reviews that comprehensively
summarize the role of mitochondrial dynamics in pulmonary
disease. For instance, Sharma (2021) and Li and Pokharel (2024)
conducted a comprehensive review of the functions and roles of
mitochondrial dynamics in pulmonary disease (Sharma et al., 2021;
Pokharel et al., 2024; Li et al., 2024). However, these reviews have
not comprehensively addressed the topic of the relationship between
MQC in AECII and ALI/ARDS, including the key molecules
and signal transduction mechanisms involved. The present study
summarizes the MQC process in the dynamic network changes
of AECII associated with ALI/ARDS. The integration of signaling
molecules and pathways provides further elucidation of the pivotal
role of MQC in AECII during ALI/ARDS, and its connections
to oxidative stress, inflammation, and fibrosis. In conclusion, the
synthesis of evidence from clinical trials demonstrates the mediation
of MQC processes in ALI/ARDS. Furthermore, the identification of
areas requiring further investigation is pivotal in the development of
effective therapeutic strategies for these highly complex pulmonary
disorders.

2 The important role of alveolar type Il
epithelial cells in acute lung
injury/acute respiratory distress
syndrome

2.1 Interaction between alveolar type lI
epithelial cells and major immune cells in
ARDS

As is well established, the lungs, as an innate immune organ,
contain a multitude of immune cells (including macrophages and
neutrophils, among others) (Zeng and Yan, 2025). The surfaces of
these immune cells bear numerous pattern recognition receptors
(PRRs), which play a regulatory role in pulmonary inflammation
through mechanisms such as inflammophagy (Chauhan et al., 2022).
Furthermore, the interactions between immune cells and epithelial
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cells are of paramount importance (Tao et al, 2023). In typical
steady-state conditions, the predominant bronchoalveolar cells
(BAG:s) in the lungs are alveolar macrophages (AMs), comprising
approximately 90% of the total population (Kumar, 2020). These
tissue-resident AMs are formed during the prenatal period and
function as sentinel cells to eliminate pathogens (Guilliams et al.,
2013). AMs represent a pivotal component of the pulmonary
innate immune system (Zeng and Yan, 2025), contributing to
inflammatory responses and maintaining homeostasis (Hussell
and Bell, 2014). AMs and AECs interact closely, particularly
through intercellular interactions involving CD200R, PD-1, and
SIRPla on AMs, and CD200, programmed death-ligand (PD-L)1,
and CD47 on AECs (Bissonnette et al., 2020). In pathological
conditions, AMs have been shown to promote the repair process
of AECs. For instance, TNF-a secreted by AMs has been
shown to stimulate granulocyte-macrophage colony-stimulating
factor (GM-CSF) production in AECII, thereby promoting AECII
proliferation via autocrine signaling (Cakarova et al, 2009).
Furthermore, trefoil factor 2 (TFF2) signaling in AMs has been
demonstrated to induce Wnt expression, which is essential for
AECII proliferation (Hung et al., 2019). In the late phase of
ALL selectively activated AMs secrete anti-inflammatory cytokines
that suppress inflammatory responses, promote the proliferation
of AECII, and facilitate their differentiation into AECI, thereby
aiding alveolar epithelial regeneration and structural remodeling
(Tao et al., 2023). Conversely, AECII has also been demonstrated
to influence AM activation through the upregulation of glycolysis
and oxidative phosphorylation, thereby contributing to lung injury
(Li S. et al., 2022). Intrapulmonary or extra thoracic factors attack
and disrupt AECs, leading to the release of damage-associated
molecular patterns (DAMPs) by AECs. This, in turn, activates AMs
and neutrophils, thereby amplifying the inflammatory response and
exacerbating ALI (Luo et al., 2023). Research has demonstrated that
tissue-resident AMs within barrier organs, serving as the first line of
defense against pathogens, can form connexin 43 (Cx43)-containing
gap junction channels with epithelial cells (Westphalen et al,
2014). Mice with a specific knockout of AM-expressed Cx43
demonstrated heightened neutrophil infiltration into alveoli and
elevated pro-inflammatory cytokine levels in bronchoalveolar
lavage fluid (BALF) during Gram-negative bacterial (Pseudomonas
aeruginosa) pneumonia. In comparison with bacterial pneumonia,
the migration of neutrophils to the lungs during sepsis-associated
ALI has been shown to exert greater destructive effects on
pulmonary tissue (Kumar, 2020). Interactions between AECs
(particularly AECII) and AMs have been demonstrated to play a
pivotal role in the inflammatory process of pulmonary infection,
contributing to the development and resolution of ALI/ARDS.

2.2 Alveolar type Il epithelial cells and
acute lung injury/acute respiratory distress
syndrome

It has been demonstrated that AECII maintains intricate
connections with immune cells and that it exerts a direct influence
on the integrity of the alveolar membrane. During the pathological
development of ALI/ARDS, the disruption of alveolar membrane
integrity leads to the formation of protein-rich pulmonary oedema

Frontiers in Physiology

03

10.3389/fphys.2025.1684729

and increased pulmonary fluid (Zeng and Yan, 2025). The alveolar
epithelial barrier is subject to disruption by pathogenic factors,
including the influx of inflammatory cells and the excessive
production of cytokines, chemokines, reactive oxygen species
(ROS), and nitrogenous substances (Matthay and Zemans, 2011).
Among these, AECI disruption has been shown to compromise
the integrity of the alveolar epithelial barrier (Coyne et al., 2003),
resulting in the proliferation and differentiation of AECII and
the induction of protective epithelial genes that contribute to
maintaining tight junctions and restoring membrane integrity
(Wray et al, 2009). The existing literature suggests that the
MQC process promotes the ability of AECs to eliminate and
replace damaged mitochondria, thereby supporting cell survival
(Piantadosi and Suliman, 2017). This is followed by the production
of mitochondrial autophagy proteins, which are essential for the
elimination of damaged mitochondria (Suliman et al., 2017). It
has been demonstrated by preceding studies that the proteins
which regulate mitochondria appear to be concentrated in AECIL
It has been established that these cells are responsible for the
production and recycling of surfactant. In addition to this function,
they also serve as progenitor cells for AECI, which are essential
for alveolar-capillary barrier function and oedema clearance
(Suliman et al, 2017). The aforementioned study posits that
mitochondrial impairment contributes to alveolar epithelial barrier
dysfunction through a series of interconnected processes, including
energy depletion, calcium dysregulation, heme homeostasis loss,
and cell death activation (Schumacker et al., 2014). Furthermore,
due to the substantial surface area and fragility of AECI, in addition
to their sensitivity to a-hemolysin lysis and host response-induced
cellular damage, the anticipated damage to AECI is extensive.
Conversely, cuboidal AECII have been shown to exhibit enhanced
resistance to inflammation and oxidative stress (Bhattacharya
and Matthay, 2013). It has been demonstrated that surviving
AECII are endowed with stem cell functions, which enable them
to proliferate and transdifferentiate into AECI, thus helping to
restore alveolar-capillary barrier function (Barkauskas et al., 2013)
(Figure 1). However, AECII is only able to fulfil this function
by first repairing cellular damage, eliminating mitochondria with
irreversible damage, and replacing them with healthy mitochondria
to support cellular survival (Suliman et al., 2017).

3 The role of mitochondrial quality
control processes in alveolar type Il
epithelial cells in acute lung
injury/acute respiratory distress
syndrome

As demonstrated by the extent animal models of ALI, the
provision of AECII support for alveolar function is contingent on
mitochondrial biogenesis (Athale et al.,, 2012) and the activation
of the MQC programme (Suliman et al, 2017). Of these, the
MQC process appears to be of greater significance (Jiang Y. et al.,
2022), primarily divided into two components: mitochondrial
dynamics (Whitley et al, 2019) and mitochondrial autophagy
(Chang et al., 2015). The MQC process has been demonstrated
to enhance the ability of AECs to eliminate and replace damaged
mitochondria, thereby supporting cellular survival (Piantadosi and
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upon the activation of MQC within these cells.

