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Anesthetics have long been recognized as essential pharmacological agents for 
surgical procedures, primarily valued for their ability to induce unconsciousness 
and provide analgesia. However, emerging research over the past 3 decades 
has revealed an additional and potentially transformative property of certain 
anesthetics: their ability to protect the heart against ischemic injury. 
This comprehensive review examines the cardioprotective effects of both 
intravenous and volatile anesthetics, with particular focus on propofol, 
ketamine, isoflurane, and sevoflurane. We analyze the molecular mechanisms 
underlying their protective actions, including modulation of mitochondrial 
function, reduction of oxidative stress, and regulation of key survival pathways 
such as PI3K/Akt/GSK3βand p53 signaling. The review evaluates preclinical 
evidence from cellular and animal models, as well as clinical studies 
investigating anesthetic-mediated cardioprotection in cardiac surgery patients. 
Special attention is given to the phenomenon of anesthetic preconditioning 
and postconditioning, their comparative efficacy, and the challenges in 
translating these protective strategies into clinical practice. We also discuss 
emerging concepts such as the role of microRNAs in mediating anesthetic-
induced protection and the potential cardioprotective benefits of anesthetic 
combinations. Finally, we identify critical gaps in current knowledge and 
propose future research directions that may enhance the clinical application of 
anesthetic-mediated cardioprotection.
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 1 Introduction

The recognition that anesthetic agents may confer cardioprotective benefits has 
fundamentally transformed our perspective on these pharmacological compounds 
(Lotz and Kehl, 2015). While anesthetics have been employed clinically since the 
mid-19th century, their capacity to actively safeguard the heart against ischemic 
injury has only emerged as a focus of rigorous scientific investigation in recent
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decades. This paradigm shift has created new opportunities to 
enhance outcomes in cardiac surgery and acute coronary syndrome 
management (Hendrix and Kramer, 2025).

The understanding of anesthetic-mediated cardioprotection 
stems from groundbreaking research on ischemic preconditioning, 
where scientists first demonstrated the heart’s remarkable ability 
to develop resistance to prolonged ischemia following brief 
ischemic episodes (Murry et al., 1986). This fundamental discovery 
unveiled the myocardium’s innate protective mechanisms and their 
potential for pharmacological stimulation. Further investigations 
revealed that specific anesthetic compounds could mimic these 
protective effects without requiring actual ischemic events, 
transforming our approach to both cardiovascular research and 
clinical anesthesia (Zhu et al., 2017; Shirakawa et al., 2014; 
Kobayashi et al., 2008; Ko et al., 1997a). Despite significant 
advances in medical technology, ischemia-reperfusion injury 
continues to pose major clinical challenges, particularly in 
cardiac surgery and acute coronary care settings (Xiang et al., 
2024). The persistent occurrence of myocardial damage during 
procedures involving cardiopulmonary bypass remains a critical 
factor affecting postoperative recovery (Algoet et al., 2023). This 
ongoing clinical challenge highlights the importance of exploring 
anesthetic agents as potential therapeutic tools to reduce ischemia-
reperfusion injury, offering a practical approach to improving 
patient outcomes using well-established medications (Kato and 
Foex, 2002).

This review offers a systematic examination of anesthetic-
induced cardioprotection with three principal aims: first, to 
delineate the molecular mechanisms underlying the protective 
effects of various anesthetic agents; second, to assess the comparative 
efficacy of different anesthetics in both experimental and clinical 
settings; and third, to analyze the translational challenges and 
opportunities for optimizing patient outcomes. Our analysis 
focuses on propofol, ketamine, and volatile anesthetics (isoflurane, 
sevoflurane), which represent the most extensively studied agents in 
cardioprotection research. Building upon previous comprehensive 
evaluations (De Hert et al., 2005; Pagel and Crystal, 2018), 
this review provides an updated, comprehensive synthesis that 
significantly advances previous analyses. We integrate contemporary 
preclinical findings from cellular and animal models with robust 
clinical evidence, while addressing critical translational gaps 
identified in earlier reviews (Lin et al., 2021; Van Allen et al., 
2012; Chiari and Fellahi, 2024; Tamura et al., 2025). Specifically, 
we examine patient-specific considerations (e.g., diabetes, aging) 
and propose practical strategies for clinical implementation. By 
emphasizing emerging biomarkers, combination therapies, and 
individualized application, this synthesis not only updates but 
significantly expands the current understanding of anesthetic-
mediated cardioprotection.

The potential clinical impact of anesthetic cardioprotection 
is substantial. Successful translation of these effects could 
improve outcomes in cardiac surgery, enhance management 
of acute coronary syndromes, and potentially inform novel 
approaches to heart failure prevention. Furthermore, elucidation 
of these protective mechanisms may guide development of new 
pharmacological agents that provide cardioprotection independent 
of anesthetic effects, potentially benefiting non-surgical patients at 
risk of ischemic heart disease. 

