

#### **OPEN ACCESS**

EDITED BY

David Cristóbal Andrade,

University of Antofagasta, Chile

**REVIEWED BY** 

Pedro Paulo Scariot, Sao Francisco University, Brazil Yan Yan, The Chinese PLA General Hospital, China

\*CORRESPONDENCE

RECEIVED 21 August 2025 ACCEPTED 07 October 2025 PUBLISHED 21 October 2025

#### CITATION

Li L, Fan T, Luo Z, Zhu P and Zhang L (2025) Intelligent monitoring and individualized strategies for preventing altitude sickness during altitude training. *Front. Physiol.* 16:1690121. doi: 10.3389/fphys.2025.1690121

#### COPYRIGHT

© 2025 Li, Fan, Luo, Zhu and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

# Intelligent monitoring and individualized strategies for preventing altitude sickness during altitude training

Longji Li<sup>1</sup>, Tianfei Fan<sup>2</sup>, Zhijie Luo<sup>1</sup>, Peixin Zhu<sup>1</sup> and Lifeng Zhang<sup>1</sup>\*

<sup>1</sup>Strength and Conditioning Center, School of Physical Education, Chengdu Sport University, Chengdu, China, <sup>2</sup>Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China

Altitude training is a special training method that uses a hypoxic environment to improve athletic performance. Its scientificity and safety have always attracted much attention. The hypoxic environment at high altitudes causes physiological responses, such as decreased blood oxygen saturation, increased oxidative stress, and changes in vascular permeability. By establishing a multilevel physiological indicator monitoring system, including basic indicator monitoring, special function assessment, and new technology application, the training effect can be effectively evaluated, and the training safety can be guaranteed. In terms of training optimization, the application of individualized programs based on genetic testing and intelligent monitoring systems has significantly improved the scientificity of training. Among them, the stepby-step adaptation method combined with hypoxic pre-training reduce the incidence of acute mountain sickness by 75%, and the individualized program reduce the difference in training effects by 40%. However, altitude training still faces controversial issues such as the ethics of drug intervention and the effect of simulated training. Future research should focus on the geneenvironment interaction mechanism, develop new monitoring technologies, and establish a multidisciplinary collaboration system. This review focuses on the physiological mechanisms, monitoring methods, optimization strategies, limitations and future development directions of altitude training in preventing altitude sickness. This provides an important basis for the scientific practice of altitude training. By continuously optimizing the training system, altitude training will become a safe and effective method to improve athletic performance and prevent altitude sickness.

KEYWORDS

altitude sickness, altitude training, hypoxic adaptation, intelligent monitoring, personalized intervention

#### 1 Introduction

Altitude training is a scientific method that uses hypoxic environments to stimulate physiological adaptation in the body, aiming to enhance athletic performance (Chang et al., 2023). Historically, altitude training can be traced back to the 1968 Mexico City Olympic Games, where athletes first recognized the potential advantages of hypoxic

exposure (Suchý and Waic, 2017). In the 1970s, the early concept of "climb high and sleep low" emerged from mountaineering and highaltitude expeditions, reflecting attempts to optimize the balance between hypoxic adaptation and training intensity (Burtscher and Koch, 2016). With the progress of molecular biology and exercise medicine in recent decades, the mechanisms underlying altitudeinduced adaptations have been gradually elucidated, providing a stronger scientific rationale for its use. The key mechanism lies in the body's compensatory physiological responses under highaltitude hypoxia (typically at elevations ≥2000 m), which improve oxygen transport and utilization efficiency, thereby boosting aerobic metabolism (Furian et al., 2022). Athletes engaging in altitude training experienced an approximate 6%–7% increase in maximum oxygen uptake (VO2max) and a 5% increase in hemoglobin levels (Chen et al., 2023). The hypoxic environment stimulates the kidneys to secrete erythropoietin (EPO), which promotes bone marrow hematopoiesis, increases red blood cell count and hemoglobin concentration, and improves the blood's oxygen-carrying capacity (Wiśniewska et al., 2020). Long-term altitude training induces angiogenesis in skeletal muscle, thereby increasing capillary density and facilitating oxygen diffusion and utilization (Lemieux and Birot, 2021). These vascular changes are accompanied by enhanced mitochondrial density and oxidative enzyme activity, which improve aerobic metabolism, delay lactate accumulation, and ultimately contribute to greater endurance performance (Fentaw et al., 2025). In addition, altitude training helps optimize athletic performance. After acclimatizing at high altitude, athletes often return to lower elevations with increased red blood cells and improved oxygen efficiency, leading to better aerobic endurance during competitions (Chen et al., 2023). Intermittent hypoxic training (IHT) involves alternating periods of hypoxic and normoxic exposure. IHT is particularly important for endurance sports such as long-distance running, cycling, and cross-country skiing. It is an effective method to increase VO2 max and lactate threshold, and also improves highintensity performance (Huang et al., 2023; Park et al., 2018a; Nakamoto et al., 2016).

Altitude training comes with potential risks, particularly altitude sickness (Gatterer et al., 2024). The risk of developing altitude sickness is influenced by various factors, including individual differences (such as genetics, age, and underlying health conditions), the physiological effects of hypoxia, rate of ascent, and the altitude reached. Altitude sickness mainly includes acute mountain sickness (AMS), high-altitude pulmonary edema (HAPE), and highaltitude cerebral edema (HACE) (Gatterer et al., 2024). AMS is the most common form, affecting approximately 25%-43% of individuals ascending to 2,500-4,300 m and over 60% of those ascending to 6,000 m or higher. It is characterized by symptoms such as headache, nausea, insomnia, and fatigue, which can significantly impair training quality. Symptoms typically appear within 24 h but may develop as early as 6 h or as late as the third day (Zhao et al., 2024). HAPE presents with symptoms like shortness of breath, coughing, and lung crackles. Its incidence is roughly 0.6%-6% at 4,500 m and 2%-15% at 5,500 m. HACE is more severe and may lead to altered consciousness, ataxia, or even coma. It is rarer, with an incidence of about 0.5%-1% at altitudes of 4,000-5,000 m. Both HAPE and HACE can be life-threatening (Berendsen et al., 2022). Under high-altitude hypoxic conditions, reduced blood oxygen saturation, increased oxidative stress, and altered vascular permeability can trigger a series of pathological responses. Therefore, the central challenge of altitude training lies in how to maximize the physiological benefits of hypoxic adaptation while minimizing the risk of altitude sickness.

In order to effectively prevent mountain sickness, scientific adaptive strategies should be adopted for altitude training. Staged Ascent is a common method that gradually improves the body's tolerance to low oxygen environments by ascending the altitude in stages and following the principle of "climb high and sleep low" (d Almeida, 2023; Burtscher and Tannheimer, 2024). For example, at an altitude of more than 2,500 m, it takes 1-2 days to adapt for every 600 m of elevation. Hypoxic preconditioning is also an effective means (Burtscher M. et al., 2022). Athletes can perform intermittent hypoxic exposure in a simulated hypoxic environment to activate the physiological adaptation mechanism in advance (Behrend et al., 2022). In addition, nutrition and drug intervention play an important role in preventing mountain sickness. Maintaining adequate water and electrolyte balance helps avoid dehydration, while a high-carbohydrate diet can provide rapid energy support (Cao et al., 2025). In terms of drugs, acetazolamide (Diamox) and other drugs relieve the symptoms of mountain sickness by regulating acid-base balance, but they must be used reasonably under the guidance of a doctor (Isakovich et al., 2024). The arrangement of plateau training needs to be optimized according to individual differences. Personalized training plans should be combined with the athlete's VO<sub>2</sub>max and blood oxygen response to customize the training intensity and duration (Wackerhage and Schoenfeld, 2021). Realtime monitoring is the key to preventing mountain sickness. Through indicators such as blood oxygen saturation (SpO<sub>2</sub>), heart rate variability (HRV), and acute mountain sickness score, abnormalities can be detected in time and the training plan can be adjusted (Koehle et al., 2010). Emergency treatment measures are equally important. Once severe mountain sickness symptoms such as HAPE or HACE appear, it is necessary to immediately descend to a lower altitude area and use a portable hyperbaric oxygen chamber (Gamow Bag) for temporary treatment when necessary (LAWRENCE, 2022).

Although significant progress has been made in the scientific strategies of altitude training, some controversies still exist. For example, there are ethical issues regarding drug interventions, such as the potential health risks of EPO abuse. In addition, the comparison of the effects of altitude training and simulated hypoxia training still requires more research support. Future research directions include the use of genetic markers to predict susceptibility to altitude sickness and the development of smart wearable devices for real-time physiological monitoring. This article focuses on summarizing the scientific strategies for preventing altitude sickness during altitude training, including the pathophysiological mechanisms of altitude sickness, the stepwise adaptation method, hypoxic pre-adaptation technology, nutritional and drug intervention measures, and the principles for the formulation of personalized training programs, providing athletes and coaches with systematic guidance on altitude training safety.

## 2 Pathophysiology of altitude sickness

The impact of high-altitude environments on human physiological function is a complex cascade involving interactions among multiple systems. As altitude increases, the atmospheric oxygen pressure decreases exponentially, leading to hypoxia. This hypoxic condition initiates compensatory and decompensatory responses. A thorough understanding of these mechanisms is essential for the prevention and treatment of altitude sickness.

## 2.1 Physiological effects of hypoxic environments

The hypoxic environment at high altitudes exerts systemic and multi-level effects on the body. Although the fraction of oxygen in air remains approximately 21% at all altitudes, the atmospheric pressure—and therefore the partial pressure of oxygen—decreases exponentially as altitude rises. At an elevation of 3,000 m, the atmospheric oxygen pressure is only about 70% of that at sea level (Ye et al., 2023). This reduction in oxygen partial pressure limits the ability of blood to become fully oxygenated, leading to a significant decrease in arterial oxygen saturation, which may drop below 85%, and can fall below 75% at altitudes above 4,000 m.

Hypoxic conditions cause physiological compensatory mechanisms. The body senses hypoxia via chemoreceptors in the carotid and aortic bodies, stimulating increased ventilation and initiating a "hypoxic ventilatory response" (Bardsley et al., 2023). However, this compensation may lead to respiratory alkalosis, which paradoxically suppresses the ventilatory response, creating a compensatory contradiction (Burtscher J. et al., 2022). Additionally, the cardiovascular system compensates by increasing cardiac output—up to 1.5 to 2 times the sea-level baseline—to maintain tissue oxygenation (Rosales et al., 2022). Nevertheless, these acute compensatory mechanisms are often insufficient to fully counteract hypoxia. At the cellular and molecular level, hypoxia induces excessive production of reactive oxygen species (ROS). When their accumulation exceeds the clearance capacity of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx), oxidative stress ensues (Gaur et al., 2021). This stress condition impairs cellular membrane integrity, disrupts mitochondrial function, and activates inflammatory responses. Studies have shown that in patients with acute mountain sickness, oxidative stress markers such as malondialdehyde (MDA) and ROS are significantly elevated, while antioxidant markers such as SOD and GPx are markedly reduced (Debevec et al., 2020; Irarrázaval et al., 2017; Gong et al., 2018; Sharma et al., 2021). Moreover, hypoxia upregulates the expression of hypoxia-inducible factors (HIFs), thereby promoting the secretion of vascular endothelial growth factor (VEGF) (Jin et al., 2019). Although VEGF facilitates angiogenesis, it also increases vascular permeability, creating conditions conducive to tissue edema. These changes in vascular permeability are particularly evident in the lungs and brain, forming the pathological basis of high-altitude pulmonary edema and cerebral edema.