The process of repairing damage to the epithelial barrier. It has been demonstrated that, during the occurrence of ALI/ARDS, AECI are particularly
vulnerable to injury. In view of the restricted proliferative capacity of AECI, the differentiation and regenerative capabilities of AECII are imperative for
the restoration of the barrier function of the alveolar epithelial barrier. The manner in which AECII provides support to alveolar function is contingent
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Suliman, 2017). In addition to laboratory-based research, some
researchers conducted a histopathological case-control autopsy
study, which revealed severe mitochondrial oxidative damage in
AECII of patients who died from ARDS, along with impaired
clearance of damaged mitochondria (Kraft et al, 2023). This
underscores the necessity of studying the MQC process in AECII
for the prevention and treatment of ALI/ARDS. The present review
also summarizes the corresponding basic research, including cell
experiments (Ning et al., 2022; Ballweg et al., 2014; Liu W. et al.,
2019; Luo et al, 2019; Kim et al., 2020; Zhuang et al., 2021;
Zhang et al., 2021; Zhao et al., 2021; Chen et al., 2022; Tian et al.,
2022; Liu et al,, 2021; Guan et al., 2021; Kia et al., 2021; Jiang J. et al.,
2022; Zhu et al,, 2022a; Yang et al., 2022; Lin Q. et al., 2022; Liu et al.,
2022; Wang et al,, 2023; Xuefei et al., 2023; Dong et al., 2023;
Zhang et al.,, 2023; Li N. et al.,, 2023; Liu et al.,, 2023; Song et al.,
2023; Zhou et al., 2023; Han et al., 2023; Li C. et al., 2023; Chu et al.,
2024; Su et al., 2024; Zhou et al.,, 2024; Zhu et al., 2024; Yu et al.,
2024; Lian et al., 2024; Han et al., 2025; Liu et al., 2025; Peng et al.,
2025; Gu et al., 2025; Tomatis et al., 2025) (Table 1) and animal
experiments (Ning et al., 2022; Suliman et al., 2017; Liu W. et al,,
2019; Luo et al., 2019; Zhuang et al., 2021; Liu et al., 2021; Zhu et al.,
2022a; Li N. et al., 2023; Liu et al., 2023; Song et al., 2023; Han et al.,
2023; Zhu et al., 2024; Han et al., 2025; Liu et al., 2025; Ping et al.,
2025; Wang et al., 2024; Meng et al., 2025) (Table 2). The two
tables presented herein provide substantial experimental evidence
for the association between the MQC process and ALI/ARDS in
AECII. Specifically, both AECII and various animal models of
ALI/ARDS induced by multiple mechanisms exhibit oxidative stress,
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inflammation, and fibrosis, all of which are closely linked to MQC.
Direct modulation of the MQC process, or indirect regulation
via signaling molecules/pathways, has been shown to effectively
suppress the onset and progression of oxidative stress, inflammation,
and fibrosis.

3.1 The role of mitochondria in acute lung
injury/acute respiratory distress syndrome

Mitochondria are dynamic, multifunctional organelles that
produce adenosine triphosphate (ATP) and numerous biosynthetic
intermediates through oxidative phosphorylation (OXPHOS) in
response to the cell's bioenergetic and biosynthetic demands.
It is important to note that, in contrast to nuclear organelles,
mitochondria are the only non-nuclear organelles that possess their
own genome. This genome encodes a total of 13 polypeptides that
function as OXPHOS subunits and components of the respiratory
chain. In addition to these polypeptides, the mitochondrial genome
encodes two ribosomal RNAs and 22 transfer RNAs. These
latter components are essential for the process of polypeptide
translation in human and mouse mitochondria. Furthermore,
mitochondria have been identified as the primary source of
endogenous ROS (Fang et al., 2020). Furthermore, mitochondria
have been demonstrated to facilitate the temporal storage of calcium
ions (Ca?"), a process that is imperative for the maintenance of
cellular calcium homeostasis (Rizzuto et al., 1993; Baughman et al.,
2011). It is imperative to note that other significant metabolic
reactions that occur in mitochondria include the synthesis of steroid
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hormones and porphyrins, the urea cycle, lipid metabolism, and the
interconversion of amino acids.

During the process of consuming oxygen to produce cellular
ATP, the mitochondrial electron transport chain of the OXPHOS
complex transfers single electrons to oxygen, forming ROS through
complexes I and III, primarily superoxide and hydrogen peroxide.
Mitochondria possess an antioxidant defense system that functions
to detoxify and minimize ROS. This mitochondrial redox buffering
capacity is precisely controlled to avoid mitochondrial dysfunction
and cell death. However, under various pathophysiological
conditions caused by hypoxia, ischaemia/reperfusion injury,
chemical stress, drug therapy, genetic defects, or metabolic
fluctuations, mitochondrial reactive oxygen species (mtROS) levels
increase (Cho and Kleeberger, 2020). Impaired mitochondrial
function has been demonstrated to exert a detrimental effect on
cellular metabolism, resulting in the production of deleterious ROS
(Sabouny and Shutt, 2020; Cheung et al., 2024). The production
of mtROS in cells can occur in two different ways. Firstly, it can be
produced directly within the electron transport chain as a byproduct
of oxidative phosphorylation. Secondly, it can be induced by nearby
ROS, serving as both a source and target of ROS (Kattoor et al.,
2017). A number of studies have demonstrated that mitochondrial
autophagy is inhibited in patients with sepsis (Liu et al., 2024).
Furthermore, it has been established that calcium overload and
increased ROS levels resulting from mitochondrial dysfunction
lead to increased cell death (McClintock et al., 2022). As the
condition worsens, increased mtROS and mediator production
in mitochondria activate downstream cellular processes, including
inflammation, fibrosis, and cell death (Suryadevara et al., 2019).
Increased cellular fragmentation has been demonstrated to inhibit
ATP production, and to result in the leakage of dysfunctional
mitochondrial DNA (mtDNA) into the cytoplasm (Nakada et al.,
2009). This, in turn, has been shown to lead to increased ROS
and inflammation. Furthermore, a specific association between
increased mitochondrial fragmentation and enhanced production
of cytokines and chemokines has been reported (Tiku et al., 2020).

The normal functioning of mitochondria in healthy cells is
contingent on two processes: bioenergetics (ATP production)
and biogenesis (the increase in mitochondrial mass by de novo
generation) (Cho and Kleeberger, 2020; Popov, 2020). In the event
of impaired mitochondrial function, the MQC process becomes
imperative for the elimination and replacement of damaged
mitochondria (Lemasters, 2005; Adebayo et al., 2021). The MQC
is comprised of two principal components: mitochondrial dynamics
and mitochondrial autophagy (lysosome-dependent selective
degradation of defective mitochondria). The term 'mitochondrial
dynamics’ refers to the dynamic nature of mitochondria, which are
organelles responsible for maintaining the stability of mitochondrial
morphology and function. This is achieved through continuous
processes of fission, defined as the binary division of mitochondria,
and fusion, characterized as the mixing of contents within a
mitochondrial population (Whitley et al., 2019). Consequently,
mitochondrial health is pivotal to the cellular determination of
apoptosis and necrotic cell death programmes, thus rendering
quality control a pivotal regulatory factor for cellular survival
(Jiang Y. et al., 2022). It is evident that several mechanisms of
mitochondrial quality control have evolved, with mitochondrial
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fission/fusion dynamics and mitochondrial autophagy being of
particular significance (Ashrafi and Schwarz, 2013) (Figure 2).

3.2 The processes of mitochondrial
dynamics and mitochondrial autophagy

3.2.1 Mitochondrial dynamics (fusion/fission)

From a narrative perspective, the term 'mitochondrial dynamics’
encompasses the processes of mitochondrial fusion and fission
(Jiang Y. et al., 2022). Mitochondria are highly dynamic organelles
capable of altering their size, shape, and location within mere
seconds (Scott and Youle, 2010). The number and morphology
of mitochondria are known to vary depending on cell type and
demand (Wai and Langer, 2016). It is therefore the case that
the balance between mitochondrial fusion and fission is a key
regulator of mitochondrial distribution, morphology, and function.
The process of mitochondrial fusion and fission is facilitated
by the action of large multi-domain guanosine triphosphate
hydrolases (GTPases) associated with dynamin. These GTPases
function by self-assembling to remodel different membranes
within the cell (Hoppins et al., 2007).

The process of mitochondrial fusion has been demonstrated to
facilitate the mixing of mitochondrial matrix proteins and outer
and inner mitochondrial membrane proteins, thereby promoting
material exchange and ATP production (Farmer et al., 2018). During
mild to moderate cellular stress, the process of fusion between
damaged and healthy mitochondria may occur, thereby preventing
cellular damage. The process of mitochondrial fusion is primarily
associated with two distinct classes of GTPases: mitofusin 1 (Mfn1)
and Mfn2 act on the outer mitochondrial membranes (OMM),
whilst optic atrophy 1 (OPA1) acts on the inner mitochondrial
membranes (IMM). Following the promotion of OMM fusion by
Mifnl polymerisation, OPA1 spiral assembly initiates the process
of IMM fusion (Yapa et al, 2021) (Figure 3). The long OPAIL
(L-OPA1) has been observed to bind to IMM via trans-lipid
cardiolipin (CL). L-OPA1 has been demonstrated to promote
mitochondrial fusion, and under conditions of mitochondrial stress,
it undergoes proteolytic cleavage to form short OPA1 (S-OPA1)
(Lin J. et al., 2022). Subsequently, S-OPA1 was found to add to
the L-OPA1-CL complex, fusing with the mitochondrial membrane
(Ban et al., 2017).