2 Mechanisms of anesthetic-induced 
cardioprotection

2.1 Propofol

Propofol (2,6-diisopropylphenol) has emerged as one 
of the most clinically important intravenous anesthetics, 
with accumulating evidence demonstrating its remarkable 
cardioprotective properties (Figure 1) (H et al., 2021). Beyond its 
well-established anesthetic effects, extensive preclinical and clinical 
investigations have revealed that propofol exerts its protective 
influence through multiple, intricately interconnected molecular 
pathways, making it a particularly fascinating subject for ongoing 
cardiovascular research (Zhao et al., 2015).

The cardioprotective mechanisms of propofol are primarily 
mediated through activation of the PI3K/Akt/GSK3β signaling 
pathway, a crucial survival pathway in cardiomyocytes. Detailed 
mechanistic studies have shown that propofol significantly 
upregulates Caveolin-3 (Cav-3), an essential membrane 
scaffolding protein that plays pivotal roles in cardiomyocyte 
function, signal transduction, and survival. These investigations 
demonstrated that propofol exerts a protective effect by 
specifically inhibiting proteasomal degradation of Cav-3 
during the critical phases of ischemia-reperfusion injury. This 
preservation of Cav-3 leads to markedly enhanced activation of 
the PI3K/Akt/GSK3β pathway (Zhu et al., 2017). The resulting 
signaling cascade initiates a powerful anti-apoptotic program that 
promotes cell survival under conditions of ischemic stress, while 
simultaneously inhibiting key mediators of cell death pathways.

Recent advances in our understanding of propofol’s 
cardioprotective effects have revealed another significant 
mechanism involving its regulation of iron homeostasis in 
cardiomyocytes (Zhang et al., 2019). Given that iron dysregulation 
and subsequent iron-catalyzed oxidative damage have been 
strongly implicated in the pathogenesis of ischemia-reperfusion 
injury (Sun et al., 2024; Pan et al., 2022), these findings take 
on particular clinical relevance. Cutting-edge research has 
demonstrated that propofol effectively inhibits pathological iron 
deposition in both H9c2 cardiomyoblast cells and in vivo mouse 
myocardium through sophisticated modulation of the AKT/p53 
signaling pathway (Li et al., 2022). This iron-regulating effect 
appears to be especially important for reducing the burst of 
reactive oxygen species (ROS) generation that typically occurs 
during the reperfusion phase, thereby substantially limiting 
oxidative damage to critical cellular components including lipids, 
proteins, and DNA.

Further expanding our understanding of propofol’s multifaceted 
protective effects, studies have identified its significant influence 
on FoxO transcription factors, which serve as master regulators 
of cellular responses to oxidative stress. Comprehensive research 
has shown that propofol post-conditioning dramatically improves 
outcomes following hypoxia/reoxygenation-induced injury 
by reducing apoptosis and modulating autophagy in cardiac 
cells through upregulation of forkhead transcription factors 
(H et al., 2021; Zhang et al., 2022). This represents an additional, 
independent layer of cardioprotection that complements rather 
than merely duplicates the benefits mediated through the 
PI3K/Akt pathway.
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FIGURE 1
Molecular mechanisms of anesthetic-mediated cardioprotection.

The intrinsic antioxidant properties of propofol deserve 
particular emphasis in any discussion of its cardioprotective 
mechanisms. The drug’s unique chemical structure, featuring 
a phenolic hydroxyl group, confers exceptional free radical 
scavenging capabilities that make it particularly effective at 
mitigating oxidative stress during the critical reperfusion 
period (Marik, 2005). This direct antioxidant activity synergizes 
with its effects on cellular signaling pathways to create a 
comprehensive, multifaceted protective profile that addresses 
multiple aspects of ischemia-reperfusion injury (Hausburg et al., 
2020). Rigorous experimental studies have consistently shown 
that propofol treatment reduces markers of lipid peroxidation, 
helps preserve mitochondrial membrane potential integrity, and 
maintains optimal cellular glutathione levels during ischemia-
reperfusion scenarios (Ranjbar et al., 2014; Yoo et al., 1999; 
Xia et al., 2004; Shao et al., 2008).