## 2.2 Classification and symptoms of altitude sickness

Based on clinical manifestations pathological and characteristics, altitude sickness is mainly divided into three categories, including acute mountain sickness (AMS), high-altitude pulmonary edema (HAPE), and high-altitude cerebral edema (HACE), with different severity and prognosis (Savioli et al., 2022). AMS is the most common and mildest type, and the incidence rate increases significantly with increasing altitude. The incidence rate is about 25% at an altitude of 2000-3,000 m, up to 40%-50% at 3,000-4,000 m, and up to more than 60% at more than 4,000 m(Berger et al., 2023). Its typical symptoms include persistent headache (incidence rate of more than 90%), nausea and vomiting (40%-50%), loss of appetite and insomnia. These symptoms usually appear 6-12 h after reaching high altitude and reach a peak in 24-48 h (Berger et al., 2023). It is worth noting that headache is a necessary condition for the diagnosis of AMS. AMS cannot be diagnosed without headache. HAPE is a more serious type, with an incidence rate of about 0.5%-2%, but it can reach 10% in people who quickly ascend to more than 4,500 m (Xu et al., 2021). Its pathological feature is non-cardiogenic pulmonary edema caused by increased pulmonary vascular permeability (Hanaoka et al., 2024). Clinical manifestations include progressively worsening dyspnea (initially only occurs during activity, and later also exists at rest), dry cough (pink foamy sputum may be coughed up in the later stage) and cyanosis. Moist rales can be heard by auscultation, and chest X-ray shows patchy infiltration shadows. If not treated in time, it can rapidly deteriorate within 12-24 h and even lead to death. HACE is the most critical type, with an incidence of about 0.5%-1%, but a mortality rate of up to 40% (Zelmanovich et al., 2022). It is a severe progressive form of AMS, and its pathological features are vasogenic edema caused by increased cerebral blood flow and damage to the blood-brain barrier (Zelmanovich et al., 2022; Li et al., 2025). Clinical manifestations include impaired consciousness (from drowsiness to coma), ataxia (positive straight walking test) and psychiatric symptoms (Li et al., 2023). It is worth noting that HACE patients may also have HAPE, which has a worse prognosis.

#### 2.3 Risk factors

The occurrence of mountain sickness is affected by many factors. Understanding these risk factors helps to take targeted preventive measures. In terms of individual differences, genetic factors play an important role. Recent studies have found that polymorphisms of HIF pathway-related genes (such as EPAS1 and EGLN1) are closely related to susceptibility to mountain sickness (Yang et al., 2021). Underlying diseases such as chronic cardiopulmonary disease, anemia and sleep apnea will significantly increase the risk of disease (Geng et al., 2025; Chatterjee and Gupta, 2023). Ascent speed and altitude are the most critical environmental factors. Studies have shown that when the daily ascent speed exceeds 300 m, the incidence of AMS increases significantly. In terms of altitude, 2,500 m is an important threshold (Simancas-Racines et al., 2018). After exceeding this height, the incidence rate increases exponentially with increasing altitude.

In addition, factors such as cold (increase oxygen consumption), dehydration (increase hemoconcentration), and strenuous exercise (increase oxygen debt) will also synergistically increase the risk of disease (Vartika et al., 2022). It is worth noting that a history of altitude sickness is the strongest predictor. The risk of recurrence in people with a history of HAPE is 5–10 times that of the general population (Gatterer et al., 2024). Therefore, more stringent preventive measures and monitoring programs must be taken for high-risk groups.

# 3 Adaptive strategies for altitude training

As an important means to improve sports performance and adaptability, the scientificity and systematicity of altitude training are directly related to the training effect and safety. With the in-depth research on sports medicine and hypoxia physiology, the adaptive strategies for altitude training have formed a complete theoretical system and practical programs. These strategies are not only applicable to professional athletes, but also have important guiding significance for the plateau adaptation of the general population. According to existing research and practical experience, the adaptive strategies for altitude training mainly include three aspects: step-by-step adaptation, hypoxia pre-adaptation, and nutrition and drug intervention.

#### 3.1 Step-by-step acclimatization method

The step-by-step acclimatization method is a systematic training method developed based on the physiological adaptation patterns of the body to a low-oxygen environment. This method emphasizes the gradual process of altitude adaptation, and achieves safe and effective adaptation through the principle of "climb high and sleep low" (d Almeida, 2023). In specific implementation, differentiated adaptation plans need to be formulated according to different altitude intervals. The currently recognized altitude step training guidelines emphasize the principle of gradual progress. First of all, a gradual ascent should be adopted as much as possible to avoid rapid ascent to areas with an altitude of ≥3,000 m. When the altitude exceeds 3,000 m, the daily ascent height should be controlled within 300-500 m, and an additional day of acclimatization time is required for every 1,000 m of ascent. In addition, before climbing to higher altitudes (such as above 4,000 m), it is recommended to stay in a medium altitude area of 1,500-2,500 m for 4-6 days to ensure that the body is fully adapted to the low-oxygen environment (Richalet JP. et al., 2021). This scientific strategy effectively reduces the risk of acute altitude sickness and improve plateau adaptability.

This phased adaptation training avoids the acute stress response caused by sudden exposure to severe hypoxic environment, and the gradual rise is conducive to the body to gradually establish an effective compensatory mechanism. Research data show that the incidence of AMS can be controlled between 12%–15% for trainees who adopt the standard step-by-step adaptation program, while that of those who are not adapted is as high as 58%–62% (Berger et al., 2020). During the adaptation process, the body

will undergo a series of characteristic physiological changes. Blood oxygen saturation drops rapidly to 80%–85% within the initial 24–48 h, and then gradually recovers to more than 90% through ventilation compensation within 3–5 days (Waldner et al., 2025). Hemoglobin concentration shows a biphasic change, with a short-term increase due to blood concentration in the early stage, and then a real increase of 10%–15% within 2 weeks under the action of EPO(18). Mitochondrial function is temporarily inhibited within 1 week, and the density increases by 20%–30% after 4 weeks, and the oxidase activity is significantly improved (Mohanty and Ahmad, 2025). These adaptive changes together constitute the body's physiological reserve for hypoxic environment.

While the "climb high and sleep low" method is widely used for safe acclimatization, alternative strategies such as "live high, train low" (LHTL) have also been studied to optimize training intensity while maintaining altitude-induced adaptations. This model involves living at moderate to high altitudes (1,250–3,000 m) while performing high-intensity training at lower altitudes (0–1,200 m) to maximize low-oxygen adaptation without compromising training quality. Recent studies support its benefits for endurance athletes. For example, Bonato et al. reported improvements in  $\rm VO_2max$ , time-trial performance, and peak power output with LHTL(51). Therefore, LHTL should be applied with individualized adjustments and consideration of multiple factors.

#### 3.2 Hypoxia pre-adaptation training

Hypoxia pre-adaptation training is an important part of the modern altitude training system. Its core is to induce physiological adaptation in advance by simulating the plateau environment (Wang et al., 2024). At present, there are three types of pre-adaptation methods: normobaric hypoxia chamber training, hypoxia sleep system and Intermittent hypoxic training (IHT). Normobaric hypoxia chamber training usually adopts the "3-5-90" scheme, that is, 3-5 times a week, 90 min each time, simulating an altitude of 2,500-3,000 m, combined with intermittent exercise (Chang et al., 2023; Deldicque, 2022); the hypoxia sleep system recommends the "8-2000" mode, which is exposed to a simulated 2000-2,500 m environment for 8 h at night, which can significantly increase EPO secretion (Deng et al., 2025); IHT adopts a "1:1" time ratio, alternating between simulating 3,000 m hypoxia and normoxic environment (Behrend et al., 2022; Park et al., 2018b; Huang et al., 2023). This mode is particularly conducive to promoting angiogenesis.

After 2–4 weeks of systematic pre-adaptation training, trainees achieve multiple physiological improvements. The hypoxic ventilation response slope increased from the basic 0.3–0.5 L/min/%SpO<sub>2</sub> to 0.5–0.8, an increase of 30%–50% (Xie et al., 2024; Richalet and Gore, 2008; Ross et al., 2023). Muscle capillary density increased by 15%–20% through VEGF-mediated angiogenesis. The antioxidant defense system was significantly enhanced, and the activity of SOD and glutathione peroxidase (GSH-Px) increased by 40%–60% (Xie et al., 2024; Luo et al., 2022). These changes brought about significant functional improvements. VO2max increased by 5%–8% under simulated altitude and 8%–12% in actual plateau environment (Richalet and Gore, 2008). The blood lactate-speed curve shifted to the right,

and the exercise intensity at the 4 mmol/L threshold increased by 10%–15% (Xie et al., 2024; Supriya et al., 2022). Subjective fatigue (RPE) decreased by 1–2 levels under the same load. It is worth noting that there are obvious individual differences in the pre-adaptation effect, which is closely related to the HIF-1 $\alpha$  gene polymorphism. Therefore, it is recommended to design a personalized program under professional guidance.

#### 3.3 Nutrition and drug intervention

Scientific and complete nutritional support and reasonable and necessary drug intervention are important guarantees to ensure the safety and effectiveness of altitude training. In terms of nutritional management, a supplementation system needs to be established. The first is water replenishment (Viscor et al., 2023). It is recommended to use the "weight + environment" formula to calculate the water requirement (35 mL/kg + 500 mL/1000 m), maintain urine volume>1,500 mL/d and urine specific gravity<1.020. Electrolyte supplementation should follow the "sodium-potassium balance" principle, sodium 60-80 mmol/L, potassium 20-30 mmol/L, and pay special attention to magnesium supplementation (400 mg/d) (Bradbury et al., 2020b; Jeukendrup, 2014). Carbohydrates should adopt a "double high" strategy, accounting for more than 70% of total calories (5-7 g/kg/d), and high GI foods should be supplemented before and after training. Antioxidant network construction requires maintenance (Askew, 2002; Koivisto et al., 2019).

In terms of drug intervention, acetazolamide (Diamox) is still the gold standard drug, and its use needs to follow the "threelevel prevention" principle (Luks et al., 2024; Wang et al., 2025). Basic prevention (125 mg bid, starting 24 h before ascent) reduces the risk of AMS from 40% to 20%. The therapeutic dose (250 mg bid) can relieve symptoms within 12-24 h. For people at high risk of HAPE, combined with nifedipine sustained-release tablets (30 mg qd) can be considered (Deshwal et al., 2012; Berger et al., 2022; Spooner et al., 2007). Other auxiliary drugs include: dexamethasone (4 mg q6h) for rapid ascent scenarios (Clark and Sheraton, 2025), ginkgo leaf extract (80mg/q12h) to improve microcirculation (Murdoch, 2010), and iron (360 mg ferrous fumarate/qd) to promote hematopoiesis (Garvican-Lewis et al., 2016). It is particularly important to emphasize the standardization of drug intervention, which must be evaluated before medication (renal function, electrolytes, drug allergy history), monitored during implementation (daily symptom score, urine routine), and evaluated for effectiveness (symptom improvement rate, changes in physiological indicators).

A large number of clinical studies have confirmed that this comprehensive intervention program achieves significant results. The incidence of AMS is reduced by 40%–50%, the severity of symptoms is reduced by 30%, the exercise endurance index is improved by 15%–20%, and the physiological adaptation time is shortened by 30%–40% (Wang et al., 2025; Gao et al., 2021; Sridharan and Sivaramakrishnan, 2018). However, it must be noted that any drug intervention must be carried out under the guidance of a professional physician, and special attention should be paid to the contraindications and interactions of various drugs. For example, acetazolamide is contraindicated for those who

are allergic to sulfonamides, and dexamethasone is not suitable for diabetic patients.

## 4 Monitoring and evaluation of altitude training

A scientific system for monitoring and evaluating altitude training is essential to ensure both the safety and effectiveness of the training process. By establishing a complete physiological indicator monitoring system, standardized effect evaluation methods and strict safety measures, we can fully grasp the athletes' adaptation status, adjust training plans in a timely manner, and maximize the benefits of altitude training. Modern altitude training monitoring has evolved into a multidisciplinary and integrated framework involving fields such as sports medicine, hypoxic physiology, and biomechanics. This system not only focuses on immediate physiological responses but also evaluates long-term adaptation outcomes, while establishing a robust safety warning mechanism.