On the other hand, mitochondrial fission cleaves mitochondrial
tubules and produces shorter, more mobile, and isolated
mitochondria. These can migrate to other regions of the cell
or fuse with other mitochondrial tubules. In the process of
mitochondrial fission, two small mitochondria undergo rupture
at the mitochondrial-endoplasmic reticulum contact region. The
primary mediators of this mechanism are dynamin-related protein 1
(Drpl), mitochondrial fission factor (Mff), mitochondrial dynamics
proteins of 49 kDa (MiD49), and mitochondrial dynamics proteins
of 51 kDa (MiD51), which are important regulatory factors in
mitochondrial fission. It has been established that Drpl is the
primary fission regulator and that it belongs to the dynein family.
The process of calcium-regulated phosphatases removing phosphate
from Drpl (which is typically found in the cytoplasm) has been
shown to attract it to the mitochondrial surface (Giacomello et al.,
2020). Concurrently, it adheres to the mitochondrial surface via
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Mitochondrial mitophagy

FIGURE 2

Mitochondrial dynamics (fission/fusion) and mitochondrial autophagy both eliminate damaged mitochondria. MQC encompasses mitochondrial
dynamics (fission and fusion) and mitochondrial autophagy. The processes of fission and fusion within mitochondrial dynamics are analogous to the
ancient Chinese philosophical concept of Taiji. These processes dynamically regulate damaged mitochondria within the cell through two entirely
opposing yet unified processes, thereby maintaining intracellular homeostasis. In cases where mitochondrial damage is irreparable, a process known as
mitochondrial autophagy may be initiated in order to eliminate the damaged components.

Mitochondrial fission

bridging proteins (including Fisl, Mff, MiD49, and MiD51) to
participate in fission (Quiles and Gustafsson, 2022). In summary,
the process of actin aggregation at the mitochondria-endoplasmic
reticulum contact sites (MERCs) is followed by the preparation of
the mitochondria to undergo contraction. Concurrently, a Drpl
ring is assembled at the site of contraction (Korobova et al., 2013)
(Figure 3). Research has demonstrated that signal transducers
and activators of transcription 2 (Stat2) play a pivotal role in the
regulation of mitochondrial fission homeostasis. Stat2 has been
demonstrated to promote the phosphorylation of Drpl at the
S616 site, thereby facilitating the translocation of Drpl to the
mitochondria, thus preparing them for fission (Yu et al., 2020).
Furthermore, Toll-like receptors (TLRs) represent a significant
class of receptors within the innate immune system, playing a
pivotal role in inflammatory responses during ALI/ARDS (Zeng
and Yan, 2025). Research has demonstrated that TLR4 inhibitors
have the capacity to impede the translocation of Drpl to the
mitochondria. This process has been shown to result in a reduction
of Drpl phosphorylation and myeloid differentiation primary
response protein 88 (MyD88) expression in cells. Consequently,
this regulatory mechanism functions to control mitochondrial
fission through the inhibition of the TLR4/Drpl pathway. This,
in turn, has the effect of modulating the inflammatory response
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(Zhou et al., 2019). The fusion of remaining healthy mitochondria
after fission has been demonstrated to promote mitochondrial
oxidative phosphorylation and to allow mtDNA to redistribute
between damaged and healthy mitochondria (Huang et al., 2023).
This process is believed to contribute to the maintenance of
mitochondrial homeostasis.

Mitochondrial dynamics represent a significant adaptive
response to acute cellular stress in numerous cell types, including
endothelial cells. However, under prolonged stress, initial damage
can lead to overcorrection, thereby impairing the cell’s ability
to effectively regulate its mitochondria (Eisner et al., 2018), and
consequently causing numerous harmful effects. Consequently,
the processes of mitochondrial fusion and fission collaborate to
facilitate the repair of damaged mitochondria. This is achieved
by the separation of damaged components through fission and
the exchange of materials between healthy mitochondria through
fusion. This collaborative process ensures the maintenance of
mitochondrial quality (Ni et al., 2015). Research has demonstrated
that nuclear factor erythroid 2-related factor 2 (Nrf2) can exert
a protective effect by regulating mitochondrial dynamics. Nrf2
can be activated by excessive ROS, thereby upregulating Mfn2
expression and downregulating Drpl expression, thus restoring
the balance of mitochondrial dynamics, promoting the recovery of
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FIGURE 3

¥ MiDs1 ¥ Fisl

MiD49 1 Mt

The process of mitochondrial dynamics (fission/fusion). Phosphorylation of Drpl has been demonstrated to promote fission. It is evident that Fisl, Mff,
MiD49 and MiD51 play a pivotal role in the process of fission. Mitochondrial fusion is defined as the process of interconnectedness between two or
more mitochondrial networks, resulting in the formation of a unified structural entity. It is imperative to note that the following fusion regulators are of
particular significance: OPA-1, CL and Mfn1/2. CL, lipid cardiolipin, Drpl, dynamin-related protein 1, Fisl, fission 1, Mff, mitochondrial fission factor,
Mfn1, mitofusin 1, MiD49, mitochondrial dynamics proteins of 49 kDa, MiD51, mitochondrial dynamics proteins of 51 kDa, OPAL, optic atrophy 1.

healthy mitochondria, and exerting a protective effect on the body
(Chen, 2022). Furthermore, studies have demonstrated that Nrf2
has the capacity to inhibit not only pyroptosis, but also ferroptosis,
by targeting the regulation of mitochondrial dynamics, as facilitated
by Drp1 and Mfn2 (Sun et al., 2023). Moreover, the process of fission
facilitates the separation of damaged mitochondrial fragments from
the mitochondrial network, thereby enabling their selective removal
from the cell via mitochondrial autophagy (Jiang Y. et al., 2022).
Consequently, drugs that modulate mitochondrial fusion and fission
dynamics, in addition to mitochondrial autophagy, have the capacity
to inhibit the accumulation of damaged mitochondria. This, in turn,
promotes cell survival and serves as a means to improve sepsis
treatment.

3.2.2 Mitochondrial autophagy

When damaged, mitochondria separate from the mitochondrial
and subsequently,
mitochondrial autophagy degrades them to maintain a healthy

network through a process of fission,

mitochondrial pool (Cho and Kleeberger, 2020). Following
the complete cleavage of the mitochondria into two parts, the
autophagy system selectively targets damaged mitochondria and
degrades them through lysosomal fusion to maintain mitochondrial
This
autophagy (Lemasters, 2005).

The PTEN-induced putative kinase 1 (PINK1)/Parkin signaling
pathway has been the subject of extensive research as a mechanism
leading to mitochondrial autophagy. Mitochondrial impairment

quality control. process is known as mitochondrial

has been demonstrated to induce a decline in membrane
potential, thereby impeding the entry of PINKI into the inner

mitochondrial membrane and resulting in its accumulation on
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the outer mitochondrial membrane (Georgakopoulos et al., 2017).
PINK1 accumulates on the OMM, forming a complex with the
translocase of the outer mitochondrial membrane (TOM). This
process promotes phosphorylation of PINK1 at Ser65, which in
turn activates Parkin recruitment and ubiquitin ligase activity.
Consequently, Parkin facilitates the ubiquitination of diverse
mitochondrial proteins through a synergistic interaction with E2
ubiquitin-conjugating enzymes, culminating in the envelopment
of damaged mitochondria by phosphorylated ubiquitin chains
(Quinn et al., 2020). The autophagy adaptor protein p62 is recruited
to mitochondria, a process which is crucial for final clearance. p62
is a substrate for autophagy that has been the focus of a great
deal of study. During the process of autophagy, p62 functions as
a link between microtubule-associated protein 1A/1B-light chain
3 (LC3) and polyubiquitinated proteins. This process enables the
selective isolation of these proteins into autophagosomes, thereby
facilitating the selective recruitment of ubiquitinated substrates
for degradation via autophagy. These substrates are subsequently
degraded by lysosomal proteases (Bartlett et al., 2017). In the
presence of the LC3 complex, the process of autophagy (self-
eating) involves the engulfment of damaged mitochondria by
autophagosomes, leading to the subsequent fusion of these vesicles
with lysosomes for degradation (Ng et al., 2021) (Figure 4). Defects
in mitochondrial dynamics and autophagy have been demonstrated
to increase levels of mtROS and activate Nrf2. Activation of Nrf2
has been demonstrated to increase the expression of PINK1 and
p62, promote the function of mitochondrial autophagy, and clear
damaged mitochondria (Chen, 2022). Furthermore, enhanced
mitochondrial autophagy, as facilitated by PINKI1/Parkin, has
been shown to inhibit NOD-like receptor protein 3 (NLRP3)

frontiersin.org


https://doi.org/10.3389/fphys.2025.1684729
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Zeng and Yan 10.3389/fphys.2025.1684729

