

OPEN ACCESS

EDITED AND REVIEWED BY Analia S. Loria, University Press of Kentucky, United States

*CORRESPONDENCE
Geraldine M. Dowling,

☑ geraldine.dowling@atu.ie

RECEIVED 15 August 2025 ACCEPTED 01 September 2025 PUBLISHED 10 September 2025

CITATION

Dowling GM and Aliani M (2025) Editorial: Emerging applications of targeted and non-targeted metabolomics to physiology and pathophysiology. *Front. Physiol.* 16:1686757. doi: 10.3389/fphys.2025.1686757

COPYRIGHT

© 2025 Dowling and Aliani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Emerging applications of targeted and non-targeted metabolomics to physiology and pathophysiology

Geraldine M. Dowling 1,2,3,4* and Michel Aliani 5,6

¹Department of Life Sciences, School of Science, Atlantic Technological University, Sligo, Ireland, ²Cameron Forensic Medical Sciences, William Harvey Research Institutes, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, ³Department of Analytical, Environmental and Forensic Sciences, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom, ⁴Faculty of Exact Sciences-Toxicology, National University of La Plata, La Plata, Argentina, ⁵Department of Food and Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Winnipeg, MB, Canada, ⁶The Division of Neurodegenerative Disorders, St. Boniface Hospital Research Centre, Winnipeq, MB, Canada

KEYWORDS

metabolomics, medicine, physiology, pathophysiology, disease

Editorial on the Research Topic

Emerging applications of targeted and non-targeted metabolomics to physiology and pathophysiology

In the ever-changing landscape of biomedical research, metabolomics stands at the forefront of discovery as an "omics" science that captures the dynamic chemical fingerprint of life. By enabling the high-throughput identification and quantification of small molecules (<1500 Da), metabolomics provides a powerful window into the complicated interplay between genetics, environment and physiology. From endogenous compounds like amino acids and lipids to exogenous pollutants and pharmaceuticals, the metabolome reflects both health and disease and leads to generation of new hypotheses.

This Research Topic provide recent contributions to this field which underscores its transformative impact on medicine, physiology and disease modelling.

Zhang et al. explored metabolic disruptions in a rat model of visual fatigue linked to traditional Chinese medicine syndromes, revealing altered sphingolipid pathways. Passadore et al. highlighted amino acid signatures in obese children, linking urinary metabolite patterns to early indicators of insulin resistance and metabolic risk. These findings stress metabolomics' potential in early diagnosis and personalized interventions.

The utility of metabolomics expands into mechanistic insights. Zhang et al. offered a comprehensive review of lipid droplet-mitochondria interactions, critical in metabolic syndrome and pointed to pharmacological targets that may reshape future obesity treatment. Kenéz et al. connected diet-induced ceramide accumulation to insulin resistance in cattle, an elegant model that reflects similar processes in human metabolic disease, providing a bridge between veterinary science and human health.

In the realm of exercise physiology, Ou et al. and Zhou et al. examined how ischemic preconditioning and enteric-coated bicarbonate impact metabolomic profiles without

Dowling and Aliani 10.3389/fphys.2025.1686757

altering performance, revealing that even interventions with no visible performance boost can profoundly shift underlying biochemistry. Landman et al. showed that simple handgrip exercises and remote ischemic preconditioning reduce key inflammatory markers in cerebral small vessel disease, emphasizing how metabolomics can unravel subtle but clinically significant responses to lifestyle interventions.

On the diagnostic Frontier, Wang et al. demonstrated that serum metabolomics can differentiate renal cell carcinoma from benign tumors with exceptional accuracy. Lin et al. provided insights into high-altitude pulmonary edema by identifying arterial and venous metabolite shifts, paving the way for biomarker discovery in acute physiological stress.

Perhaps most compelling is the emerging picture of how parental genetics even without direct gene transmission, shape offspring metabolism. Zhang et al. showed that maternal and paternal eNOS deficiency leads to distinct phenotypes and metabolomic profiles in offspring, suggesting epigenetic and metabolic inheritance as powerful forces shaping health across generations.

As these studies highlight, metabolomics is more than a research tool, it is a language of life, capturing the nuance of disease progression, therapy response, and physiological adaptation. With mass spectrometry and NMR technologies pushing the boundaries of detection and data integration with genomics and proteomics becoming more refined, the metabolome stands as a critical pillar in systems medicine.

Author contributions

GD: Conceptualization, Resources, Writing – original draft, Writing – review and editing. MA: Writing – original draft, Writing – review and editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.