## 4.1 Physiological indicator monitoring system

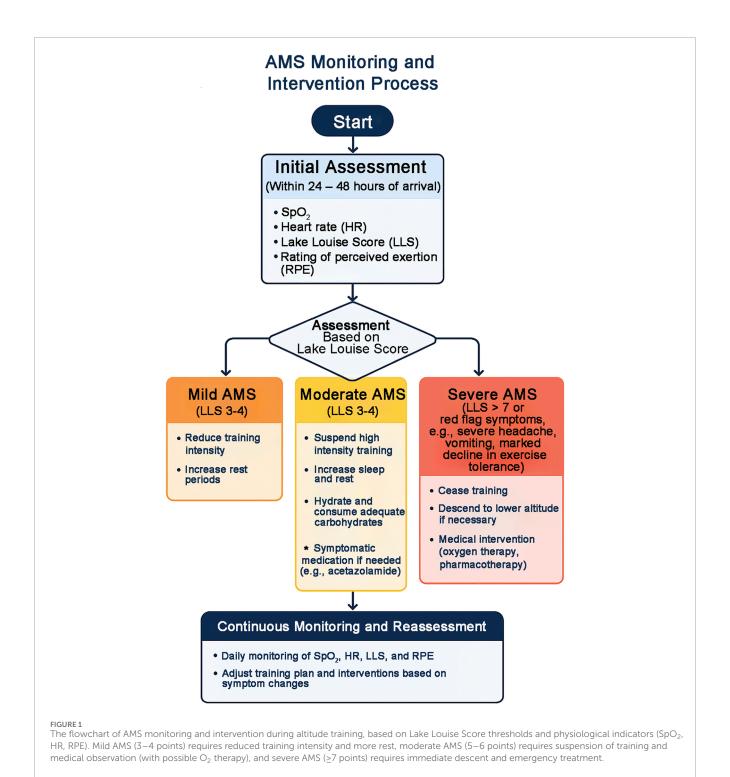
Altitude training has established a complete set of physiological indicator monitoring system, which includes three levels: basic indicator monitoring, special function evaluation and new technology application (Girard et al., 2013). Basic indicator monitoring is the most important routine monitoring content in daily training. It adopts an all-weather dynamic tracking mode and mainly includes the following key indicators. Blood oxygen saturation monitoring requires the use of a certified medical-grade pulse oximeter (Dünnwald et al., 2021; Lauterbach et al., 2021). Measurements are taken at four time points: in the morning, before training, during training and after training. Before each measurement, you need to rest for 5 min and record the average of three measurements (Tannheimer and Lechner, 2019). Ideally, at an altitude of 2,500 m, the athlete's resting blood oxygen saturation should be maintained above 88% (Bradbury et al., 2020b). Heart rate variability monitoring collects data through professional heart rate belt equipment, analyses indicators such as SDNN and RMSSD, and evaluates the regulatory function of the autonomic nervous system. Under normal circumstances, athletes who are well adapted to the plateau should maintain their HRV indicators above 80% of the plain value (Altini, 2020; Altini et al., 2020). Fluid balance monitoring includes daily morning weight measurement (fluctuation range controlled within  $\pm 1\%$ ), urine specific gravity test (maintained between 1.010-1.025), and urine biochemical analysis (focusing on urine protein and urine ketone body indicators) (Armstrong et al., 2025; Wardenaar, 2022). These basic indicators require the establishment of personal files and the drawing of change trend charts to facilitate timely detection of abnormal conditions.

Specialized assessments require the use of professional equipment and testing methods, mainly including  $VO_2$ max test in a hypobaric oxygen chamber and hemoglobin quality test. The  $VO_2$ max test in a hypobaric oxygen chamber precisely controls the oxygen concentration (simulating an altitude gradient of 1,500–3,500 m), adopts a standardized incremental load scheme

(increasing 35W power every 2 min), and simultaneously monitors changes in oxygen uptake, ventilation, and blood lactate to draw an aerobic capacity curve in a plateau environment (Wachsmuth et al., 2013; Mujika et al., 2024). The CO rebreathing method is recommended for hemoglobin quality testing. This method accurately calculates the total amount of circulating hemoglobin by measuring the binding capacity of carbon monoxide, avoiding the errors caused by changes in plasma volume in traditional blood tests (Garvican-Lewis et al., 2015; Schmidt et al., 2020). The test frequency is recommended to be once a week. After 4 weeks of plateau training, an increase of 5%-8% in hemoglobin mass indicates good adaptation. In addition, regular muscle biopsies (once before and after training) are required to observe changes in mitochondrial density and oxidase activity, as well as bone density scans (once a month) to evaluate the impact of the plateau environment on the skeletal system (Hadanny et al., 2022).

With the rapid advancement of wearable technology, intelligent portable devices have become increasingly important for realtime monitoring during altitude training. These devices can continuously capture key physiological parameters such as heart rate, blood oxygen saturation, respiratory rate, and physical activity. Their advantages lie in portability, non-invasiveness, and the ability to provide long-term, field-based data collection under real training conditions. Real-time feedback from these devices allows athletes and coaches to adjust training loads promptly, thereby improving both the safety and effectiveness of altitude training. Through the linkage analysis of multi-parameter sensors (blood oxygen, heart rate, skin temperature, acceleration) combined with machine learning algorithms, the risk of acute mountain sickness can be predicted 12-24 h in advance, with an accuracy rate of more than 85% (Wei et al., 2022). For example, commercially available wearable devices such as Garmin Forerunner 955, Polar Vantage V2, Apple Watch Ultra, and medical-grade systems like Zephyr BioHarness and Hexoskin can continuously monitor SpO<sub>2</sub>, HR, and motion parameters in real time. On the algorithm side, recurrent neural networks, particularly long short-term memory (LSTM) models, have shown strong predictive power in time-series physiological data, and can be implemented using open-source frameworks such as TensorFlow (https://www.tensorflow.org/ ), PyTorch (https://pytorch.org/), or Keras (https://github.com/ keras-team/keras/tree/master/examples). Moreover, open databases such as PhysioNet (https://physionet.org/) and publicly available repositories on GitHub provide accessible training and validation resources for these models, while commercial platforms like WHOOP and Firstbeat Analytics already integrate similar physiological monitoring for sports and high-altitude adaptation.

Complementing wearable-based monitoring, advanced laboratory technologies provide in-depth insights into the physiological and molecular mechanisms underlying hypoxic adaptation. Near-infrared spectroscopy (NIRS) technology can noninvasively and in real time monitor changes in the oxygenation status of specific muscle groups (such as the vastus lateralis) during exercise (Perrey et al., 2024). The sampling frequency can reach 10 Hz, which can accurately reflect the oxygen supply and demand balance of local muscles. In addition, portable brain oxygen monitors can observe the oxygenation of brain tissue in real time, providing early warning for the prevention of highaltitude cerebral edema (Si et al., 2021). Wireless electromyography


systems synchronously monitor the activation patterns of multiple muscles and evaluate the impact of the plateau environment on neuromuscular control (Ngo et al., 2022). Data from these advanced technologies are integrated and analyzed through cloud platforms to generate personalized adaptation status curves and training recommendation reports, offering precise mechanistic insights that are not achievable with wearable devices alone.

Importantly, in practice, wearable devices (e.g., SpO<sub>2</sub>, heart rate, sleep monitoring) are advantageous for their portability and feasibility in real-world high-altitude training, allowing continuous non-invasive surveillance. By contrast, advanced laboratory techniques such as NIRS, brain oxygen monitors and wireless electromyography systems provide more precise mechanistic insights but require specialized equipment and controlled environments. Therefore, wearable-based monitoring and laboratory-based assessments should be viewed as complementary approaches: the former ensures practical, field-based safety and adaptation tracking, whereas the latter deepens our understanding of underlying physiological mechanisms when conditions permit.

#### 4.2 Evaluation criteria for adaptation effect

The evaluation of the adaptation effect of altitude training requires the establishment of a systematic and standardized evaluation system, which includes three dimensions: symptom evaluation, physiological adaptation evaluation and sports performance evaluation. The internationally accepted Lake Louise Rating Scale (2018 revised version) is the gold standard for evaluating the symptoms of acute mountain sickness (Roach et al., 2018; Richalet J-P. et al., 2021). The scale includes five symptom dimensions: headache (0-3 points), gastrointestinal symptoms (0-3 points), fatigue (0-3 points), dizziness (0-3 points) and sleep disorders (0-3 points), as well as a functional evaluation dimension: straight line walking test (0-3 points). The scoring criteria are: 3-4 points for mild acute mountain sickness, which requires adjustment of the training plan; 5-6 points for moderate, which requires suspension of training and medical observation; 7 points or more for severe, which requires immediate descent for medical treatment (Figure 1). This evaluation should be completed within 1 h after getting up in the morning, and standardized operations should be performed by professional medical personnel to ensure the comparability of the evaluation results. It is worth noting that the new version of the scale adds nighttime blood oxygen monitoring data as an objective reference indicator, making the evaluation more comprehensive and accurate.

Quantitative evaluation of physiological fitness is the core content of the evaluation of plateau training effects. The EPO response curve is an important indicator for evaluating the adaptation of hematopoietic function (Baranauskas et al., 2022; Tong et al., 2016; Man et al., 2021). The ideal plateau acclimatizer should have an EPO level increase of more than 50% within 24 h after arriving at the plateau, reach a peak value (2–3 times the baseline) in 48–72 h, and gradually fall back to a level slightly higher than the baseline after 7–10 days. This dynamic change process can be drawn through blood tests three times a week to draw a complete response curve. Another key indicator is ventilation sensitivity, which is evaluated by hypoxic ventilatory response (HVR) test,



using standardized hypoxic mixed gas (12% oxygen concentration) to measure the slope of minute ventilation (Horiuchi et al., 2022; Bhaumik et al., 2003). The HVR slope of those who are well adapted to the plateau should be between 0.5–0.8 L/min/%SpO<sub>2</sub>. In addition, it is necessary to monitor the adaptation of the

antioxidant system, including indicators such as SOD activity, GSH-Px activity and total antioxidant capacity (T-AOC) (Oeung et al., 2023; Constantini et al., 2021; Płoszczyca et al., 2018). These indicators should increase by 30%–50% after 4 weeks of plateau

training to indicate good antioxidant adaptation. The pre-evaluation measurements are conducted after an initial acclimatization period of 24–48 h following arrival at altitude, to minimize the influence of acute hypoxic responses and ensure participant safety. This period balances the need for stable baseline measurements with logistical considerations, and assessments are conducted under professional medical supervision.

Sports performance evaluation requires the development of personalized test plans in combination with the characteristics of

the project. For endurance athletes, the comparison of plateau/plain results is the most direct evaluation method (Yu et al., 2022). After 4 weeks of training at an altitude of 2,500 m, the difference between the special endurance test results (such as 3000-m run) and the plain should be reduced to less than 3%. The blood lactate-power curve is an objective indicator for evaluating the improvement of aerobic capacity. In a standardized incremental load test (power bike or treadmill), the power or speed corresponding to the 4 mmol/L lactate threshold should increase by 5%-8% after plateau training (Chen et al., 2023; Diebel et al., 2017; Dragos et al., 2022). In addition, recovery ability is also an important evaluation content. By measuring the half-life of blood lactate clearance after standardized exercise load (such as 80% VO<sub>2</sub>max intensity exercise for 10 min), the clearance rate of those who are well adapted to the plateau should increase by 20%-30% (Bonato et al., 2023; Huang et al., 2025). These sports performance indicators need to be correlated with physiological adaptation indicators to establish a prediction model to provide a scientific basis for the formulation of personalized training plans. All evaluation data should be processed using professional statistical methods (such as repeated measures analysis of variance, multivariate linear regression, etc.) to ensure the scientificity and reliability of the conclusions.

#### 4.3 Medical safety guarantee

The medical safety guarantee for plateau training requires the establishment of a complete three-level warning system and emergency response mechanism. The graded warning system sets three response levels according to the abnormal degree of physiological indicators (Clark and Sheraton, 2025; Aksel et al., 2019). The first-level warning (yellow) is for the situation where the resting SpO<sub>2</sub> is between 80%-85% and the Lake Louise score is 3-4 points. The treatment measures include adjusting the training intensity, increasing the rest time and low-flow oxygen therapy. The second-level warning (orange) is for the situation where the  $\mathrm{SpO}_2$  is between 75%–80% and the Lake Louise score is 5–6 points. It is necessary to immediately suspend training, absolutely rest in bed, medium-flow oxygen therapy (2-4L/min) and drug treatment (acetazolamide 250 mg bid). The third-level warning (red) is for situations where SpO2 is less than 70% and HAPE or HACE symptoms appear. Emergency evacuation procedures must be initiated, and high-flow oxygen therapy (6-8L/min) and emergency drugs (nifedipine 10 mg sublingual or dexamethasone 8 mg iv) must be given at the same time. This warning system needs to operate 24/7 and is implemented by a dedicated medical monitoring team. All warning events must be recorded in detail and the causes analyzed.