E2 ubiquitin-conjugating enzymes

FIGURE 4

The process of mitochondrial autophagy. Under normal conditions, PINK is transported to the IMM, where it undergoes degradation. In instances of
severe damage, the process of mitochondrial fission occurs, resulting in the segregation of damaged segments. The resulting damaged mitochondrial
fragments exhibit reduced mitochondrial membrane potential, thereby inhibiting PINK1 translocation to the IMM. PINK1 accumulates on the OMM,
where its kinase activity is activated by autophosphorylation, which in turn triggers the recruitment of Parkin. Parkin has been shown to ubiquitinate
OMM proteins, interacting with LC3 to induce phagosome assembly and subsequent formation of the autophagosome. It is noteworthy that alternative
receptors have been identified which circumvent the PINK1/Parkin pathway-mediated ubiquitination process, thereby facilitating a direct initiation of
mitochondrial autophagy through the action of proteins such as BNIP3, NIX, and FUNDCL1. The fusion of these two types of vesicles leads to the
process of autophagy, or “self-eating”, as the damaged mitochondrial fragments are cleared. Healthy mitochondrial fragments have been shown to
retain their functional integrity and to fuse with the wider mitochondrial network. BNIP3, BCL2 interacting protein 3, FUNDC1, FUN14 domain
containing 1, LC3, light chain 3, NIX, NIP3-like protein X, OPTN, optic nerve phosphodiesterase, PINK1, PTEN-induced putative kinase 1, TOM,
translocase of the outer mitochondrial membrane, Ub, ubiquitin, ULK1, UNC-51-like kinase 1.

inflammasome assembly, thereby alleviating interleukin (IL)- Furthermore, PINK1 has been observed to trigger
1B- and IL-18-induced joint inflammation. However, treatment  mitochondrial autophagy in a manner that is independent of Parkin
with the mitochondrial autophagy inhibitor 3-MA has been  recruitment. In circumstances where mitochondrial function has
shown to reverse the inhibitory effect on NLRP3 inflammasome been impaired, the protein PINKI, located on the OMM, has
activation (Fan et al., 2021). Further studies have shown that  been observed to recruit two other proteins, nuclear dot protein
sirtuins 1 and 3 (Sirtl/3) can activate the PINK1/Parkin axis, 52 (NDP52) and optic nerve phosphodiesterase (OPTN), to the
thereby interfering with and inhibiting pyroptosis. Conversely, — mitochondria. This process has been shown to activate a key
Sirtl inhibitors or Parkin silencing have been shown to reverse initiator of autophagy, known as UNC-51-like kinase 1 (ULK1),
the expression of NLRP3 inflammasome-associated proteins and  thereby inducing mitochondrial autophagy (Lazarou et al., 2015). In
promote pyroptosis (Guo et al, 2021). Abnormal expression  addition, a significant number of receptors located on the OMM
of the Sirtl/Sirt3 axis has been demonstrated to inhibit the  have the capacity to bind to LC3. These receptors have been
PINK1/Parkin signaling pathway. This results in impaired  shown to circumvent the ubiquitinisation process facilitated by
mitochondrial ubiquitination and disruption to the intracellular ~ the PINKI1/Parkin pathway, thereby enabling direct initiation of
mitochondrial autophagy balance. This results in the death of  mitochondrial autophagy. This process involves the participation
cells due to excessive accumulation of Fe?*. This process leads to  of proteins such as BCL2 interacting protein 3 (BNIP3), NIP3-like
the occurrence of lipid peroxidation and an accumulation of ROS  protein X (NIX), and FUN14 domain containing 1 (FUNDCI1)
(Liao et al., 2023). (Wilhelm et al., 2022) (Figure 4). When Nrf2 mediates the action
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of antioxidant enzymes, BNIP3/NIX-mediated mitochondrial
autophagy exhibits high sensitivity to inhibiting ferroptosis, thereby
restoring intracellular mitochondrial ROS levels and reducing the
occurrence of ferroptosis (Yamashita et al., 2024). Research has
demonstrated that FUNDCI1-mediated mitochondrial autophagy
and pyroptosis are interconnected processes. Activation of FUNDC1
has been demonstrated to promote mitochondrial autophagy
and preserve mitochondrial function by activating the adenosine
5'-monophosphate (AMP)-activated protein kinase (AMPK)-
ULK1 axis (Zhao et al., 2024). This process has been shown to
reduce ROS production, thereby inhibiting NLRP3 inflammasome
recruitment-induced pyroptosis.

3.3 The mitochondrial quality control of
alveolar type Il epithelial cells bridges the
gap between oxidative stress,
inflammation, and fibrosis

In patients suffering from ALI/ARDS, ROS have been shown
to have numerous potential sources, including inflammatory cells
(neutrophils, monocytes, and macrophages) and parenchymal cells
(endothelial cells and epithelial cells, fibroblasts, and muscle
cells) (Liu and Chen, 2017). As demonstrated in seminal studies
undertaken hitherto, it has been established that mitochondria are
the primary contributors to the phenomenon of cellular oxidative
stress (Zhou et al,, 2017; Zhu et al., 2022b). This phenomenon can
be attributed to the heightened sensitivity of mtDNA to oxidants
in comparison to nuclear DNA. The impairment of mtDNA,
consequent to oxidant damage, gives rise to a series of deleterious
consequences, including impaired electron transport chain function
and loss of mitochondrial membrane potential. These phenomena
ultimately result in mitochondrial kinetic defects (Liu and Chen,
2017). Damaged and dysfunctional mitochondria, in turn, produce
greater amounts of ROS, leading to a positive feedback loop that
propagates further oxidant-driven damage (Budinger et al., 2011;
Kellner et al., 2017; Puri and Naura, 2020; Wang M. et al., 2020).
Inflammation and oxidative alveolar damage are hallmarks of
ALI/ARDS and result in damage to epithelial cells and subcellular
components (e.g., nuclear DNA and mitochondria) (Kellner et al.,
2017; Chow et al., 2003). In essence, inflammation plays a pivotal role
in the initial pathogenesis of pulmonary fibrosis (PF). Dysfunction
of AECs and the subsequent inflammatory response have been
shown to be pivotal in initiating the fibrotic process, which
in turn leads to extracellular matrix deposition and lung tissue
remodeling (O'Dwyer et al., 2019). Consequently, the correction of
MQC within AECII serves to address the interconnection between
oxidative stress, inflammation, and fibrosis, a subject that will be
further explored in the subsequent sections.

3.3.1 Oxidative stress

During ALI, an excess of ROS in the mitochondria can result in
ATP deficiency, loss of mtDNA integrity, and cytoplasmic oxidative
burst, ultimately leading to cell death. This finding suggests that
preserving the balance of mitochondrial dynamics is essential for
the proper functioning of lung epithelial cells (Yang et al., 2022;
Shi et al., 2021). The generation of mtROS within cells can occur
in two distinct ways. Firstly, it can be produced as a byproduct

Frontiers in Physiology

13

10.3389/fphys.2025.1684729

of oxidative phosphorylation within the electron transport chain.
Secondly, it can be induced by nearby ROS, thereby serving as
both a source and a target of ROS (Kattoor et al., 2017). Elevated
ROS levels have also been demonstrated to promote mtDNA
oxidation, which in turn leads to an elevated mutation rate in
mtDNA (Kaarniranta et al., 2019). It has been established that
the ultimate consequence of mtDNA dysregulation is metabolic
dysfunction and inflammation (Yuan et al., 2022). The preservation
of mtDNA integrity in AECII has been shown to play a crucial role
in the mitigation of oxidative stress-induced damage in murine lung
epithelial (MLE)-12 cells (Kim et al., 2020).