Perhaps most intriguingly, clinical and experimental 
observations have revealed that propofol’s cardioprotective effects 
follow a clear dose-response relationship (Shao et al., 2008; 
Vanlersber et al., 2008). While moderate, clinically relevant doses 
provide significant protection against ischemia-reperfusion injury, 
very high concentrations may paradoxically produce negative 

inotropic effects and impair cardiac function, particularly in 
immature or developing hearts. This biphasic dose-response curve, 
first systematically characterized in preclinical models, carries 
important implications for optimizing dosing strategies across 
different patient populations and clinical scenarios (Shirakawa et al., 
2014). The recognition of this dose-dependent effect has prompted 
more nuanced approaches to propofol administration in cardiac 
patients and those at risk of perioperative ischemia. 

2.2 Ketamine

Ketamine has emerged as a uniquely versatile intravenous 
anesthetic with multifaceted cardioprotective properties that 
distinguish it from other agents in its class (Figure 1) (Trimmel et al., 
2018; Molojavyi et al., 2001; Hirota and Lambert, 2011; 
Zanos et al., 2018; Hudetz and Pagel, 2010). While it shares certain 
protective pathways with propofol, particularly in modulating 
cellular survival signals (Cope et al., 1997), ketamine’s distinct 
pharmacological profile - combining NMDA receptor antagonism 
with sympathomimetic and anti-inflammatory effects - confers 
specific clinical advantages that may be particularly valuable in 
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high-risk cardiac scenarios (Ko et al., 1997b; Han et al., 2002). 
Beyond its direct cardioprotective roles, these properties also 
align with evolving perioperative strategies aimed at modulating 
surgical stress responses and reducing systemic inflammation 
through multimodal analgesic approaches (Zanos et al., 2018; 
Zhang et al., 2024; Jian et al., 2018).

The drug’s cardioprotective mechanisms operate through an 
integrated network of pathways that address multiple aspects 
of ischemic and inflammatory myocardial injury. A particularly 
noteworthy mechanism involves ketamine’s modulation of cAMP 
signaling, which serves as a crucial second messenger system in 
cardiomyocytes (Peña and Wolska, 2005). Detailed cellular studies 
have demonstrated that ketamine not only enhances basal cAMP 
levels in cardiac cells but also effectively counteracts the pathological 
suppression of cAMP induced by pro-inflammatory cytokines like 
TNF-α and IL-1β (Hill et al., 1998). This dual action helps maintain 
critical intracellular signaling during the inflammatory storms that 
frequently accompany cardiac surgery and ischemia-reperfusion 
injury, potentially preserving myocardial contractility and metabolic 
function when they are most compromised.

Ketamine’s robust anti-inflammatory properties constitute 
another major component of its cardioprotective arsenal (Natoli, 
2021; Ibrahim et al., 2017). The drug exerts a multimodal 
immunomodulatory effect, simultaneously suppressing the 
production of damaging pro-inflammatory cytokines (including 
TNF-α, IL-6, and IL-1β) while enhancing the release of protective 
anti-inflammatory mediators like IL-10. These effects are achieved 
through several complementary mechanisms: direct inhibition of 
the NF-κB signaling pathway (a master regulator of inflammatory 
gene expression), modulation of the NLRP3 inflammasome 
complex, and potential effects on toll-like receptor signaling 
(Bi et al., 2024; Santos et al., 2025). Such comprehensive anti-
inflammatory activity may be especially beneficial in clinical 
conditions where systemic inflammation directly contributes to 
myocardial dysfunction, such as in sepsis-induced cardiomyopathy, 
post-cardiac arrest syndrome, or the systemic inflammatory 
response following cardiopulmonary bypass (Zhang et al., 2021).

The NMDA receptor antagonism that forms the basis of 
ketamine’s anesthetic and analgesic properties also contributes 
meaningfully to its cardioprotective profile (Tyagi et al., 2009). 
During ischemic episodes, excessive glutamate release leads to 
sustained activation of myocardial NMDA receptors (particularly 
those containing GluN2B subunits), resulting in pathological 
calcium influx and subsequent activation of cell death pathways 
(Abbaszadeh et al., 2018). Ketamine’s potent blockade of these 
receptors helps break this vicious cycle, reducing calcium-
mediated injury during both the ischemic and reperfusion phases 
(Lisek et al., 2020; Iacobucci and Popescu, 2024). Interestingly, 
this mechanism may complement the drug’s other protective 
effects, as NMDA receptor overactivation has been linked to both 
inflammatory signaling and oxidative stress in cardiomyocytes.

Ketamine’s effects on myocardial contractility present a 
fascinating paradox that underscores the context-dependent nature 
of its actions (Kunst et al., 1999). While the drug can produce mild 
negative inotropic effects in healthy myocardium (likely through L-
type calcium channel modulation), numerous clinical observations 
suggest it may actually better preserve ventricular function in 
failing or stressed hearts compared to alternative anesthetics 

(Hanouz et al., 2004; Sprung et al., 1998). This apparent paradox may 
reflect ketamine’s unique ability to maintain sympathetic tone while 
simultaneously providing cellular protection against ischemia and 
inflammation - a combination particularly suited to compromised 
myocardium.