The construction of the medical station at the plateau training base needs to meet strict standards. The site requirements include an independent diagnosis and treatment area (at least 20 square meters), an observation room (equipped with 2–3 beds) and a treatment room, which should be located within a 5-min walk of the training site (Luks et al., 2024). The equipment configuration must include: diagnostic equipment (portable ultrasound, 12-lead electrocardiograph, fully automatic biochemical analyzer), treatment equipment (transport ventilator,

defibrillator monitor, infusion pump) and special equipment (portable hyperbaric oxygen chamber, mobile hypothermia therapy device) (DiMM et al., 2024). The drug reserves need to meet the emergency needs of 10 people, including specific drugs for altitude sickness (acetazolamide, dexamethasone, nifedipine), emergency drugs (epinephrine, atropine, amiodarone) and conventional drugs (antibiotics, antipyretic analgesics) (Omidi et al., 2025). The medical team should be composed of a specialist in altitude sickness (at least 1), a sports medicine physician and an emergency nurse. All personnel must hold a certificate of high altitude emergency training and participate in emergency drills every quarter. The medical station needs to establish a 24-h duty system to ensure that timely medical services can be provided at any time (Berger et al., 2020).

The multidisciplinary emergency response process emphasizes the principle of "rapid assessment and graded treatment" (Wolf and Gaddy, 2025; van Veelen et al., 2025). The standardized emergency process includes four key links: on-site assessment (complete vital sign measurement and preliminary diagnosis within 5 min), oxygen therapy initiation (establish an effective oxygen therapy pathway within 10 min), drug intervention (give targeted drug treatment within 15 min) and descent transfer (start the descent procedure within 30 min). For HAPE patients, semirecumbent position, high-flow oxygen therapy and nifedipine should be adopted; for HACE patients, the head should be kept high and the feet should be low, dexamethasone should be used, and mannitol dehydration treatment should be considered (Savioli et al., 2022). All emergency treatments should follow the principle of "saving lives first, then treating diseases", and give priority to ensuring the stability of vital signs. The descent transfer requires pre-planning of routes and transportation to ensure that it can be carried out under any weather conditions. During the descent, a clinical assessment should be conducted every 500 m until the symptoms are significantly improved (Omidi et al., 2025). In order to improve emergency response capabilities, it is recommended to conduct a full-element emergency drill every quarter to simulate various possible emergency situations and test the feasibility and effectiveness of the emergency plan. At the same time, a two-way referral mechanism should be established with tertiary hospitals in low-altitude areas to ensure that critically ill patients can receive timely advanced life support.

# 5 Optimization methods for training arrangements

The scientificity and effectiveness of altitude training depend largely on the degree of optimization of the training program. With the in-depth research on sports science and hypoxia physiology, the arrangement of altitude training has developed from the traditional empirical type to the precise and intelligent direction. Modern altitude training optimization methods integrate multidisciplinary knowledge such as molecular biology, sports biomechanics, and environmental physiology. By establishing a standardized evaluation system and an intelligent control system, the training effect is maximized and the risk is minimized (Figure 2).

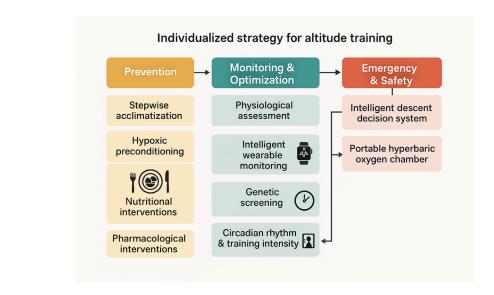



FIGURE 2
Individualized strategy for altitude training. The multi-tiered framework integrates genetic screening, physiological assessment, stepwise acclimatization, hypoxic preconditioning, nutritional and pharmacological interventions, and intelligent wearable monitoring to optimize training outcomes and minimize altitude sickness risk. Nutritional interventions focus on electrolyte, iron, and protein supplementation, while pharmacological interventions include acetazolamide, dexamethasone, and iron therapy when indicated.

#### 5.1 Personalized plan formulation

The formulation of personalized programs for modern plateau training has developed to the molecular level. The differentiated program based on HIF gene detection analyzes the polymorphism of hypoxia-sensitive genes such as EPAS1 and EGLN1, and divides athletes into three categories: fast adaption type, standard adaption type, and slow adaption type, and formulates differentiated training plans for each type (Yang et al., 2021; Buroker et al., 2012; Graham and McCracken, 2019; Hanaoka et al., 2012). The EPAS1 gene of fast adaption type athletes (accounting for about 15% of the population) has specific single nucleotide polymorphisms (SNPs), and their hypoxic ventilation response is 30%-50% higher than that of the general population (Voisin et al., 2014). They adopt the "3 + 1" advanced mode (3 days of adaptation +1 day of reinforcement), and safely rise 150-200 m per day at an altitude of 2,500 m. The standard adaption type (accounting for about 70%) adopts the conventional "4 + 2" program, and the daily ascent does not exceed 100 m. The slow adaption type (accounting for about 15%) has abnormal expression of the EGLN1 gene and requires a conservative "5 + 2" program, with the daily ascent controlled within 50 m (Buroker et al., 2012). This classification method based on genetic testing can improve the matching of training programs and contributes to more personalized and effective altitude training strategies.

The intensity grading method guided by the blood lactate-power curve uses a standardized incremental load test (power bicycle or treadmill) to measure the power value corresponding to the 4 mmol/L lactate threshold in an environment simulating an altitude of 2,500 m (Huang et al., 2025; Casado et al., 2023). The test plan is: the initial load is 50W, and it increases by 35W every 2 min, while simultaneously monitoring blood lactate, heart

rate and ventilation. According to the test results, the training intensity is scientifically divided into 5 levels (Magalhães et al., 2024; Esteve-Lanao et al., 2007): recovery intensity (<85% lactate threshold power, heart rate controlled at 120–140 bpm, blood lactate <2 mmol/L); basic endurance (85%–100%, heart rate 140–160 bpm, blood lactate 2–4 mmol/L); threshold intensity (100%–110%, heart rate 160–175 bpm, blood lactate 4–6 mmol/L); maximum oxygen uptake intensity (110%–120%, heart rate 175–190 bpm, blood lactate 6–8 mmol/L); super-threshold intensity (>120%, heart rate>190 bpm, blood lactate>8 mmol/L). This grading method can make the control error of training intensity less than 5% (Krishnan et al., 2021).

The circadian rhythm adaptation adjustment plan recommends the "morning training and evening rest" mode based on the changes in the rhythm of melatonin secretion in the plateau environment (usually the phase is shifted forward by 1-2 h) (Almendros-Ruiz et al., 2025; Zisapel, 2018; Augsburger et al., 2025): the main training session is carried out from 8 to 10 in the morning (when the cortisol level is high, the body temperature is in the rising period, and the athletic ability is the best); technical training is arranged from 3 to 5 in the afternoon (when the core temperature reaches the peak and the neuromuscular coordination is the best); avoid strenuous activities after 7 p.m. (melatonin begins to be secreted and the body enters the recovery stage). Studies have shown that this arrangement can enable athletes' circadian rhythms to complete plateau adaptation within 7-10 days, improve sleep quality by more than 30%, and reduce resting heart rate in the morning by 5–8 bpm (Edwards et al., 2002; Ye et al., 2024).

Individualized plans also need to take into account the athlete's specific characteristics. Endurance events (such as long-distance running and cycling) focus on improving aerobic capacity, with plateau training accounting for 60%–70%, focusing

on developing capillary density (increase by 15%–20%) and mitochondrial function (oxidase activity increased by 30%–40%) (Mølmen et al., 2025). Strength and speed events (such as sprinting and weightlifting) focus on neuromuscular adaptation, with plateau training accounting for 40%–50%, mainly improving fast muscle fiber recruitment (EMG amplitude increased by 10%–15%) and force rate (RFD increased by 8%–12%) (Tomazin et al., 2021; Rong et al., 2025). Each training cycle (usually 4 weeks) must also be dynamically adjusted based on the results of periodic evaluations to ensure that the training load is always in the optimal stimulation range.

#### 5.2 Dynamic monitoring and regulation

A real-time training load analysis system employs a modified TRIMP (Training Impulse) model, which integrates multiple plateau-specific parameters based on the traditional heart rate method (Lili et al., 2024). The system utilizes smart wearable devices (sampling frequency ≥50 Hz) to collect real-time data on heart rate variability, blood oxygen saturation, and 3D acceleration, enabling the calculation of training impulse per minute. In high-altitude environments, the algorithm has been significantly optimized. A weighting factor for SpO<sub>2</sub> has been added: when SpO<sub>2</sub> is 85%–90%, the load coefficient is multiplied by 1.1; 80%-85% by 1.2; and below 80% by 1.5 (Boos et al., 2022). An altitude correction factor is also introduced, increasing the load coefficient by 0.05 for every 500 m of elevation gain. Additionally, circadian rhythm effects are considered, with training loads multiplied by 1.1 during 3-5 p.m. and reduced to 0.8 after 7 p.m. (Castiglioni et al., 2022). This system enhances the accuracy of training load assessment and helps to reduce the risk of overtraining, thereby improving safety and training effectiveness in plateau environments.

The environmental parameter compensation algorithm integrates real-time monitoring data from multiple sources: temperature (updated every 5 min, accuracy ±0.5 °C), relative humidity (±3%), air pressure (±1 hPa) and UV index. The algorithm establishes a complete environment-load correction model. When the ambient temperature is below 10 °C, the intensity target is automatically reduced by 10% (to avoid cold stress superposition) (Foster et al., 2022). The training volume is reduced by 5% for every 500 m increase in altitude (considering the decrease in oxygen partial pressure). When the relative humidity exceeds 70%, the rest time between groups is extended by 20% (to promote heat dissipation) (Périard et al., 2021). When the UV index is >8, the outdoor training time is shortened by 30% (to prevent skin damage). This system can help reduce the risks of overtraining caused by environmental factors and improve the quality of training.

The machine learning-based effect prediction platform uses the long short-term memory (LSTM) neural network architecture to establish a personalized prediction model by analyzing three categories of historical data (Zhang et al., 2022): 1) training data (including plain and plateau training records, load characteristics, and recovery status); 2) physiological data (morning heart rate, blood oxygen, HRV, blood indicators); 3) performance data (special test scores, technical indicators) (Sun et al., 2024). The model automatically updates the weight every 24 h, can predict the training effect 3–5 days in advance (with an accuracy of 75%–85%), and

gives optimization suggestions, such as "adding 1 day of recovery period" or "adjusting the altitude by 300 m". The platform also has an anomaly detection function. When the prediction error exceeds 15%, the cause analysis module is automatically triggered to check for possible interference factors (Bolten, 2024). The similar LSTM-based prediction models and implementations have been reported in sports performance and physiological data analytics (Yang, 2025; Pham, 2021; Sun et al., 2023). Readers can also explore open-source frameworks and examples for time-series prediction, such as TensorFlow (https://www.tensorflow.org/), PyTorch (https://pytorch.org/), and Keras example repositories (https://github.com/keras-team/keras/tree/master/examples), which provide practical guidance for implementing LSTM-based effect prediction platforms.

The dynamic control system also introduces multimodal biofeedback technology. Wireless surface electromyography (sEMG) is used to monitor the activation level and fatigue state of the target muscles (a decrease in median frequency of >15% indicates fatigue) (Taelman et al., 2011). Near-infrared spectroscopy (NIRS) is used to observe local muscle oxygenation in real time (it is recommended to adjust the intensity when the tissue oxygenation index is <40%) (Bovolon et al., 2025). Electroencephalography (EEG) is combined to assess the degree of central fatigue (an increase in theta wave power of more than 20% indicates the need for rest) (Sul et al., 2025). These biological signals are integrated and analyzed with training load data to achieve truly 'intelligent' training control, which enhances the protection of the neuromuscular system.

#### 5.3 Innovation in emergency response

The intelligent descent decision system uses a multi-objective optimization algorithm and integrates six types of real-time data: 1) GIS geographic information (terrain elevation, path distance, slope); 2) meteorological data (temperature, wind speed, precipitation probability); 3) medical monitoring indicators (SpO<sub>2</sub>, heart rate, blood pressure, state of consciousness); 4) resource distribution (location of medical points, availability of transportation); 5) patient characteristics (age, weight, history of high altitude disease); 6) team conditions (number of escort personnel, equipment status) (Velasquez and Alvarez-Alvarado, 2021). The system calculates the optimal descent path based on the Dijkstra algorithm, considering factors including: altitude descent rate (controlled at 300-500 m/h), transfer time (target <2 h), and risk factor (avoiding dangerous terrain such as cliffs) (Parajuli et al., 2023). When the patient's SpO<sub>2</sub><70% or HACE symptoms occur, the system can generate 3 sets of alternative plans within 30 s (such as "descending 800 m from the east road to the medical station" or "rapidly descending 500 m on the west trail") and give a recommended plan (comprehensive score>90 points) (Garg et al., 2021). During the descent, the system monitors the patient's condition in real time through GPS and wearable devices, automatically assesses the patient every 100 m of descent, and dynamically adjusts the route and strategy when necessary.