Mitochondrial dynamics have been demonstrated to be
crucial for the exchange of metabolites and mtDNA. Increased
fragmentation within cells has been demonstrated to inhibit
ATP production, with the concomitant leakage of dysfunctional
mtDNA into the cytoplasm resulting in further increased ROS
and inflammation (Nakada et al., 2009). Further studies have
demonstrated that, in the context of lung injury, ROS can function
as second messengers, engaging with tissue and immune cells
to amplify immune responses and thereby intensify disease
severity (Zhang et al., 2018). A pivotal transcription factor, Nrf2,
modulates the synthesis of antioxidant proteins that eliminate ROS
(Liu Q. et al, 2019). As a transcription activator of antioxidant
response element (ARE) genes, it remains inactive when bound to
Kelch-like ECH-associated protein 1 (KEAP1) in the cytoplasm.
Upon activation, Nrf2 undergoes phosphorylation, subsequently
translocates to the nucleus, and binds to ARE, thereby regulating
the increased expression of antioxidant genes, including superoxide
dismutase (SOD), glutathione peroxidase (GSH-Px), and heme
oxygenase-1 (HO-1) (Zhao et al., 2017; Shaw and Chattopadhyay,
2020). The loss or genetic mutations of Nrf2 have been demonstrated
to result in oxidative stress-induced mitochondrial dysfunction
and metabolic disorders (Ludtmann et al, 2014; Kovac et al.,
2015). Furthermore, substantial evidence suggests a direct
association between Nrf2 and mitochondrial antioxidant defense,
bioenergetic processes, mitochondrial autophagy, and dynamics
(Piantadosi et al., 2008; Mitsuishi et al., 2012; Hayes and Dinkova-
Kostova, 2014; Cho et al., 2019). Research has demonstrated that
cigarette smoke extract (CSE) induces oxidative stress in A549
cells. However, following treatment of cells with leflunomide
(Mfn2 promoter) and BGP15 (OPA1 promoter), as well as Mfn2
overexpression (OE) and OPAl OE, the CSE-induced oxidative
stress was significantly alleviated (Li C. et al., 2023). A substantial
body of fundamental literature has demonstrated that MQC is
closely associated with oxidative stress-induced damage in AECI],
triggered by multiple factors (Tables 1, 2). Key protein molecules and
signaling pathways include: the antioxidant enzyme peroxiredoxin-
2 (PRDX2) (Dong et al, 2023) and peroxisome proliferator-
activated receptor-y (PPAR-y) (Song et al., 2023), which mediate
mitochondrial dynamics; Sirtl (Zhang et al.,, 2021; Guan et al,
2021), and the Parkin/PINK1 pathway (Zhao et al., 2021) have been
demonstrated to mediate mitochondrial autophagy; The AKT and
nuclear factor kappa-B (NF-«xB) pathways (Chen et al., 2022), non-
receptor protein tyrosine phosphatase 21 (PTPN21) (Lian et al,,
2024) has been shown to mediate MQC. Consequently, the
mitigating effects of oxidative stress in AECII, induced by multiple
factors, can be achieved.
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3.3.2 Inflammation

ROS has been identified as a significant contributor to
oxidative stress, and the excessive accumulation of ROS has been
demonstrated to result in cellular damage and cell death (Zeng and
Yan, 2025; Min et al,, 2021). This results in the release of a large
amount of cellular contents into the extracellular matrix, triggering
a strong inflammatory response and promoting a feedback loop
between cellular damage and inflammation, thereby exacerbating
tissue damage (Quan et al, 2024). Specifically, a large number
of immune cells aggregate at the injury site, initiating a series of
inflammatory signal transduction pathways and releasing a large
amount of pro-inflammatory cytokines. Disruption of the barrier
function of alveolar epithelium and vascular endothelium has been
demonstrated to result in an increase in the permeability of the
alveolar capillary membrane. This results in the accumulation
of protein-rich oedematose fluid in the pulmonary interstitial,
which ultimately leads to pulmonary oedema and tissue damage
(Matthay et al., 2019a; Mowery et al., 2020). The key transcription
factor Nrf2 mentioned earlier has also been observed to regulate the
NLRP3 inflammasome, mitogen-activated protein kinase (MAPK),
and NF-«B signaling pathways to prevent inflammation and
oxidative stress (Ng et al., 2014). Research has demonstrated that
exposure to PM2.5 can trigger a cascade of oxidative stress and
inflammatory responses, resulting from the disruption of MQC in
AECIIL. However, following the administration of mitochondrial
division inhibitor-1 (Mdivi-1) (a Drpl inhibitor) or BGP-15 (an
OPAL1 activator) to cells and animals, or following the administration
of Drpl knockdown (KD) and OPA1 OE to cells, has been shown to
effectively mitigate the onset and progression of oxidative stress and
inflammation (Liu et al., 2023). Furthermore, a substantial corpus
of fundamental research literature suggests that oxidative stress
damage and severe inflammatory responses frequently co-occur in
AECII induced by multiple factors and are closely associated with
the MQC process (Tables 1, 2). The key protein molecules and
signaling pathways involved include: It has been demonstrated that
nuclear receptor subfamily 4 group a member 1 (NR4A1) (Zhu etal.,
2022a), AMPK/Nrf2 pathway (Yang et al., 2022), and cytoplasmic
phospholipase A2 (cPLA2)/prostaglandin E2 (PGE2) signaling
pathway (Han et al., 2023) can mediate mitochondrial dynamics.
Transcription factor EB (TFEB) (Liu W. et al., 2019), peroxisome
proliferator-activated receptor gamma (PPARy) coactivator la
(PGC-1a) (Liu et al.,, 2021), nuclear enriched abundant transcript
1 (NEAT1) (Lin Q. et al., 2022), heat shock protein B8 (HSPBS)
(Zhou et al., 2024), PINK1/Parkin pathway (Zhu et al, 2024;
Wang et al, 2024; Meng et al, 2025), TBC domain family
member 15 (TBC1D15) (Han et al., 2025) have been identified
as mediators of mitochondrial autophagy. The AKT and NF-xB
pathways (Chen et al., 2022), Sirt3/SOD 2 pathway (Ning et al.,
2022), histone deacetylase 3 (HDAC3) (Li N. et al., 2023), PPAR-y
(Song et al., 2023), and long non-coding RNA (IncRNA) growth-
arrested DNA damage-inducible gene 7 (gadd7) through the lysine-
specific demethylase 1 (LSD1)/H3K9me3 pathway (Liu et al., 2025)
have been shown to mediate MQC. It is evident that, in view of
the above key signaling molecules and signaling pathways, oxidative
stress damage and intense inflammatory responses induced by
multiple factors can be alleviated by regulating MQC in AECII.
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3.3.3 Fibrosis

Mitochondria have been demonstrated to play a critical role
in the fate of AECII and pulmonary fibrosis (Larson-Casey et al.,
2020). Dysfunctional mitochondria have been shown to produce
excessive ROS, which in turn activate stress pathways that promote
the fibrotic transformation of AECII (Kim et al., 2016; Zhang et al.,
2025). The preservation of mtDNA integrity in AECII has been
demonstrated to play a pivotal role in the mitigation of fibrotic
processes induced by oxidative stress (Kim et al., 2020). The absence
of Mfnl and Mfn2 in mouse AECII has been demonstrated to
result in the onset of disease and pulmonary fibrosis. Furthermore,
the absence of Mfnl and Mfn2 in AECIIL in conjunction with
the inhibition of lipid synthesis via fatty acid synthase deficiency,
has been shown to exacerbate bleomycin (BLM)-induced PF
(Chung et al., 2019). Furthermore, studies have demonstrated
that lipid deficiency can impair progenitor cell renewal capacity
in AECII during the process of aging and idiopathic pulmonary
fibrosis (IPF) (Liang et al., 2024). A further study established that
the expression of fatty acid synthase in AECII serves to alleviate
BLM-induced PF by restoring mitochondrial dysfunction in mice
(Shin et al,, 2023). Thymosin B4 (TP4) has been demonstrated to
possess antioxidant, anti-inflammatory, and anti-fibrotic properties.
A study found that intraperitoneal adeno-associated virus-Tp4
(AAV-TP4) can inhibit oxidative stress and inflammatory responses
by promoting mitochondrial autophagy, ultimately attenuating
transforming growth factor (TGF)-B1-induced EMT in HPAEpiC
(Tian et al., 2022). The use of Mdivi-1 (a Drp1 inhibitor) has been
demonstrated to effectively inhibit paraquat (PQ)-induced oxidative
stress damage and EMT, as well as TLR9/NF-kB (Zhang et al.,
2023). Furthermore, a substantial corpus of foundational literature
research suggests a close relationship between fibrosis in AECII
induced by multiple factors and the MQC process (Tables 1, 2).
The key protein molecules and signaling pathways involved are as
follows: the Ras homolog gene family, member A (RHOA)/yes-
associated protein (YAP) pathway (Zhou et al., 2023), the YAP1-
Peroxiredoxin 3 (Prdx3) axis (Su et al, 2024) can mediate
mitochondrial dynamics; the PINK1-Parkin signaling pathway and
p38 MAPK pathway (Peng et al., 2025) can mediate mitochondrial
autophagy. Consequently, these pathways have the potential to
mitigate fibrosis resulting from oxidative stress and inflammatory
responses triggered by various factors.