The convergence of these diverse mechanisms - spanning 
metabolic regulation, inflammatory control, receptor modulation, 
and functional preservation - establishes ketamine as an 
exceptionally versatile cardioprotective agent. Its multifaceted action 
profile makes it particularly valuable in complex clinical scenarios 
where myocardial ischemia coexists with systemic inflammation, 
autonomic instability, or pre-existing cardiac dysfunction. Looking 
forward, important research priorities include the development 
of optimized dosing protocols for specific high-risk populations 
(such as patients with septic cardiomyopathy or advanced heart 
failure), investigation of potential synergistic effects when combined 
with other cardioprotective strategies (including remote ischemic 
preconditioning or targeted temperature management), and 
exploration of its role in emerging applications like donor heart 
preservation for transplantation. 

2.3 Volatile anesthetics

Volatile anesthetics, including isoflurane, sevoflurane, and 
desflurane, have been extensively documented to exert significant 
cardioprotective effects across both preclinical and clinical 
investigations (Van Allen et al., 2012; Tanaka et al., 2004; Pratt et al., 
2006; Suda and Uka, 2022). These pharmacological agents mimic the 
protective mechanisms of ischemic preconditioning while offering 
the distinct advantage of being pharmacologically inducible without 
necessitating actual ischemic events (Hara, 2006; Riess et al., 2004). 
The cardioprotective properties of volatile anesthetics are mediated 
through multifaceted interactions involving diverse cellular targets 
(Figure 1) (Agarwal et al., 2014a; Kikuchi et al., 2015; Zhang T. et al., 
2025), with their effects being particularly pronounced when 
administered during the preconditioning phase.

Isoflurane demonstrates comprehensive cardioprotection 
through several synergistic mechanisms: substantial reduction 
of oxidative stress, preservation of mitochondrial structural and 
functional integrity, and optimization of intracellular calcium 
homeostasis (An et al., 2007; Agarwal et al., 2014b; Liu and Liu, 2018; 
Lang et al., 2013). Experimental evidence has demonstrated that 
isoflurane pretreatment significantly attenuates cardiac oxidative 
damage following ischemia-reperfusion injury, as quantified 
by reductions in established biomarkers of lipid peroxidation 
and protein oxidation (Li et al., 2012). This antioxidant effect 
is mediated through both direct free radical scavenging and 
upregulation of endogenous antioxidant defense systems. The 
understanding of isoflurane’s cardioprotective mechanisms has 
been substantially advanced by recent discoveries in molecular 
cardiology. Research has revealed that isoflurane exerts its protective 
effects not only through immediate pharmacological actions but also 
by inducing lasting epigenetic modifications. Studies examining 
cardiac cells exposed to hypoxia/reoxygenation injury demonstrate 
that isoflurane pretreatment significantly alters microRNA-
363-3p expression patterns (Ge et al., 2022). This microRNA 
modulation initiates a comprehensive cellular defense program 
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that simultaneously regulates apoptotic pathways through Bcl-2 
family proteins, enhances antioxidant defenses via Nrf2 pathway 
activation, and strengthens pro-survival signaling through Akt and 
ERK pathway modulation. These findings fundamentally expand 
our comprehension of volatile anesthetic-mediated protection 
by demonstrating its capacity to establish persistent epigenetic 
changes that confer myocardial resilience. The sustained alteration 
of microRNA expression profiles provides a molecular basis for the 
long-lasting cardioprotective effects observed following isoflurane 
exposure, extending well beyond the acute perioperative period.

Sevoflurane has emerged as a clinically promising 
cardioprotective agent, exerting its effects through multiple 
synergistic mechanisms. The anesthetic enhances myocardial 
ischemic tolerance primarily by activating protein kinase C 
(PKC) and mitochondrial ATP-sensitive potassium (KATP) 
channels, thereby preserving mitochondrial function during 
ischemia-reperfusion injury (Hara et al., 2001; Jiang et al., 2016; 
Bouwman et al., 2007; de Ruijter et al., 2003; Bouwman et al., 2006). 
During ischemic conditioning procedures, sevoflurane exposure 
induces significant molecular changes in cardiomyocytes, including 
upregulation of cardioprotective microRNAs and cytokines, 
while simultaneously suppressing mediators of cellular damage 
(Guerrero-Orriach et al., 2024). Additionally, sevoflurane exerts 
cardioprotective effects against hypoxia/reoxygenation-induced 
myocardial injury by downregulating lncRNA LINC00265, which 
functions as a molecular sponge to inhibit miR-370-3p, thereby 
reducing apoptosis, and inflammatory cytokine release (IL-6, 
TNF-α) (Shao et al., 2025). Notably, sevoflurane preconditioning 
activates the PI3K/AKT/GSK3β pathway to upregulate Syntaxin1a, 
significantly reducing myocardial apoptosis in murine ischemia-
reperfusion models (Liu et al., 2025). These multi-targeted actions - 
encompassing ion channel modulation, kinase signaling activation, 
and epigenetic regulation - collectively contribute to sevoflurane’s 
superior clinical performance in cardiac protection, particularly in 
surgical preconditioning protocols and potential applications for 
acute coronary syndromes.