The new portable hyperbaric oxygen chamber uses aviationgrade composite materials (cabin weight <15 kg, load-bearing capacity >150 kg) and intelligent control systems (Luks et al., 2024). Key technological breakthroughs include: 1) rapid deployment (inflation completed within 5 min, reaching 0.3ATA treatment

pressure); 2) precise oxygen control (dynamic adjustment of oxygen concentration 90%–95%, fluctuation <2%); 3) comfortable environment (temperature control 20 °C–25 °C, humidity 40%–60%); 4) safety monitoring (real-time display of cabin pressure, oxygen concentration and patient vital signs); 5) remote interconnection (expert consultation through satellite communication) (Kot et al., 2023). Clinical data show that the use of this device to treat acute mountain sickness shortens symptom relief time by more than 50% (HAPE patients are reduced from an average of 4 h–2 h) (Küpper et al., 2022).

Based on a large amount of clinical research data, the drug-training synergistic intervention program has established a refined coordination strategy: 1) During the use of acetazolamide (usually 250 mg bid), appropriately reduce the intensity target by 10%-15%, increase the proportion of recovery training (from 20% to 30%-35%), and pay special attention to supplementing potassium and magnesium electrolytes (80-100 mmol potassium and 400-600 mg magnesium per day) (Bradbury et al., 2020a); 2) During the iron supplementation phase (325 mg ferrous sulfate tid), combined with moderate-intensity continuous training (60%-75% VO<sub>2</sub>max), promote iron absorption and utilization (absorption rate increased by 30%), but avoid high-intensity interval training (reduce free radical production) (McKay et al., 2024; Okazaki et al., 1985); 3) During dexamethasone treatment (4 mg q6h), focus on maintaining technical training (neuromuscular control), suspend maximum strength training (avoid the risk of tendon injury), and increase protein intake (1.6-2.0 g/kg/d) (Montgomery et al., 1989). This synergistic program can reduce the incidence of drug side effects by 50% (such as acetazolamide-related paresthesia reduced from 25% to 12%), while maintaining more than 80% of the expected training effect.

The emergency response system has established a complete drill system, and conducts full-element simulation drills twice a quarter (Eales and Kruger, 2024; Li J. et al., 2024). The drill content includes: 1) scenario simulation (setting different altitudes, weather conditions and types of injuries); 2) role division (clarifying job responsibilities such as medical treatment, escort, and liaison); 3) equipment inspection (testing the reliability of all first aid equipment); 4) process assessment (timing the entire process from the discovery of symptoms to the completion of treatment). A review meeting is held after each drill to analyze the response time (target <60 min), operational standardization, and team cooperation, and continuously improve the emergency plan. The system also established a green channel with tertiary hospitals in low-altitude areas to ensure that critically ill patients can receive advanced life support within 6 h, significantly improving the safety level of plateau training (Luks et al., 2024).

### 6 Discussion

As an important means to improve sports performance, altitude training has achieved remarkable results but also faces many controversies and challenges. With the rapid development of science and technology and the continuous progress of sports medicine, the field of altitude training is undergoing profound changes, which also points the way for future research.

There are two most controversial issues in the field of plateau training. These disputes not only involve the scientific nature of the training effect, but also the boundaries of sports ethics. The ethical issues of drug intervention have attracted much attention in recent years, especially the use of drugs such as EPO. Although EPO can effectively increase hemoglobin concentration and improve oxygen transport capacity, its abuse may lead to a sharp increase in blood viscosity (HCT>55%), increasing the risk of serious cardiovascular events such as thrombosis and myocardial infarction (Thevis et al., 2024). Several clinical studies and meta-analyses have quantified the effects of EPO and highaltitude exposure on hemoglobin concentration and erythropoietic response, highlighting significant individual variability and the potential risks of excessive EPO use, such as increased hematocrit and cardiovascular complications, emphasizing the need for controlled usage and monitoring (Płoszczyca et al., 2018; Dragos et al., 2022; Saugy et al., 2022). What is more worrying is that the emergence of some new hemoglobin regulators (such as HIF stabilizers) has made drug intervention more covert, posing a huge challenge to anti-doping work (Natale et al., 2022; Janssens et al., 2024). The World Anti-Doping Agency (WADA) has to continuously update the banned list, but detection technology often lags behind the development of new drugs (De Wilde et al., 2021; Oleksak et al., 2024). This not only undermines the fairness of sports competitions, but also poses a serious threat to the health of athletes.

Another ongoing focus of debate is the comparison of the effects of altitude training and simulated hypoxia training. Supporters of traditional altitude training emphasize that the real altitude environment (such as 1800-2,500 m above sea level) can induce more comprehensive physiological adaptations, including adaptive changes in pulmonary artery pressure and increased muscle capillary density, which are difficult to fully replicate in a simulated hypoxic environment. Research data show that after 4 weeks of real altitude training, the increase in athletes' VO2max (4%-8%) is significantly higher than that of simulated hypoxia training (2%-4%) (Saugy et al., 2014; Fentaw et al., 2025). Although simulated hypoxia can achieve some aerobic adaptations, it often fails to induce comparable vascular and hematological changes, highlighting the limitations of current simulation technologies. However, advocates of simulated hypoxia training point out that modern hypoxia tents and training cabins can accurately control oxygen concentration (simulating altitudes up to 4,500 m) and avoid common negative factors in altitude environments (such as ultraviolet radiation, extreme weather, etc.) (Saugy et al., 2014; Humberstone-Gough et al., 2013). More importantly, simulated training can implement flexible programs such as "live high and train low", which can improve the quality of training by 15%-20% (Huang et al., 2023; Westmac et al., 2022).

The core of this debate lies in the trade-off between the "specificity" and "controllability" of training effects. The contrasting evidence from real vs. simulated hypoxia studies highlights the continued use of both approaches in practice and supports the rationale for developing hybrid strategies to balance physiological adaptations with training safety and convenience (Behrend et al., 2022; Lizamore and Hamlin, 2017; Albertus-Cámara et al., 2022). There is no clear conclusion yet, but more and more training

institutions are beginning to adopt a hybrid model that combines the advantages of both. Conceptually, these hybrid strategies could be applied within a microcycle by varying hypoxic exposure during sleep, exercise, or recovery periods. For instance, athletes may avoid 'live high' during certain phases to preserve sleep quality, deliberately use post-high-intensity training hypoxia twice per week to enhance anaerobic adaptations, or perform low-intensity hypoxic running (<60%  $\rm VO_2max$ ) on specific days to minimize negative impacts on training quality. Although such applications are not yet standardized, they illustrate the potential for periodized hypoxia strategies tailored to different training goals.

The future development of plateau training may focus on two frontiers: breakthroughs in personalized prediction technology and innovations in intelligent monitoring systems. Important progress is being made in the study of gene markers to predict susceptibility to mountain sickness. Genome-wide association studies (GWAS) have identified multiple gene loci associated with plateau adaptation, such as the rs13419896 locus of the EPAS1 gene and the rs1769792 locus of the EGLN1 gene (Li X. et al., 2024; Chen et al., 2014). These gene markers can accurately predict the type of individual response to plateau training (rapid adaptation, standard adaptation, or slow adaptation), with a prediction accuracy of 75%-85%. In the next 5 years, a prediction model based on a polygenic risk score is expected to be put into clinical application, allowing athletes to understand their optimal adaptation altitude and expected adaptation time before training (Wang et al., 2024; Li X. et al., 2024). This personalized prediction can not only improve training results, but also significantly reduce the risk of mountain sickness (estimated to be reduced by 30%-40%).

Real-time monitoring technology for smart wearable devices is undergoing a revolutionary development. The next-generation of monitoring devices will integrate more physiological parameters, including non-invasive hemoglobin monitoring (error <5 g/L), brain oxygen saturation monitoring (prefrontal region), muscle oxygenation status (NIRS technology), etc. These devices can achieve real-time data transmission through 5G/6G networks, and combined with artificial intelligence algorithms, can predict the occurrence of acute mountain sickness 6-12 h in advance (accuracy >90%) (Ma et al., 2023). Of particular note is the development of wearable microfluidic chips, which can monitor key indicators such as lactate and electrolytes in real time through sweat analysis, providing immediate basis for training adjustments (Lin et al., 2020; Sankhala et al., 2021). It is expected that by 2028, these intelligent systems will bring the scientificity and safety of plateau training to a new level, and individual differences in training effects are expected to be reduced by more than 50%. In addition, the application of virtual reality (VR) technology will also change the way of plateau training (Chander et al., 2021). Athletes can use VR devices to simulate the plateau environment in low-altitude areas for psychological adaptation training. This "psychological preadaptation" has been shown to reduce 30% of the symptoms of altitude sickness.

#### 7 Conclusion

Scientific practice of plateau training shows that scientific adaptation and individualized programs are the core principles for

preventing mountain sickness and improving training effects. The use of a scientific "climb high and sleep low" strategy to control the daily vertical ascent to less than 300 m can significantly reduce the incidence of acute mountain sickness from 60% to less than 15%. This adaptive training not only improves the blood oxygen saturation index from the initial 80%–85% to 88%–92%, but more importantly, it promotes the rational secretion of erythropoietin and the adaptive proliferation of capillaries. The individualized program based on genetic testing achieves precise customization of training programs by analysing the polymorphic characteristics of hypoxiasensitive genes such as EPAS1 and EGLN1, reducing the individual differences in training effects by 40% and reducing the risk of overtraining by 35%. Especially for people with slow adaptation, the conservative "5 + 2" program can increase their training success rate from 50% to 85%.

The application of modern intelligent monitoring technology provides an important guarantee for the safety of plateau training. The early warning system integrating multi-parameter real-time monitoring and artificial intelligence algorithms can predict more than 85% of the risk of acute mountain sickness 12-24 h in advance, reducing the incidence of high-altitude pulmonary edema and cerebral edema by 60% and 75%, respectively. In the future, it is necessary to establish an interdisciplinary plateau training collaboration system, integrate professional knowledge in multiple fields such as physiology, sports training, clinical medicine, bioengineering and data analysis, and jointly formulate standardized safety specifications. The research focus should shift to the exploration of the molecular mechanism of gene-environment interaction, as well as the application and development of innovative technologies such as wearable devices and virtual reality, to provide more scientific and effective guidance for plateau activities for all kinds of people.

#### **Author contributions**

LL: Conceptualization, Writing – original draft, Writing – review and editing, Visualization. TF: Conceptualization, Funding acquisition, Writing – review and editing. ZL: Visualization, Writing – review and editing. PZ: Writing – review and editing. LZ: Conceptualization, Supervision, Writing – review and editing.

## **Funding**

The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by Sichuan Science and Technology Program (number: 2023NSFSC1646) and "Qimingxing" Research Fund for Young Talents (number: HXQMX0011).

#### Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

#### Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

#### References

Aksel, G., Çorbacıoğlu, Ş. K., and Özen, C. (2019). High-altitude illness: management approach. *Turk J. Emerg. Med.* 19 (4), 121–126. doi:10.1016/j.tjem.2019.09.002

Albertus-Cámara, I., Ferrer-López, V., and Martínez-González-Moro, I. (2022). The effect of normobaric hypoxia in middle- and/or long-distance runners: systematic review. *Biol. (Basel).* 11 (5), 689. doi:10.3390/biology11050689

Almendros-Ruiz, A., Conde-Pipó, J., Aranda-Martínez, P., Olivares-Jabalera, J., Acuña-Castroviejo, D., Requena, B., et al. (2025). Melatonin secretion and impacts of training and match schedules on sleep quality, recovery, and circadian rhythms in young professional football players. *Biomolecules* 15 (5), 700. doi:10.3390/biom15050700

Altini, M. (2020). Individual adaptation and HRV in elite triathletes during altitude training.  $HIIT\,Sci.$ 

Altini, M., Berk, S., and Jansen, T. (2020). Heart rate variability during the first week of an altitude training camp is representative of individual training adaptation at the end of the camp in elite triathletes. *Sports Perform. Sci. Rep.* 125, 60.