3.3.4 How does mitochondrial quality control in
alveolar type Il epithelial cells participate in
regulating oxidative stress, inflammation, and
fibrosis?

An imbalance in MQC results in the excessive production of
ROS, ultimately triggering oxidative stress damage. The increased
presence of cellular reactive oxygen species has been demonstrated
to promote inflammatory responses by activating NF-kB (Zhu et al.,
2024). This is followed by the accumulation of a large number
of immune cells at the site of damage, which initiates a series
of inflammatory signal transduction pathways and results in
the release of a large amount of pro-inflammatory cytokines,
thus resulting in a strong inflammatory response. Duan CY’s
research team conducted a comprehensive analysis of the cellular
landscapes in lung and blood samples from patients with severe
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acute respiratory syndrome caused by the novel coronavirus (SARS-
CoV-2). This analysis revealed that mitochondrial dysfunction in
AECII constitutes a key precipitating factor for cytokine storms and
excessive inflammation (Duan et al.,, 2022). It is the culmination
of oxidative stress and inflammatory responses that ultimately
promote the stress pathways leading to fibrosis in AECII, resulting
in the final outcome of fibrosis. Research has demonstrated that
transplantation therapy using AECII or AECII-derived exosomes
has been proposed as a means to repair damage and prevent
fibrosis (Feng et al., 2023), which is significantly associated with
the restoration of mitochondrial function. Consequently, the
regulation of MQC in AECII can function as a unifying link between
these three processes (Figure 5). Extensive research has now been
conducted which indicates that disruption of MQC in AECII cells
represents a critical target for the development and prognosis
of ALI/ARDS. Consequently, primary research efforts have
centered on therapeutic approaches targeting signaling molecules
or pathways that directly or indirectly regulate MQC (Tables I,
2). Direct regulation principally involves modulating proteins
associated with mitochondrial dynamics (Mfn2, Drpl, OPA1, and
so on) and mitochondrial autophagy-related signaling pathways
(TBC1D15, TFEB, PINK1/Parkin pathway, and so on). The principal
targets of indirect regulation are antioxidant signaling molecules
(Nrf2, PPARy, PRDX2, and so on), anti-inflammatory signaling
molecules/pathways (NR4Al, p38 MAPK pathway, and NF-«xB
pathway, and so on) and anti-fibrosis signaling molecules/pathways
(YAP pathway, and so on). By intervening in MQC through the
aforementioned signaling molecules/pathways, they participate in
the regulatory processes linking oxidative stress, inflammation,
and fibrosis. This also encompasses histone deacetylases (HDACs),
such as Sirtl, Sirt3, and HDAC3, which exert non-canonical
transcriptional regulation independent of deacetylase activity. These
proteins influence multiple processes, including inflammation,
metabolism, cell proliferation, and apoptosis. Extensive research
has been conducted on the underlying molecular mechanisms,
providing robust laboratory evidence that MQC regulation in
AECII serves as a bridge linking oxidative stress, inflammation, and
fibrosis (Figure 5). The subsequent stage entails the identification
of opportunities among these numerous molecular signals to
translate these fundamental experiments into clinical applications.
In particular, further development of pharmaceuticals for the early
stages of ALI/ARDS should be pursued based on the aforementioned
fundamental research. For instance, some researchers have proposed
that the early administration of inhaled P2-adrenergic agonists
(Azevedo Voltarelli et al., 2021) and other cAMP-elevating agents
following alveolar injury may serve as a preventive strategy against
the progression of ARDS (Sriram et al., 2021). Despite the existence
of numerous clinical studies on ALI/ARDS, the precision of target
identification remains significantly inadequate.

4 Targeted therapy for mitochondrial
quality control

Despite considerable advancement in fundamental research
concerning the regulation of MQC in AECII, which is advantageous
for the management of oxidative stress, inflammation, and fibrosis
(Tables 1, 2), there has been no corresponding progress in clinical
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practice. The majority of patients with ALI/ARDS continue to receive
palliative treatment (Pokharel et al., 2024). The present study aims to
assess the current progress in the development of targeted therapies for
ALI/ARDS using MQC. To this end, a summary of relevant clinical
trial reports that have been tested or are currently being tested in
clinical settings has been compiled in Table 3. The research focuses
on glucocorticoid receptor agonists, adrenergic receptor agonists
(including a-2A, a-2B and 32 adrenergic receptors), thyroid hormone
receptor agonists, low-density lipoprotein receptor-related protein 1
agonists, adrenergic receptor antagonists (Bl adrenergic receptors),
aldosterone receptor antagonists, angiotensin II receptor blockers,
hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs),
PPARa agonists, microtubule disruptors, MAPK signaling pathway
modulators, extracellular nicotinamide phosphoribosyltransferase
(eNAMPT) antagonists, and anti-fibrotic drugs. Whilst the results
of these studies are not consistent, there are some positive clinical
outcomes reported. The primary effective studies have centered on
glucocorticoid receptor agonists (NCT00562835, NCT01284452, and
NCT01731795), angiotensin II receptor blockers (NCT04355936),
HIF-PH inhibitors (NCT04478071), and microtubule disruptors
(NCT04842747). The primary studies that were ineffective or
terminated primarily involved angiotensin II receptor blockers
(NCT04312009, NCT04606563) and LDL receptor-related protein
1 agonists (NCT05135624). It is also worthy of note that there
are ongoing clinical trials with results yet to be published,
including a selective peroxisome proliferator-activated receptor alpha
(PPARa) agonist (NCT04661930) and an aldosterone receptor
antagonist (NCT04977960). A significant number of studies are
currently recruiting participants or in the preparatory stages,
with a focus on glucocorticoid receptor agonists (NCT04545242),
thyroid hormone receptor agonists (NCT04115514, NCT04725110),
p2-adrenergic receptor agonists (NCT05527704), a2A-adrenergic
receptor and o2B adrenergic receptor agonists (NCT05241067),
B-1 adrenergic receptor blockers (NCT06013319, NCT05847517),
eNAMPT antagonists (NCT05938036), MAPK signaling pathway
modulators (NCT05795465), and anti-fibrotic drugs (NCT05075161).
The inconsistencies observed in the aforementioned studies,
particularly the rather contradictory findings regarding angiotensin
IT receptor blockers and (2-adrenergic receptor agonists, may be
attributable to a number of factors, including the iterative nature
of drug innovation and the varying degrees of patient condition
specificity. Moreover, the table provides substantiating literature for
the MQC that may be implicated (Azevedo Voltarelli et al., 2021; Choi
and Han, 2021; Sinha etal., 2015; Helfenberger etal., 2019; Huang et al.,
2022; Nakashima et al., 2024; Woods et al., 2016; Chinnarasu et al.,
2021; Kurita et al., 2017; Yuan et al., 2018; Wang et al., 2015; Gui et al.,
2020; Song et al., 2021; Lin et al., 2023; Zhang et al., 2024). The present
paper draws upon the findings of two studies that employed multi-
omics comparative analyses of urine and plasma samples from patients
with ARDS induced by COVD-19 and bacterial sepsis (Batra et al.,
2022; Batra et al., 2023). The results of these studies indicated that
mitochondrial dysfunction plays a significant role in the development
and prognosis of ARDS. In addition, it has been demonstrated
to exhibit close interconnections with cell adhesion/extracellular
matrix molecules and inflammation. This emphasizes the necessity
for effective regulation of MQC in the prevention and treatment
of ALI/ARDS, thus necessitating further investigation. Beyond the
realm of drug development, clinical studies involving inhaled gases
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15, TFEB, transcription factor EB, YAP, yes-associated protein.