These molecular effects translate to measurable clinical benefits, 
as demonstrated in randomized trials showing sevoflurane’s 
superiority over propofol in patients undergoing cardiopulmonary 
bypass. Specifically, sevoflurane-treated patients exhibit reduced 
postoperative troponin release and improved ventricular functional 
recovery (Marcos-Vidal et al., 2014; Likhvantsev et al., 2016). Its 
rapid onset/offset pharmacokinetics make it especially suitable 
for preconditioning protocols (Beukers et al., 2025). Desflurane, 
while less studied, shows comparable cardioprotective potential 
(Qin and Zhou, 2023; Ozarslan et al., 2012). Its low blood solubility 
allows precise titration, and evidence suggests it may be particularly 
effective when administered during early reperfusion. However, its 
strong sympathetic activation effects require careful hemodynamic 
management (Landoni et al., 2007).

Volatile anesthetics also appear to influence myocardial 
metabolism in ways that may enhance ischemic tolerance 
(van den Brom et al., 2013; Stowe and Kevin, 2004). Several studies 
have reported that these agents promote a shift toward more efficient 
energy utilization during ischemia, potentially by modulating 
substrate selection and improving mitochondrial coupling. These 
metabolic effects may complement the direct protective actions 
on signaling pathways and ion channels (Stowe and Kevin, 2004; 

Yamanaka and Hayashi, 2009; Zhang et al., 2023). Beyond their 
metabolic effects, volatile anesthetics modulate ion transporter 
activity, notably that of the K+-Cl- cotransporter 2 (KCC2). While 
KCC2 has traditionally been studied for its role in maintaining 
neuronal chloride homeostasis and facilitating emergence from 
anesthesia (Hu et al., 2023; Song and Hu, 2024), emerging evidence 
also supports its functional significance in the heart (Modi et al., 
2023). It is thus hypothesized that during ischemia-reperfusion 
injury, volatile anesthetics may influence cardiac KCC2 activity, 
thereby potentially contributing to the regulation of cell volume 
and ionic balance. Importantly, the cardioprotective benefits 
of volatile anesthetics may be significantly enhanced through 
synergistic combination with lung-protective ventilation strategies. 
By employing lower tidal volumes, optimal PEEP, and careful 
avoidance of hyperoxia, anesthesiologists can reduce ventilator-
induced lung injury and the subsequent inflammatory cross-talk 
between the lung and heart, thereby creating a more favorable 
environment for the myocardial protective effects of volatile 
agents to manifest (Zou et al., 2024; Ferrando et al., 2015). 
Clinical implementation continues to evolve, with current evidence 
supporting volatile use throughout cardiac procedures rather than 
limited to preconditioning phases (Bonanni et al., 2020). Ongoing 
research explores optimal combinations with other protective 
strategies and applications in non-cardiac surgeries for high-risk 
patients (Zhang et al., 2023; Park et al., 2020). 

3 Comparative cardioprotective 
efficacy of anesthetic agents

3.1 Intravenous vs. volatile anesthetics

The comparative cardioprotective efficacy between intravenous 
and volatile anesthetic agents has been extensively studied in both 
laboratory and clinical settings, with a primary focus on patients 
undergoing cardiac surgery (Bonanni et al., 2020; Bein et al., 2005). 
A key clinical trial evaluating propofol-based total intravenous 
anesthesia versus sevoflurane anesthesia in coronary artery bypass 
graft (CABG) procedures demonstrated better cardioprotection 
with the volatile anesthetic, as indicated by improved cardiac 
functional parameters and lower troponin release (De Hert et al., 
2002). Subsequent comprehensive reviews and pooled analyses 
have largely supported these initial findings, showing a consistent, 
albeit modest, cardioprotective benefit favoring volatile agents 
in cardiac surgical contexts. However, a more detailed analysis 
reveals several important considerations. Propofol appears to be 
particularly effective when used as a postconditioning intervention 
rather than as the primary maintenance anesthetic (He et al., 
2008; Liu et al., 2021). Growing evidence indicates that combining 
propofol with volatile anesthetics may produce enhanced protective 
effects, although the ideal dosing protocols for such combined 
approaches need further clarification (Schumacher et al., 2009; 
Diz et al., 2010; Wolf et al., 2021). These findings highlight the critical 
need for selecting anesthetic techniques based on specific clinical 
circumstances to optimize myocardial protection during cardiac 
procedures.