Armstrong, L. E., Stearns, R. L., Huggins, R. A., Sekiguchi, Y., Mershon, A. J., and Casa, D. J. (2025). Reference values for hydration biomarkers: optimizing athletic performance and recovery. *Open Access J. Sports Med.* 16, 31–50. doi:10.2147/OAJSM.S508656

Askew, E. W. (2002). Work at high altitude and oxidative stress: antioxidant nutrients. *Toxicology* 180 (2), 107–119. doi:10.1016/s0300-483x(02)00385-2

Augsburger, G. R., Sobolewski, E. J., Escalante, G., and Graybeal, A. J. (2025). Circadian regulation for optimizing sport and exercise performance. *Clocks Sleep* 7 (2), 18. doi:10.3390/clockssleep7020018

Baranauskas, M. N., Fulton, T. J., Fly, A. D., Martin, B. J., Mickleborough, T. D., and Chapman, R. F. (2022). High intraindividual variability in the response of serum erythropoietin to multiple simulated altitude exposures. *High Alt. Med. and Biol.* 23 (1), 85–89. doi:10.1089/ham.2021.0154

Bardsley, E. N., Schultz, H. D., Niewiński, P., and Paton, J. F. (2023). "Targeting carotid body chemoreceptors as a therapeutic intervention," in *Primer on the autonomic nervous System*. Elsevier, 771–777.

Behrendt, T., Bielitzki, R., Behrens, M., Herold, F., and Schega, L. (2022). Effects of intermittent hypoxia–hyperoxia on performance-and health-related outcomes in humans: a systematic review. *Sports Medicine-Open* 8 (1), 70. doi:10.1186/s40798-022-00450-x

Berendsen, R. R., Bärtsch, P., Basnyat, B., Berger, M. M., Hackett, P., Luks, A. M., et al. (2022). Strengthening altitude knowledge: a Delphi Study to define minimum knowledge of altitude illness for laypersons traveling to high altitude. *High. Alt. Med. Biol.* 23 (4), 330–337. doi:10.1089/ham.2022.0083

Berger, M. M., Schiefer, L., Treff, G., Sareban, M., Swenson, E., and Bärtsch, P. (2020). Acute high-altitude illness: updated principles of pathophysiology, prevention, and treatment. *Dtsch. Z Sportmed.* 71 (11-12), 267–274. doi:10.5960/dzsm.2020.445

Berger, M. M., Sareban, M., Schiefer, L. M., Swenson, K. E., Treff, F., Schäfer, L., et al. (2022). Effects of acetazolamide on pulmonary artery pressure and prevention of high-altitude pulmonary edema after rapid active ascent to 4,559 m. *J. Appl. Physiology* 132 (6), 1361–1369. doi:10.1152/japplphysiol.00806.2021

Berger, M. M., Hüsing, A., Niessen, N., Schiefer, L. M., Schneider, M., Bärtsch, P., et al. (2023). Prevalence and knowledge about acute mountain sickness in the Western Alps. *PLoS One* 18 (9), e0291060. doi:10.1371/journal.pone.0291060

Bhaumik, G., Sharma, R. P., Dass, D., Lama, H., Chauhan, S. K., Verma, S. S., et al. (2003). Hypoxic ventilatory response changes of men and women 6 to 7 days after climbing from 2100 m to 4350 m altitude and after descent. *High Alt. Med. and Biol.* 4 (3), 341–348. doi:10.1089/152702903769192296

Bolten, M. (2024). Monitoring training load and identifying fatigue in young elite speed skaters using machine learning methods. Enschede, Netherlands: University of Twente.

Bonato, G., Goodman, S. P. J., and Tjh, L. (2023). Physiological and performance effects of live high train low altitude training for elite endurance athletes: a narrative review. *Curr. Res. Physiol.* 6, 100113. doi:10.1016/j.crphys.2023.100113

#### Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Boos, C. J., Mellor, A., Woods, D. R., and O'Hara, J. P. (2022). The effect of high-altitude acclimatisation on ultra-short heart rate variability. *Front. Cardiovasc. Med.* 9, 787147. doi:10.3389/fcvm.2022.787147

Bovolon, L., De Fano, A., Di Pinto, G., Rosito, S. A., Scaramuzza, C., Tanet, E., et al. (2025). Integrating brain-body-behavior data for performance optimization: augmented technologies for the next generation of sport psychologists. *Psychol. Sport Exerc.* 81, 102954. doi:10.1016/j.psychsport.2025.102954

Bradbury, K. E., Yurkevicius, B. R., Mitchell, K. M., Coffman, K. E., Salgado, R. M., Fulco, C. S., et al. (2020a). Acetazolamide does not alter endurance exercise performance at 3,500-m altitude. *J. Appl. Physiol.* 128 (2), 390–396. doi:10.1152/japplphysiol.00655.2019

Bradbury, K. E., Berryman, C. E., Wilson, M. A., Luippold, A. J., Kenefick, R. W., Young, A. J., et al. (2020b). Effects of carbohydrate supplementation on aerobic exercise performance during acute high altitude exposure and after 22 days of acclimatization and energy deficit. *J. Int. Soc. Sports Nutr.* 17 (1), 4. doi:10.1186/s12970-020-0335-2

Buroker, N. E., Ning, X. H., Zhou, Z. N., Li, K., Cen, W. J., Wu, X. F., et al. (2012). EPAS1 and EGLN1 associations with high altitude sickness in Han and Tibetan Chinese at the Qinghai-Tibetan Plateau. *Blood Cells Mol. Dis.* 49 (2), 67–73. doi:10.1016/j.bcmd.2012.04.004

Burtscher, M., and Koch, R. (2016). Effects of pre-acclimatization applying the "climb high and sleep low" maxim: an example of rapid but safe ascent to extreme altitude. *J. Hum. Perform. Extreme Environ.* 12 (2), 2. doi:10.7771/2327-2937.1081

Burtscher, M., and Tannheimer, M. (2024). "Hypoxia conditioning for pre-acclimatization before going to high altitude," in *Hypoxia conditioning in health, exercise and sport*. Abingdon, Oxon, United Kingdom: Routledge, 199–209.

Burtscher, M., Millet, G. P., and Burtscher, J. (2022a). Hypoxia conditioning for high-altitude pre-acclimatization. *J. Sci. Sport Exerc.* 4 (4), 331–345. doi:10.1007/s42978-021-00150-0

Burtscher, J., Mallet, R. T., Pialoux, V., Millet, G. P., and Burtscher, M. (2022b). Adaptive responses to hypoxia and/or hyperoxia in humans. *Antioxidants and Redox Signal*. 37 (13), 887–912. doi:10.1089/ars.2021.0280

Cao, W., He, Y., Fu, R., Chen, Y., Yu, J., and He, Z. (2025). A review of carbohydrate supplementation approaches and strategies for optimizing performance in elite long-distance endurance. *Nutrients* 17 (5), 918. doi:10.3390/nu17050918

Casado, A., Foster, C., Bakken, M., and Tjelta, L. I. (2023). Does lactate-guided threshold interval training within a high-volume low-intensity approach represent the "next step" in the evolution of distance running training? *Int. J. Environ. Res. Public Health* 20 (5), 3782. doi:10.3390/ijerph20053782

Castiglioni, P., Meriggi, P., Di Rienzo, M., Lombardi, C., Parati, G., and Faini, A. (2022). Heart rate variability from wearable photoplethysmography systems: implications in sleep studies at high altitude. *Sensors* 22 (8), 2891. doi:10.3390/s22082891

Chander, H., Shojaei, A., Deb, S., Kodithuwakku Arachchige, S. N. K., Hudson, C., Knight, A. C., et al. (2021). Impact of virtual reality-generated construction environments at different heights on postural stability and fall risk. *Workplace Health Saf*, 69 (1), 32–40. doi:10.1177/2165079920934000

Chang, W.-Y., Wu, K.-C., Yang, A.-L., and Chen, Y.-L. (2023). Simulated altitude training and sport performance: protocols and physiological effects. *Appl. Sci.* 13 (20), 11381. doi:10.3390/app132011381

Chatterjee, R., and Gupta, L. (2023). "Preexisting condition and travel to high altitude," in *High altitude medicine: a case-based approach*. Springer, 211–219.

Chen, Y., Jiang, C., Luo, Y., Liu, F., and Gao, Y. (2014). An EPAS1 haplotype is associated with high altitude polycythemia in male Han Chinese at the Qinghai-Tibetan plateau. *Wilderness and Environ. Med.* 25 (4), 392–400. doi:10.1016/j.wem. 2014.06.003

Chen, B., Wu, Z., Huang, X., Li, Z., Wu, Q., and Chen, Z. (2023). Effect of altitude training on the aerobic capacity of athletes: a systematic review and meta-analysis. *Heliyon* 9 (9), e20188. doi:10.1016/j.heliyon.2023.e20188

Clark, S. T., and Sheraton, M. (2025). "EMS high-altitude field prophylaxis and treatment," in *StatPearls*. Treasure Island, FL, United States: StatPearls Publishing LLC.

Constantini, K., Bouillet, A. C., Wiggins, C. C., Martin, B. J., and Chapman, R. F. (2021). Ventilatory responsiveness during exercise and performance impairment in acute hypoxia. *Med. Sci. Sports Exerc.* 53 (2), 295–305. doi:10.1249/MSS.00000000000002466

- d Almeida, A. G. (2023). "Exercise at high-altitude," in *High altitude medicine: a case-based approach*. Springer, 183–198.
- De Wilde, L., Roels, K., Deventer, K., and Van Eenoo, P. (2021). Automated sample preparation for the detection and confirmation of hypoxia-inducible factor stabilizers in urine. *Biomed. Chromatogr.* 35 (2), e4970. doi:10.1002/bmc.4970
- Debevec, T., Pialoux, V., Poussel, M., Willis, S. J., Martin, A., Osredkar, D., et al. (2020). Cardio-respiratory, oxidative stress and acute mountain sickness responses to normobaric and hypobaric hypoxia in prematurely born adults. *Eur. J. Appl. Physiol.* 120 (6), 1341–1355. doi:10.1007/s00421-020-04366-w
- Deldicque, L. (2022). Does normobaric hypoxic resistance training confer benefit over normoxic training in athletes? A narrative review. *J. Sci. Sport Exerc.* 4 (4), 306–314. doi:10.1007/s42978-021-00159-5
- Deng, L., Liu, Y., Chen, B., Hou, J., Liu, A., and Yuan, X. (2025). Impact of altitude training on athletes' aerobic capacity: a systematic review and meta-analysis. *Life* 15 (2), 305. doi:10.3390/life15020305
- Deshwal, R., Iqbal, M., and Basnet, S. (2012). Nifedipine for the treatment of high altitude pulmonary edema. *Wilderness and Environ. Med.* 23 (1), 7–10. doi:10.1016/j.wem.2011.10.003
- Diebel, S. R., Newhouse, I., Thompson, D. S., and Johnson, V. B. K. (2017). The effects of a 10-day altitude training camp at 1828 meters on varsity cross-country runners. *Int. J. Exerc Sci.* 10 (1), 97–107. doi:10.70252/WOXO9327
- DiMM, T., Papalski, H. W., NR-P, F. P. C., WP-C, D. M. M., Gribbin, T. C., Brooks, H. M. C. S., et al. (2024). Altitude emergencies in the prehospital environment.
- Dragos, O., Alexe, D. I., Ursu, E. V., Alexe, C. I., Voinea, N. L., Haisan, P. L., et al. (2022). Training in hypoxia at alternating high altitudes is a factor favoring the increase in sports performance. *Healthc.* (*Basel*) 10 (11), 2296. doi:10.3390/healthcare10112296
- Dünnwald, T., Kienast, R., Niederseer, D., and Burtscher, M. (2021). The use of pulse oximetry in the assessment of acclimatization to high altitude. *Sensors (Basel)* 21 (4), 1263. doi:10.3390/s21041263
- Eales, O. O., and Kruger, A. (2024). Development of practical emergency simulation training in primary health care: lessons learnt. *Afr. J. Prim. Health Care Fam. Med.* 16 (1), e1–e3. doi:10.4102/phcfm.v16i1.4404
- Edwards, B., Waterhouse, J., Atkinson, G., and Reilly, T. (2002). Exercise does not necessarily influence the phase of the circadian rhythm in temperature in healthy humans. *J. sports Sci.* 20 (9), 725–732. doi:10.1080/026404102320219437
- Esteve-Lanao, J., Foster, C., Seiler, S., and Lucia, A. (2007). Impact of training intensity distribution on performance in endurance athletes. *J. Strength Cond. Res.* 21 (3), 943–949. doi:10.1519/R-19725.1
- Fentaw, S., Tadesse, T., and Birhanu, Z. (2025). Methodological and aerobic capacity adaptations of high-intensity interval training at different altitudes in distance runners: a comprehensive meta-analysis. *Physiol. Rep.* 13 (9), e70349. doi:10.14814/phy2. 70349
- Foster, J., Smallcombe, J. W., Hodder, S., Jay, O., Flouris, A. D., Nybo, L., et al. (2022). Quantifying the impact of heat on human physical work capacity; part III: the impact of solar radiation varies with air temperature, humidity, and clothing coverage. *Int. J. Biometeorology* 66 (1), 175–188. doi:10.1007/s00484-021-02205-x
- Furian, M., Tannheimer, M., and Burtscher, M. (2022). Effects of acute exposure and acclimatization to high-altitude on oxygen saturation and related cardiorespiratory fitness in health and disease. *J. Clin. Med.* 11 (22), 6699. doi:10.3390/jcm11226699
- Gao, D., Wang, Y., Zhang, R., and Zhang, Y. (2021). Efficacy of acetazolamide for the prophylaxis of acute mountain sickness: a systematic review, meta-analysis and trial sequential analysis of randomized clinical trials. *Am. J. Med. Sci.* 361 (5), 635–645. doi:10.1016/j.amims.2020.12.022
- Garg, R. K., Bhola, J., and Soni, S. K. (2021). Healthcare monitoring of mountaineers by low power wireless sensor networks. *Inf. Med. Unlocked* 27, 100775. doi:10.1016/j.imu.2021.100775
- Garvican-Lewis, L. A., Halliday, I., Abbiss, C. R., Saunders, P. U., and Gore, C. J. (2015). Altitude exposure at 1800 m increases haemoglobin mass in distance runners. *J. Sports Sci. Med.* 14 (2), 413–417.
- Garvican-Lewis, L. A., Govus, A. D., Peeling, P., Abbiss, C. R., and Gore, C. J. (2016). Iron supplementation and altitude: decision making using a regression tree. *J. Sports Sci. Med.* 15 (1), 204–205.
- Gatterer, H., Villafuerte, F. C., Ulrich, S., Bhandari, S. S., Keyes, L. E., and Burtscher, M. (2024). Altitude illnesses. *Nat. Rev. Dis. Prim.* 10 (1), 43. doi:10.1038/s41572-024-00526-w
- Gaur, P., Prasad, S., Kumar, B., Sharma, S. K., and Vats, P. (2021). High-altitude hypoxia induced reactive oxygen species generation, signaling, and mitigation approaches. *Int. J. Biometeorology* 65 (4), 601–615. doi:10.1007/s00484-020-02037-1