Mitochondrial quality control as a bridge linking oxidative stress, inflammation, and fibrosis. The MQC programme, which regulates mitochondrial
quality within cells, has been demonstrated to be intrinsically linked to the development of oxidative stress, inflammation, and fibrosis. The interplay
between oxidative stress and inflammation is a multifaceted process, with these two factors ultimately combining to precipitate the onset of fibrosis.
MQC, itochondrial quality control. Drpl, dynamin-related protein 1, MAPK, mitogen-activated protein kinase, Mfn2, mitofusin 2, NF-kB, nuclear factor
kappa-B, NR4AL nuclear receptor subfamily 4 group a member 1, Nrf2, nuclear factor erythroid 2-related factor 2, OPA1L, optic atrophy 1, PINK1,
PTEN-induced putative kinase 1, PPAR-y, peroxisome proliferator-activated receptor-y, PRDX2, peroxiredoxin-2, TBC1D15, TBC domain family member

(carbon monoxide) (NCT03799874) have demonstrated a reduction
in circulating mitochondrial DNA levels in the inhaled CO treatment
group (Fergie et al., 2019). Mesenchymal stem cells (MSCs) have also
been employed for the treatment of ARDS, with multiple clinical trials
(NCT01902082, NCT01775774, NCT02097641) having validated the
safety of MSC use and demonstrated improvements in ARDS-
related inflammation (Zheng et al., 2014) and respiratory dysfunction
(Matthay etal., 2019b) to a certain extent. Nevertheless, it is imperative
to exercise caution with regard to dosage and cell viability. Research
teams have discovered that mitochondrial dysfunction diminishes
the therapeutic efficacy of MSCs in repairing epithelial wounds
within inflammatory environments (Fergie et al., 2019). The present
studies provide direct evidence that links mitochondrial dysfunction
in AECs to the prognosis of ARDS. Moreover, the regulation of
oxidative stress, inflammation, and fibrosis in ALI/ARDS via the MQC
pathway presents transformative opportunities for the treatment of
sepsis. Emerging evidence highlights the critical role of mitochondrial
dynamics and mitochondrial autophagy in AECII within ALI/ARDS,
suggesting that multi-targeted strategies may be required to disrupt
their synergistic pathophysiology. Furthermore, innovative delivery
methodologies (e.g.,inhalation) could be developed to more accurately
regulate MQC processes within AECIL In order to translate these
insights, it is necessary to incorporate a more mechanistic approach
with the biology of sepsis, in particular by means of systems approaches
such as multi-omics analysis, with a view to characterizing the
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regulation of dynamic MQC pathways in subpopulations of patients.
The potential of biomarkers, such as mtDNA, to facilitate real-time
stratification for the purpose of guiding therapeutic interventions,
is a promising area of research. The implementation of these
techniques would facilitate improved timing of drug administration.
Concurrently, a plethora of signaling molecules/pathway therapies
exerting either direct or indirect influence on the MQC pathway
were investigated, including Mdivi-1 (Drpl inhibitor) (Liu et al,
2023), BGP-15 (OPA1 activator) (Liu et al., 2023), leflunomide (Mfn2
promoter) (LiC. et al.,, 2023), PINK1/Parkin pathway modulators
(Zhu et al., 2024; Wang et al., 2024; Meng et al., 2025), Nrf2 activators
(Qian et al,, 2025), and activation of the PI3K/Akt pathway (Shi et al.,
2019). These agents have exhibited preclinical efficacy. However, these
require optimization through high-throughput screening to establish
favorable safety profiles. The translation of clinical findings into
practice will be contingent on the development of adaptive trial designs
capable ofaligning these bespoke interventions with the evolving sepsis
phenotypes. The utilization of computational modelling may facilitate
the prediction of individual patient responses. Methodological
advances must address critical gaps, including the development of
rapid MQC biomarker assays and standardized preclinical models
that better reflect the heterogeneity of clinical sepsis (Wang and
Liu, 2023). A collaborative framework uniting basic researchers,
clinicians, and trial methodologies is essential to strike the delicate
balance between therapeutic efficacy and host defense preservation,
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TABLE 3 The ARDS Clinical Trials Evaluating Drugs with evidence of mitochondrial quality control.

ClinicalTrials.gov ID

Official title

Drug name

Target/Action

10.3389/fphys.2025.1684729

Possible effect on
mitochondrial
quality control

NCT00434993
(2007-08~2008-11)

Prospective, Randomized,
Multicenter Trial of
Aerosolized Albuterol Versus
Placebo in Acute Lung Injury

Albuterol Sulfate

(2-adrenergic receptor agonist

Azevedo Voltarelli et al. (2021)

NCT00562835
(2008-02~2009-02)

Randomized,
Placebo-Controlled,
Double-Blind Clinical Trial to
Evaluate the Safety and
Efficacy of Low-Dose
Glucocorticoid Infusion in
Acute Respiratory Distress
Syndrome (ARDS)

Methylprednisolone

Glucocorticoid receptor
agonist

Choi and Han (2021)

NCT01284452
(2010-12~2015-03)

Efficacy of Moderate Dose
Hydrocortisone in Treatment
of Severe Sepsis and Septic
Shock Patients With Acute
Lung Injury/Acute Respiratory
Distress Syndrome: A
Randomized Controlled Trial

Hydrocortisone

Glucocorticoid receptor
agonist

Choi and Han (2021)

NCT01731795
(2013-03-28~2019-02-12)

A Comparative, Randomised
Controlled Trial for Evaluating
the Efficacy of Dexamethasone
in the Treatment of Patients
With Acute Respiratory
Distress Syndrome

Dexamethasone

Glucocorticoid receptor
agonist

Choi and Han (2021)

NCT04115514
(2019-10-21~2025-10-31)

PHASE II RANDOMIZED,
INTERVENTION VERSUS
NON- INTERVENTION,
MULTI- CENTER STUDY OF
THE EFFECTS OF THYROID
HORMONE (T3) ON
SAFETY/TOLERABILITY
AND OXYGENATION IN
SUBJECTS WITH ACUTE
RESPIRATORY DISTRESS
SYNDROME (ARDS)

Liothyronine Sodium

Thyroid hormone receptors
agonist

Sinha et al. (2015)

NCT04312009
(2020-04-13~2021-02-01)

Randomized Controlled Trial
of Losartan for Patients With
COVID-19 Requiring
Hospitalization

Losartan

Angiotensin II receptor
blocker

Helfenberger et al. (2019)

NCT04355936
(2020-05-19~2020-11-30)

Telmisartan for Treatment of
COVID-19 Patients: an Open
Label Randomized Trial

Telmisartan

Angiotensin II receptor
blocker

Helfenberger et al. (2019)

NCT04478071
(2020-08-22~2022-03-25)

Vadadustat for the Prevention
and Treatment of Acute
Respiratory Distress Syndrome
(ARDS) in Hospitalized
Patients With Coronavirus
Disease 2019 (COVID-19)

Vadadustat

HIF-PHs inhibitor

Huang et al. (2022)

NCT04606563
(2020-10-09~2022-04-22)

Host Response Mediators in
Coronavirus (COVID-19)
Infection - Is There a
Protective Effect of Losartan
and Other ARBs on Outcomes
of Coronavirus Infection?

Losartan, Valsartan,
Azilsartan, Candesartan,
Eprosartan, Irbesartan,
Olmesartan, Telmisartan

Angiotensin II receptor
blockers

Helfenberger et al. (2019)
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TABLE 3 (Continued) The ARDS Clinical Trials Evaluating Drugs with evidence of mitochondrial quality control.

ClinicalTrials.gov ID

Official title

Drug name

Target/Action

10.3389/fphys.2025.1684729

Possible effect on
mitochondrial quality
control

NCT04661930
(2021-01-01~2022-07-01)

A Study of a 10-days Fenofibrate
Treatment, or Until Discharge
From Hospital, Among
COVID-19 Infected Patients
Requiring Hospitalization

Fenofibrate

Selective PPARa agonist

Nakashima et al. (2024)

NCT04842747
(2021-05-18~2022-07-06)

Phase 3, Randomized,
Placebo-Controlled, Efficacy and
Safety Study of VERU-111 for
the Treatment of Severe Acute
Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) in
Patients at High Risk for Acute
Respiratory Distress Syndrome
(ARDS)

VERU-111, Sabizabulin

Microtubule disruptor

Woods et al. (2016)

NCT04545242
(2021-07-06~2026-12-30)

Efficacy of Higher vs. Lower
Doses of Dexamethasone in
Patients With Acute Hypoxemic
Respiratory Failure (Including
ARDS) Caused by Infections
(Including COVID-19)

Dexamethasone

Glucocorticoid receptor agonist

Choi and Han (2021)

NCT05135624
(2021-12-01~2023-06-30)

SP16 as a Therapeutic for
SARS-CoV-2 Induced ARDS.