The differential effects likely stem from distinct molecular 
mechanisms: volatile anesthetics primarily act through 
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preconditioning pathways involving mitochondrial KATP channels 
and protein kinase C activation, while propofol’s benefits are more 
related to its antioxidant properties and direct effects on cellular 
survival pathways. This mechanistic diversity suggests potential 
advantages for either approach depending on the specific clinical 
scenario and patient characteristics. 

3.2 Age and comorbidity considerations

The effectiveness of anesthetic-mediated cardioprotection 
demonstrates significant variability across different patient 
populations, with age and comorbid conditions emerging as key 
determinants of therapeutic response (van den Brom et al., 2013; 
Ruiz-Meana et al., 2020; Domene et al., 2025). Developmental stage 
represents a particularly important consideration, as evidenced 
by research demonstrating heightened vulnerability of immature 
myocardium to potential adverse effects at elevated propofol 
concentrations (Shirakawa et al., 2014). This age-dependent 
sensitivity may reflect differences in drug metabolism, receptor 
expression patterns, or cellular stress responses during cardiac 
development.

Advanced age similarly influences anesthetic cardioprotection, 
with experimental studies showing attenuated protective effects 
in senescent animal models for both volatile anesthetics and 
propofol (Ruiz-Meana et al., 2020; Suleiman et al., 2015; Sniecinski 
and Liu, 2004). The underlying mechanisms likely involve age-
associated alterations in cellular signaling cascades, mitochondrial 
bioenergetics, and redox homeostasis that collectively impair 
preconditioning responses. These findings have important 
implications for geriatric patients undergoing cardiac procedures. 
Diabetes mellitus constitutes another critical modifier of anesthetic 
cardioprotective efficacy (Liu and Xia, 2012; Drenger et al., 
2011; Canfield et al., 2016). The pathological hyperglycemic 
milieu appears to disrupt multiple protective signaling pathways, 
including those mediated by adenosine receptors and protein 
kinase C isoforms. Clinical observations parallel preclinical 
findings, demonstrating reduced cardioprotection in diabetic 
patients that may necessitate modified anesthetic strategies 
(Amour et al., 2010; Canfield et al., 2012). Potential approaches 
include tighter perioperative glycemic control or the use of 
adjunctive agents to restore protective signaling.

These collective findings emphasize the necessity of 
developing personalized anesthetic regimens that carefully 
consider multiple patient-specific factors including developmental 
stage and chronological age, the presence and severity of 
metabolic comorbidities (particularly renal and hepatic function), 
baseline myocardial function, and the anticipated surgical 
stress and ischemic burden (Zhu et al., 2024; Abraham et al., 
2023; Zhu et al., 2023). Current research in this area would 
benefit from incorporating large-scale human genetic and 
epidemiological insights to better understand patient heterogeneity 
and refine personalized approaches (Chen et al., 2025; 
Zhu SQ. et al., 2025; Yurkovich et al., 2024). Such comprehensive 
patient profiling enables clinicians to optimize cardioprotection 
while minimizing potential adverse effects, particularly in 
vulnerable populations where standard anesthetic approaches may 
prove less effective. The integration of these considerations into 

clinical decision-making represents an important step toward 
precision medicine in perioperative cardioprotection, requiring 
careful evaluation of how age-related physiological changes, 
comorbid conditions, and procedural factors interact to influence 
anesthetic efficacy. Future research should focus on developing 
validated clinical algorithms that systematically incorporate these 
multidimensional patient characteristics to guide anesthetic 
selection and dosing in cardiac surgery populations. 