- Geng, Y., Hu, Y., Li, B., Dawa, Z., and Zhang, F. (2025). The risk factors and predictors of chronic obstructive pulmonary disease in patients with obstructive sleep apnea-hypopnea syndrome at Plateau. *Clin. Respir. J.* 19 (2), e70053. doi:10.1111/crj.70053
- Girard, O., Amann, M., Aughey, R., Billaut, F., Bishop, D. J., Bourdon, P., et al. (2013). Position statement—altitude training for improving team-sport players' performance: current knowledge and unresolved issues. *Br. J. Sports Med.* 47 (Suppl. 1), i8–i16. doi:10.1136/bjsports-2013-093109
- Gong, G., Yin, L., Yuan, L., Sui, D., Sun, Y., Fu, H., et al. (2018). Ganglioside GM1 protects against high altitude cerebral edema in rats by suppressing the oxidative stress and inflammatory response *via* the PI3K/AKT-Nrf2 pathway. *Mol. Immunol.* 95, 91–98. doi:10.1016/j.molimm.2018.02.001
- Graham, A. M., and McCracken, K. G. (2019). Convergent evolution on the hypoxia-inducible factor (HIF) pathway genes EGLN1 and EPAS1 in high-altitude ducks. *Hered.* (*Edinb*). 122 (6), 819–832. doi:10.1038/s41437-018-0173-z
- Hadanny, A., Hachmo, Y., Rozali, D., Catalogna, M., Yaakobi, E., Sova, M., et al. (2022). Effects of hyperbaric oxygen therapy on mitochondrial respiration and physical performance in middle-aged athletes: a blinded, randomized controlled trial. *Sports Med. Open* 8 (1), 22. doi:10.1186/s40798-021-00403-w
- Hanaoka, M., Droma, Y., Basnyat, B., Ito, M., Kobayashi, N., Katsuyama, Y., et al. (2012). Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Sherpas. *PLoS One* 7 (12), e50566. doi:10.1371/journal.pone.0050566
- Hanaoka, M., Kobayashi, T., Droma, Y., Ota, M., Kobayashi, N., Wada, Y., et al. (2024). Clinical and pathophysiological features of high-altitude pulmonary edema in the Japanese population: a review of studies on high-altitude pulmonary edema in Japan. *Intern. Med.* 63 (17), 2355–2366. doi:10.2169/internalmedicine.2533-23
- Horiuchi, M., Dobashi, S., Kiuchi, M., Fukuoka, Y., and Koyama, K. (2022). Hypoxic-induced resting ventilatory and circulatory responses under multistep hypoxia is related to decline in peak aerobic capacity in hypoxia. *J. Physiological Anthropol.* 41 (1), 36. doi:10.1186/s40101-022-00310-3
- Huang, Z., Yang, S., Li, C., Xie, X., and Wang, Y. (2023). The effects of intermittent hypoxic training on the aerobic capacity of exercisers: a systemic review and metanalysis. *BMC Sports Sci. Med. Rehabilitation* 15 (1), 174. doi:10.1186/s13102-023-00784-3
- Huang, T., Liang, Z., Wang, K., Miao, X., and Zheng, L. (2025). Novel insights into athlete physical recovery concerning lactate metabolism, lactate clearance and fatigue monitoring: a comprehensive review. *Front. Physiol.* 16, 1459717. doi:10.3389/fphys.2025.1459717
- Humberstone-Gough, C. E., Saunders, P. U., Bonetti, D. L., Stephens, S., Bullock, N., Anson, J. M., et al. (2013). Comparison of live high: train low altitude and intermittent hypoxic exposure. *J. Sports Sci. Med.* 12 (3), 394–401.
- Irarrázaval, S., Allard, C., Campodónico, J., Pérez, D., Strobel, P., Vásquez, L., et al. (2017). Oxidative stress in Acute Hypobaric hypoxia. *High. Alt. Med. Biol.* 18 (2), 128–134. doi:10.1089/ham.2016.0119
- Isakovich, R., Cates, V. C., Pentz, B. A., Bird, J. D., Vanden Berg, E. R., de Freitas, E. M., et al. (2024). Using modified Fenn diagrams to assess ventilatory acclimatization during ascent to high altitude: effect of acetazolamide. *Exp. Physiol.* 109 (7), 1080–1098. doi:10.1113/EP091748
- Janssens, L. K., De Wilde, L., Van Eenoo, P., and Stove, C. P. (2024). Untargeted detection of HIF stabilizers in doping samples: Activity-Based screening with a stable *in vitro* bioassay. *Anal. Chem.* 96 (1), 238–247. doi:10.1021/acs.analchem.3c03816
- Jeukendrup, A. (2014). A step towards personalized sports nutrition: carbohydrate intake during exercise. *Sports Med.* 44 (1), S25–S33. doi:10.1007/s40279-014-0148-z
- Jin, F., Zheng, X., Yang, Y., Yao, G., Ye, L., Doeppner, T. R., et al. (2019). Impairment of hypoxia-induced angiogenesis by LDL involves a HIF-centered signaling network linking inflammatory TNF $\alpha$  and angiogenic VEGF. *Aging (Albany NY)* 11 (2), 328–349. doi:10.18632/aging.101726
- Koehle, M. S., Guenette, J. A., and Warburton, D. E. (2010). Oximetry, heart rate variability, and the diagnosis of mild-to-moderate acute mountain sickness. *Eur. J. Emerg. Med.* 17 (2), 119–122. doi:10.1097/MEJ.0b013e32832fa099
- Koivisto, A. E., Olsen, T., Paur, I., Paulsen, G., Bastani, N. E., Garthe, I., et al. (2019). Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: a randomized controlled trial. *PLoS One* 14 (6), e0217895. doi:10.1371/journal.pone.0217895
- Kot, J., Desola, J., Lind, F., Mueller, P., Jansen, E., Burman, F., et al. (2023). A European code of good practice for hyperbaric oxygen therapy-Review 2022. *Diving Hyperbaric Med.* 53 (4Suppl. l), 1–17. doi:10.28920/dhm53.4.suppl.1-17
- Krishnan, A., Guru, C. S., Sivaraman, A., Alwar, T., Sharma, D., and Angrish, P. (2021). Newer perspectives in lactate threshold estimation for endurance Sports–A mini-review. *Central Eur. J. Sport Sci. Med.* 35 (3), 99–116. doi:10.18276/cej.2021.3-09
- Küpper, T., Gieseler, U., Milledge, J., Morrison, A., and Schöffl, V. (2022). Portable hyperbaric chambers for the treatment of altitude disease. *Health Promot. and Phys. Activity* 20 (3), 36–40. doi:10.55225/hppa.429
- Lauterbach, C. J., Romano, P. A., Greisler, L. A., Brindle, R. A., Ford, K. R., and Kuennen, M. R. (2021). Accuracy and reliability of commercial wrist-worn pulse oximeter during normobaric hypoxia exposure under resting conditions. *Res. Q. Exerc. Sport* 92 (3), 549–558. doi:10.1080/02701367.2020.1759768