SP16

LDL receptor related protein 1
agonists

Chinnarasu et al. (2021)

NCT05527704
(2021-12-31~2026-09-30)

a Multicentre, Double-blind,
Randomized, Placebo-controlled
Phase III Trial of the Inhaled
(2-adrenergic Receptor Agonist
Salbutamol for Transient
Tachypnoea of the Newborn (the
REFSAL Trial)

Salbutamol

B2-adrenergic receptor agonist

Azevedo Voltarelli et al. (2021)

NCT05075161
(2022-06-01~2025-12)

Pirfenidone to Prevent Fibrosis
in ARDS. A Randomized
Controlled Trial - PIONEER.

Pirfenidone

Anti-fibrotic drug

Kurita et al. (2017)

NCT04977960
(2022-09~2023-12)

MINECRAFT Study:
MINEralcorticoid Receptor
Antagonism With CanRenone
As eFfective Treatment in
Moderate to Severe ARDS in
COVID-19, a Phase 2 Clinical
Trial

Potassium Canrenoate

Aldosterone receptor antagonist

Yuan et al. (2018)

(2023-04-04~2025-12)

Evaluate the Safety and
Tolerability of GEn-1124 in
Subjects with Acute Respiratory
Distress Syndrome (ARDS)

NCT06013319 Effects of Esmolol on Esmolol Beta-1 adrenergic receptor Wang et al. (2015)
(2023-02-20~2026-10-30) Oxygenation Index by blocker

Controlling Heart Rate in

Patients With Acute Respiratory

Distress Syndrome
NCT05795465 A Phase 2, Two-Part Study to GEn-1124 MAPKAPK2 modulators (MAP Gui et al. (2020)

kinase-activated protein kinase 2
modulators). p38a modulators
(P38 a mitogen-activated
protein kinase modulators)
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TABLE 3 (Continued) The ARDS Clinical Trials Evaluating Drugs with evidence of mitochondrial quality control.

ClinicalTrials.gov ID Official title

Drug name

Possible effect on
mitochondrial quality
control

Target/Action

NCT05938036
(2023-12-01~2025-08-31)

PUERTA: A P2A Multi-center,
Randomized, Double-blind,
Placebo-controlled Study
Assessing Safety and Efficacy of
the eNAMPT Targeting mAb
ALT-100 in Moderate/Severe
ARDS/VILI Patients

ALT-100

eNAMPT antagonist Song et al. (2021)

NCT05847517
(2024-08-13~2027-12)

Randomised, Double-blind,
Placebo-controlled Clinical Trial
to Evaluate the to Assess the
Efficacy of Intravenous Metoprolol
in Patients With Acute Respiratory
Distress Syndrome (ARDS)

Metoprolol

Beta-1 adrenergic receptor blocker | Wang et al. (2015)

NCT05241067
(2025-08-31~2025-12-31)

A Multicentric Randomized,
Double-blind, Placebo-controlled
Study to Assess the Safety and
Efficacy of Centhaquine as an
Adjuvant to the Standard of Care
in COVID-19 Patients With
Moderate to Severe Acute
Respiratory Distress Syndrome

Centhaquine

alpha-2A-adrenergic receptor and
Alpha-2B adrenergic receptor
agonist

Lin et al. (2023), Zhang et al.
(2024)

NCT04725110
(2026-01-15~2031-10-15)

Phase II Trial of Direct Topical T3
Lung T3 Treatment to Improve
Outcome and Sequelae of
COVID-19 ARDS - A Multi-Site,
Randomized, Double-blinded,

Placebo-Controlled Clinical Trial

Thyroid hormone receptors
agonist

Sinha et al. (2015)

ultimately linking mechanism discovery to viable clinical strategies
for this complex syndrome.

5 Conclusion

The present study focuses on the crucial role of MQC
regulation in AECII in mediating oxidative stress, inflammation, and
subsequent fibrosis in ALI/ARDS. However, based on the current
state of research, it is possible to influence the regulation of MQC
in AECII by modulating key signaling molecules (e.g., Nrf2, Sirtl,
etc.) and key signaling pathways (e.g., NF-kB, PINK1-Parkin, and
MAPK pathways, etc.), thereby exerting corresponding antioxidant,
anti-inflammatory, and anti-fibrotic effects. In addition, favorable
clinical trial results provide further substantiation for the efficacy
of the treatment. This is an attractive clinical target. However, due
to an incomplete understanding of the cellular processes involved
in regulating MQC during disease progression, the development
of its therapeutic potential is currently limited. Current clinical
trials also exert an indirect influence on the regulation of MQC
through the mediation of related signaling molecules and signaling
pathways, and do not specifically target the regulation of MQC
processes in AECII, highlighting the enormous potential of this
direction. This highlights the immense potential of this research
direction. Advances in medicine, alongside further basic biological
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research and the development of new drugs, have rendered MQC
in AECII a promising candidate for the prevention and treatment
of ALI/ARDS.
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Glossary

AAV-Tp4
AECI
AECIT
AECs
ALI
AMs
AMP
AMPK
ARDS
ARE
ATP
BACs
BALF
BLM
BNIP3
Ca?*

CL
cPLA2
CSE
Cx43
DAMPs
Drpl
EMT
eNAMPT
Fisl
FUNDC1
gadd7
GM-CSF
GSH-Px
GTPases
HDACs
HDAC3
HO-1
HSPBS8
IL

IMM
IPF

KD
KEAP1
LC3
IncRNA

L-OPA1

adeno-associated virus-Tp4

alveolar type I epithelial cells
alveolar type II epithelial cells
alveolar epithelial cells

acute lung injury

alveolar macrophages

adenosine 5'-monophosphate
AMP-activated protein kinase

acute respiratory distress syndrome
antioxidant response element
adenosine triphosphate
bronchoalveolar cells
bronchoalveolar lavage fluid
bleomycin

BCL2 interacting protein 3

calcium ions

lipid cardiolipin

cytoplasmic phospholipase A2
cigarette smoke extract

connexin 43

damage-associated molecular patterns
dynamin-related protein 1
epithelial-mesenchymal transition
extracellular nicotinamide phosphoribosyltransferase
fission 1

FUN14 domain containing 1
growth-arrested DNA damage-inducible gene 7
granulocyte-macrophage colony-stimulating factor
glutathione peroxidase

guanosine triphosphate hydrolases
histone deacetylases

histone deacetylase 3

heme oxygenase-1

heat shock protein B8

interleukin

inner mitochondrial membranes
idiopathic pulmonary fibrosis
knockdown

Kelch-like ECH-associated protein 1
light chain 3

long non-coding RNA

long OPA1
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LSD1
MAPK
Mdivi-1
MERCs
Mff
Mfnl
MiD49
MiD51
MLE
MSCs
mtDNA
mtROS
MyD88
NDP52
NEAT1
NF-kB
NIX
NLRP3
NR4A1
Nrf2
OE
OMM
OPA1
OPTN
OXPHOS
PD-L
PF
PGE2
PINK1
PQ
Prdx3
PGC-1a
PPAR-y
PRDX2
PTPN21
RHOA
ROS
Sirt
SOD
S-OPA1
Stat2
TR4
TBC1D15

TFEB

10.3389/fphys.2025.1684729

lysine-specific demethylase 1
mitogen-activated protein kinase
mitochondrial division inhibitor-1
mitochondria-endoplasmic reticulum contact sites
mitochondrial fission factor

mitofusin 1

mitochondrial dynamics proteins of 49 kDa
mitochondrial dynamics proteins of 51 kDa
murine lung epithelial

mesenchymal stem cells

mitochondrial DNA

mitochondrial reactive oxygen species
myeloid differentiation primary response protein 83
nuclear dot protein 52

nuclear enriched abundant transcript 1
nuclear factor kappa-B

NIP3-like protein X

NOD-like receptor protein 3

nuclear receptor subfamily 4 group a member 1
nuclear factor erythroid 2-related factor 2
overexpression

outer mitochondrial membranes

optic atrophy 1

optic nerve phosphodiesterase

oxidative phosphorylation

programmed death-ligand

pulmonary fibrosis

prostaglandin E2

PTEN-induced putative kinase 1

paraquat

Peroxiredoxin 3

PPARycoactivator la

peroxisome proliferator-activated receptor-y
peroxiredoxin-2

non-receptor protein tyrosine phosphatase 21
ras homolog gene family

reactive oxygen species, member A

Sirtuins

superoxide dismutase

short OPA1

signal transducers and activators of transcription 2
Thymosin p4

TBC domain family member 15

transcription factor EB
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TFF2
TGF
TLRs
TOM
ULK1

YAP

trefoil factor 2

transforming growth factor

Toll-like receptors

translocase of the outer mitochondrial membrane
UNC-51-like kinase 1

yes-associated protein
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