4 Clinical applications and challenges

4.1 Cardiac surgery applications

The most compelling clinical application of anesthetic 
cardioprotection lies in cardiac surgery, where ischemia-reperfusion 
injury remains an unavoidable consequence of cardiopulmonary 
bypass and aortic cross-clamping (Torregroza et al., 2020; 
Landoni et al., 2019). A substantial body of evidence now 
demonstrates that anesthetic selection can significantly impact key 
postoperative outcomes, including ventricular function recovery, 
incidence of arrhythmias, and magnitude of cardiac enzyme 
release (Uhlig et al., 2016). Volatile anesthetics, particularly 
sevoflurane and desflurane, have emerged as preferred agents 
in many cardiac centers, with numerous studies demonstrating 
their superiority over propofol-based total intravenous anesthesia 
in preserving myocardial function following coronary artery 
bypass grafting (CABG) (De Hert et al., 2002; Zangrillo et al., 
2015; Zhang Y. et al., 2025). Meta-analyses of randomized 
controlled trials consistently show approximately 20%–30% 
reductions in troponin release with volatile-based regimens, 
along with improved early postoperative ejection fraction and 
reduced inotropic requirements (Yu and Beattie, 2006; Li and 
Yuan, 2015). The protective effects appear most pronounced in 
isolated CABG procedures, where ischemic times are typically 
shorter, though benefits have also been documented in more 
complex valve surgeries requiring longer cardioplegic arrest 
(Zangrillo et al., 2022; Piriou et al., 2000). Mechanistically, these 
clinical observations align with laboratory findings demonstrating 
volatile anesthetics’ ability to preserve mitochondrial function, 
reduce oxidative stress, and attenuate calcium overload during 
reperfusion (De Hert et al., 2008). However, the implementation 
of volatile-based cardiac anesthesia requires careful consideration 
of several practical factors, including the need for specialized 
vaporizers in the bypass circuit and potential interactions with 
cardioplegia solutions (Landoni et al., 2013). Furthermore, 
the optimal dosing strategy - whether to administer volatiles 
throughout surgery or concentrate exposure during specific 
preconditioning or postconditioning phases - remains an active 
area of investigation (Meybohm et al., 2015). Interestingly, beyond 
direct pharmacological conditioning, emerging evidence suggests 
that regional analgesic techniques such as novel fascial plane 
blocks (e.g., erector spinae plane or parasternal blocks) may also 
contribute to systemic anti-inflammatory and cardioprotective 
effects by modulating neuroimmune pathways and reducing 
surgical stress responses (Bagnol et al., 2024; Sandeep et al., 
2022). This multimodal approach—combining volatile anesthetics 
with regional techniques—may offer complementary benefits for 

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1688142
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Fu et al. 10.3389/fphys.2025.1688142

cardioprotection. Recent studies suggest that combining volatile 
anesthetics with remote ischemic preconditioning may provide 
additive protective benefits (Chen et al., 2022), while others 
have explored the potential of pharmacologic postconditioning 
with volatile agents during the critical reperfusion period 
(Lurati Buse et al., 2012). The ongoing debate about the clinical 
significance of these protective effects continues to drive research 
into optimal anesthetic protocols for various cardiac surgical 
populations (Yu, 2011). 

4.2 Expanding applications in non-cardiac 
surgery

While the cardioprotective effects of anesthetics are most 
extensively studied in cardiac surgery, emerging evidence suggests 
potential applications in high-risk non-cardiac procedures 
(Van Allen et al., 2012; Landoni et al., 2009a). Vascular surgery 
patients, who frequently have significant underlying coronary 
disease, may represent a particularly promising population for 
anesthetic-mediated protection (Bas et al., 2012). Preliminary 
studies indicate that volatile anesthetic use during major vascular 
procedures may reduce postoperative cardiac complications by 
15%–25%, though these findings require confirmation in larger, 
multicenter trials (Landoni et al., 2009a). The physiological 
rationale for this protection stems from the frequent hemodynamic 
fluctuations and potential ischemic episodes during vascular 
surgery, creating conditions where anesthetic preconditioning 
could theoretically attenuate myocardial stunning (Harris, 2022; 
Chen et al., 2018). Other surgical populations that might benefit 
include patients undergoing major orthopedic procedures (who 
often have cardiovascular comorbidities) (Kvarda et al., 2022) and 
those receiving solid organ transplants (where ischemia-reperfusion 
injury affects both the graft and potentially the heart) (Eltzschig 
and Eckle, 2011; Jahn et al., 2022). However, several unique 
challenges arise when considering anesthetic cardioprotection 
outside cardiac surgery (Landoni et al., 2009b; Hovaguimian et al., 
2014). First, the duration and magnitude of ischemic insults are 
typically less predictable than in controlled cardiac procedures, 
making optimal timing of protective strategies more difficult 
(Kalogeris et al., 2012; Zaugg et al., 2014). Second, the balance 
between potential cardiac benefits and other considerations (such 
as effects on cerebral or renal perfusion) becomes more complex 
in heterogeneous non-cardiac surgeries (Stoppe et al., 2017; 
Petersen et al., 2018). Third, practical constraints like operating 
room workflow and equipment availability may limit volatile 
anesthetic use in some non-cardiac settings (Habte et al., 2024). 
Despite these challenges, the high incidence of perioperative 
cardiac events in vulnerable populations continues to drive 
interest in expanding anesthetic cardioprotection strategies 
beyond traditional cardiac surgery applications (Landoni et al., 
2009b; Wong and Irwin, 2016). Future research should focus on 
identifying which non-cardiac surgical patients stand to benefit 
most (Hong et al., 2019), developing protocols that integrate 
seamlessly with diverse surgical workflows (Schild et al., 2019), 
and determining whether brief exposure to protective anesthetics 
(rather than maintenance throughout surgery) might suffice for risk 
reduction (Yoo et al., 2024; Orriach et al., 2020). 

4.3 Translational challenges

Despite compelling preclinical evidence demonstrating the 
cardioprotective potential of various anesthetics (Li et al., 2024), 
translating these findings into consistent clinical benefits has proven 
challenging (Figure 2) (Lin et al., 2021; Pagel, 2009). One major 
obstacle is the significant variability in patient responses to protective 
strategies, influenced by factors such as age, genetic background, and 
comorbidities like diabetes or heart failure (Kikuchi et al., 2015). For 
instance, studies suggest that the efficacy of anesthetic preconditioning 
may be attenuated in elderly or diabetic patients due to age-related 
mitochondrial dysfunction or metabolic disturbances that impair 
protective signaling pathways (Mio et al., 2008). Another critical 
challenge lies in determining the optimal dosing and timing protocols 
for anesthetic-induced cardioprotection (Frässdorf et al., 2009). While 
animal studies often use standardized ischemia-reperfusion models 
(Alemany et al., 2023), clinical scenarios present complex variables 
including differing surgical durations (Glance et al., 2018), varying 
ischemic insults (Sandroni et al., 2021), and heterogeneous patient 
physiologies (See, 2023) that complicate protocol standardization 
(Kahol et al., 2011; Zho et al., 2016). Additionally, the interactions 
between anesthetic agents and other perioperative medications—such 
as beta-blockers, statins, or vasopressors—may either potentiate 
or interfere with cardioprotective mechanisms (Riess, 2009), 
adding another layer of complexity to clinical application. Perhaps 
most fundamentally, the multifactorial nature of perioperative 
myocardial injury means that anesthetic strategies alone cannot 
address all potential contributors to cardiac damage (Priebe, 2005), 
including surgical trauma, systemic inflammation, and hemodynamic 
instability (Chiari and Fellahi, 2024). These translational gaps highlight 
the need for more sophisticated clinical research approaches that 
account for real-world variability while maintaining scientific rigor. 

5 Future directions

To overcome current limitations and fully realize the clinical 
potential of anesthetic-mediated cardioprotection, several key research 
directions should be prioritized. First, there is an urgent need 
to develop validated biomarkers—using genomic, proteomic, or 
metabolomic profiling—that can identify patients most likely to 
benefit from specific anesthetic strategies. Integrating these biomarkers 
with emerging perioperative precision monitoring platforms, such 
as continuous hemodynamic and metabolic tracking, would 
enable dynamic, physiology-guided personalization of anesthetic 
regimens tailored to individual patient characteristics and real-time 
surgical demands. Second, investigating rational combinations of 
anesthetics—such as pairing volatile agents with propofol or adjuncts 
like dexmedetomidine—may yield synergistic effects that maximize 
protection while minimizing adverse outcomes; this approach should 
be systematically evaluated in both preclinical models and clinical 
trials. Third, exploring non-anesthetic drugs that target the same 
protective pathways (e.g., PI3K/Akt activators or mPTP inhibitors) 
could lead to novel cardioprotective therapies applicable to non-
surgical settings like acute coronary syndromes. Finally, large-
scale, multicenter clinical trials employing standardized outcome 
measures are essential to establish evidence-based protocols for 
different patient populations and surgical contexts. These trials 
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FIGURE 2
Challenges in translating anesthetic-induced cardioprotection from bench to bedside.

should incorporate advanced monitoring techniques to assess 
cardioprotection in real-time and employ long-term follow-up to 
evaluate lasting clinical benefits. Importantly, as recent advances 
highlight the need to integrate organ protection with patient-centered 
recovery outcomes, future studies should simultaneously evaluate 
both cardioprotective efficacy and functional recovery metrics—as 
demonstrated in non-cardiac settings where anesthetic selection 
directly influences quality of recovery—to comprehensively optimize 
perioperative care (Zhu S. et al., 2025). By addressing these priorities, 
future research can bridge the gap between promising laboratory 
findings and meaningful improvements in patient care. 

6 Conclusion

The cardioprotective effects of anesthetics represent an exciting 
convergence of anesthesiology and cardiovascular science. While 
challenges remain in translating these effects into consistent clinical 
benefits, the accumulated evidence strongly supports the concept 
that anesthetic choice can meaningfully influence cardiac outcomes. 
As our understanding of the underlying mechanisms continues to 
grow, so too will our ability to harness these effects for patient 
benefit.
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