- Lawrence, J. (2022). Altitude illness: back on the horizon. Med. Today, 23.
- Lemieux, P., and Birot, O. (2021). Altitude, exercise, and skeletal muscle angio-adaptive responses to hypoxia: a complex story. *Front. Physiology* 12, 735557. doi:10.3389/fphys.2021.735557
- Li, Y., Li, C., Luo, T., Yue, T., Xiao, W., Yang, L., et al. (2023). Progress in the treatment of high altitude cerebral edema: targeting REDOX homeostasis. *J. Inflamm. Res.* 16, 2645–2660. doi:10.2147/JIR.S415695
- Li, J., Huang, Z., Wang, H., Ding, H., Jia, Q., Zhao, W., et al. (2024a). Multi-index comprehensive evaluation model for assessing risk to trainees in an emergency rescue training base for building collapse. *Sci. Rep.* 14 (1), 4792. doi:10.1038/s41598-024-55368-z
- Li, X., Xu, S., Li, X., Wang, Y., Sheng, Y., Zhang, H., et al. (2024b). Novel insight into the genetic signatures of altitude adaptation related body composition in Tibetans. *Front. Public Health* 12, 1355659. doi:10.3389/fpubh.2024.1355659
- Li, S., Zhang, Q., Yang, C., and Zhang, F. (2025). Mechanism of formation of high altitude cerebral edema: recent advances. *Discov. Med.* 2 (1), 175–17. doi:10.1007/s44337-025-00420-8
- Lili, L., Meydan, C., Rickard, N., and Zhang, B. (2024). The importance of personalization in high altitude protocols for hematologic and metabolic benefits in sports: a multi-dimensional N-of-1 case study. *Heliyon* 10 (1), e23159. doi:10.1016/j.heliyon.2023.e23159
- Lin, P.-H., Chang, W.-L., Sheu, S.-C., and Li, B.-R. (2020). A noninvasive wearable device for real-time monitoring of secretion sweat pressure by digital display. *Iscience* 23 (11), 101658. doi:10.1016/j.isci.2020.101658
- Lizamore, C. A., and Hamlin, M. J. (2017). The use of simulated altitude techniques for beneficial cardiovascular health outcomes in nonathletic, sedentary, and clinical populations: a literature review. *High. Alt. Med. Biol.* 18 (4), 305–321. doi:10.1089/ham.2017.0050
- Luks, A. M., Beidleman, B. A., Freer, L., Grissom, C. K., Keyes, L. E., McIntosh, S. E., et al. (2024). Wilderness Medical Society Clinical Practice Guidelines for the prevention, diagnosis, and treatment of acute altitude illness: 2024 update. *Wilderness Environ. Med.* 35 (1\_Suppl. l), 2s–19s. doi:10.1016/j.wem.2023.05.013
- Luo, Z., Tian, M., Yang, G., Tan, Q., Chen, Y., Li, G., et al. (2022). Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. *Signal Transduct. Target Ther.* 7 (1), 218. doi:10.1038/s41392-022-01080-1
- Ma, X., Guo, G., Wu, X., Wu, Q., Liu, F., Zhang, H., et al. (2023). Advances in integration, wearable applications, and artificial intelligence of biomedical microfluidics systems. *Micromachines* 14 (5), 972. doi:10.3390/mi14050972
- Magalhães, P. M., Cipriano, F., Morais, J. E., and Bragada, J. A. (2024). Effects of a 16-Week Training Program with a pyramidal intensity distribution on recreational Male cyclists. *Sports (Basel)* 12 (1), 17. doi:10.3390/sports12010017
- Man, M. C., Ganera, C., Bărbuleţ, G. D., Krzysztofik, M., Panaet, A. E., Cucui, A. I., et al. (2021). The modifications of haemoglobin, erythropoietin values and running performance while training at Mountain vs. hilltop vs. seaside. *Int. J. Environ. Res. Public Health.* 18 (18), 9486. doi:10.3390/ijerph18189486
- McKay, A. K. A., Anderson, B., Peeling, P., Whitfield, J., Tee, N., Zeder, C., et al. (2024). Iron absorption in highly trained Male runners: does it matter when and where you eat your iron? *Med. Sci. Sports Exerc.* 56 (1), 118–127. doi:10.1249/MSS.0000000000003272
- Mohanty, S., and Ahmad, Y. (2025). Recent updates on sickness during Acute High-altitude hypoxic exposure and its management. *Adv. Redox Res.* 15, 100127. doi:10.1016/j.arres.2025.100127
- Mølmen, K. S., Almquist, N. W., and Skattebo, Ø. (2025). Effects of exercise training on mitochondrial and capillary growth in human skeletal muscle: a systematic review and meta-regression. *Sports Med.* 55 (1), 115–144. doi:10.1007/s40279-024-02120-2
- Montgomery, A. B., Luce, J. M., Michael, P., and Mills, J. (1989). Effects of dexamethasone on the incidence of acute mountain sickness at two intermediate altitudes. *Jama* 261 (5), 734–736. doi:10.1001/jama.1989.03420050084045
- Mujika, I., Bourdillon, N., Zelenkova, I., Vergnoux, F., and Millet, G. P. (2024). Hematological and performance adaptations to altitude training (2,320 m) in elite middle-distance and distance swimmers. *Front. Physiology* 15, 1474479. doi:10.3389/fphys.2024.1474479
  - Murdoch, D. (2010). Altitude sickness. BMJ Clin. Evid. 2010, 1209.
- Nakamoto, F. P., Ivamoto, R. K., Andrade, M. S., de Lira, C. A., Silva, B. M., and da Silva, A. C. (2016). Effect of intermittent hypoxic training followed by intermittent hypoxic exposure on aerobic capacity of long distance runners. *J. Strength Cond. Res.* 30 (6), 1708–1720. doi:10.1519/JSC.0000000000001258
- Natale, P., Palmer, S. C., Jaure, A., Hodson, E. M., Ruospo, M., Cooper, T. E., et al. (2022). Hypoxia-inducible factor stabilisers for the anaemia of chronic kidney disease. *Cochrane Database Syst. Rev.* 8 (8), Cd013751. doi:10.1002/14651858.CD013751.pub2
- Ngo, C., Munoz, C., Lueken, M., Hülkenberg, A., Bollheimer, C., Briko, A., et al. (2022). A wearable, multi-frequency device to measure muscle activity combining simultaneous electromyography and electrical impedance myography. *Sensors* 22 (5), 1941. doi:10.3390/s22051941
- Oeung, B., Pham, K., Olfert, I. M., Zerda, D. J., Gaio, E., Powell, F. L., et al. (2023). The normal distribution of the hypoxic ventilatory response and methodological impacts:

- a meta-analysis and computational investigation. J. Physiol. 601 (19), 4423–4440. doi:10.1113/JP284767
- Okazaki, K., Stray-Gundersen, J., Chapman, R. F., and Levine, B. D. (1985)2019). Iron insufficiency diminishes the erythropoietic response to moderate altitude exposure. *J. Appl. Physiol.* 127 (6), 1569–1578. doi:10.1152/japplphysiol.00115.2018
- Oleksak, P., Nepovimova, E., Valko, M., Alwasel, S., Alomar, S., and Kuca, K. (2024). Comprehensive analysis of prohibited substances and methods in sports: unveiling trends, pharmacokinetics, and WADA evolution. *Environ. Toxicol. Pharmacol.* 108, 104447. doi:10.1016/j.etap.2024.104447
- Omidi, A., Hawley, G. D., Kain, D., Jazuli, F., Meconnen, M., Polemidiotis, M., et al. (2025). What is new in Altitude- and cold-related illnesses of Travel: Appraisal and Summary of the updated Guidelines from the wilderness medical Society. *Int. J. Environ. Res. Public Health* 22 (2), 284. doi:10.3390/ijerph22020284
- Parajuli, G., Neupane, S., Kunwar, S., Adhikari, R., and Acharya, T. D. (2023). A GIS-based evacuation route planning in flood-susceptible area of Siraha municipality, Nepal. *ISPRS Int. J. Geo-Information.* 12 (7), 286. doi:10.3390/ijgi12070286
- Park, H. Y., Jung, W. S., Kim, J., Hwang, H., and Lim, K. (2018a). Efficacy of intermittent hypoxic training on hemodynamic function and exercise performance in competitive swimmers. *J. Exerc. Nutr. Biochem.* 22 (4), 32–38. doi:10.20463/jenb.2018.0028
- Park, H. Y., Shin, C., and Lim, K. (2018b). Intermittent hypoxic training for 6 weeks in 3000 m hypobaric hypoxia conditions enhances exercise economy and aerobic exercise performance in moderately trained swimmers. *Biol. Sport* 35 (1), 49–56. doi:10.5114/biolsport.2018.70751
- Périard, J. D., Eijsvogels, T. M., and Daanen, H. A. (2021). Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. *Physiol. Rev.* 101, 1873–1979. doi:10.1152/physrev.00038.2020
- Perrey, S., Quaresima, V., and Ferrari, M. (2024). Muscle oximetry in sports science: an updated systematic review. *Sports Med.* 54 (4), 975–996. doi:10.1007/s40279-023-01987-x
- Pham, T. D. (2021). Time–frequency time–space LSTM for robust classification of physiological signals. Sci. Rep. 11 (1), 6936. doi:10.1038/s41598-021-86432-7
- Płoszczyca, K., Langfort, J., and Czuba, M. (2018). The effects of altitude training on erythropoietic response and hematological variables in adult athletes: a narrative review. *Front. Physiol.* 9, 375. doi:10.3389/fphys.2018.00375
- Richalet, J. P., and Gore, C. J. (2008). Live and/or sleep high:train low, using normobaric hypoxia. *Scand. J. Med. Sci. Sports* 18 (Suppl. 1), 29–37. doi:10.1111/j.1600-0838 2008 00830 x
- Richalet, J. P., Pillard, F., D, L. E. M., Rivière, D., Oriol, P., Poussel, M., et al. (2021a). Validation of a Score for the detection of subjects with high risk for severe high-altitude illness. *Med. Sci. Sports Exerc.* 53 (6), 1294–1302. doi:10.1249/MSS.00000000000002586
- Richalet, J.-P., Julia, C., and Lhuissier, F. J. (2021b). Evaluation of the Lake Louise score for acute Mountain sickness and its 2018 version in a cohort of 484 trekkers at high altitude. *High Alt. Med. and Biol.* 22 (4), 353–361. doi:10.1089/ham. 2020.0226
- Roach, R. C., Hackett, P. H., Oelz, O., Bärtsch, P., Luks, A. M., MacInnis, M. J., et al. (2018). The 2018 Lake louise Acute Mountain Sickness Score. *High. Alt. Med. Biol.* 19 (1), 4–6. doi:10.1089/ham.2017.0164
- Rong, W., Geok, S. K., Samsudin, S., Zhao, Y., Ma, H., and Zhang, X. (2025). Effects of strength training on neuromuscular adaptations in the development of maximal strength: a systematic review and meta-analysis. *Sci. Rep.* 15 (1), 19315. doi:10.1038/s41598-025-03070-z
- Rosales, A. M., Shute, R. J., Hailes, W. S., Collins, C. W., Ruby, B. C., and Slivka, D. R. (2022). Independent effects of acute normobaric hypoxia and hypobaric hypoxia on human physiology. *Sci. Rep.* 12 (1), 19570. doi:10.1038/s41598-022-23698-5
- Ross, M., Kargl, C. K., Ferguson, R., Gavin, T. P., and Hellsten, Y. (2023). Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. *Eur. J. Appl. Physiol.* 123 (7), 1415–1432. doi:10.1007/s00421-022-05128-6
- Sankhala, D., Pali, M., Lin, K.-C., Jagannath, B., Muthukumar, S., and Prasad, S. (2021). Analysis of bio-electro-chemical signals from passive sweat-based wearable electro-impedance spectroscopy (EIS) towards assessing blood glucose modulations. arXiv Prepr. arXiv:210401793. doi:10.48550/arXiv.2104.01793
- Saugy, J. J., Schmitt, L., Cejuela, R., Faiss, R., Hauser, A., Wehrlin, J. P., et al. (2014). Comparison of "Live High-Train Low" in normobaric *versus* hypobaric hypoxia. *PLoS One* 9 (12), e114418. doi:10.1371/journal.pone.0114418
- Saugy, J. J., Schmoutz, T., and Botrè, F. (2022). Altitude and erythropoietin: comparative evaluation of their impact on key parameters of the athlete biological passport: a review. *Front. Sports Act. Living* 4, 864532. doi:10.3389/fspor.2022.864532
- Savioli, G., Ceresa, I. F., Gori, G., Fumoso, F., Gri, N., Floris, V., et al. (2022). Pathophysiology and therapy of high-altitude sickness: practical approach in emergency and critical care. *J. Clin. Med.* 11 (14), 3937. doi:10.3390/jcm11143937
- Schmidt, W. F. J., Hoffmeister, T., Haupt, S., Schwenke, D., Wachsmuth, N. B., and Byrnes, W. C. (2020). Chronic exposure to low-dose carbon monoxide alters hemoglobin Mass and VO2max. *Med. Sci. Sports Exerc.* 52 (9), 1879–1887. doi:10.1249/MSS.0000000000002330

- Sharma, S., Singh, Y., Sandhir, R., Singh, S., Ganju, L., Kumar, B., et al. (2021). Mitochondrial DNA mutations contribute to high altitude pulmonary edema *via* increased oxidative stress and metabolic reprogramming during hypobaric hypoxia. *Biochim. Biophys. Acta Bioenerg.* 1862 (8), 148431. doi:10.1016/j.bbabio.2021.148431
- Si, J., Zhang, X., Li, M., Yu, J., Zhang, Z., He, Q., et al. (2021). Wearable wireless real-time cerebral oximeter for measuring regional cerebral oxygen saturation. *Sci. China Inf. Sci.* 64 (1), 112203. doi:10.1007/s11432-020-2995-5
- Simancas-Racines, D., Arevalo-Rodriguez, I., Osorio, D., Franco, J. V., Xu, Y., and Hidalgo, R. (2018). Interventions for treating acute high altitude illness. *Cochrane Database Syst. Rev.* 6 (6), Cd009567. doi:10.1002/14651858.CD009567.pub2
- Spooner, L. M., Olin, J. L., and Debellis, R. J. (2007). Pharmacotherapy of high-altitude illness. *Am. J. Lifestyle Med.* 1 (2), 129–141. doi:10.1177/1559827606294806
- Sridharan, K., and Sivaramakrishnan, G. (2018). Pharmacological interventions for preventing acute mountain sickness: a network meta-analysis and trial sequential analysis of randomized clinical trials. *Ann. Med.* 50 (2), 147–155. doi:10.1080/07853890.2017.1407034
- Suchý, J., and Waic, M. (2017). The use of altitude training in sports-from antiquity to present day. *Sport Sci.* 10 (1), 23–33.
- Sul, J.-H., Piyathilaka, L., Moratuwage, D., Dunu Arachchige, S., Jayawardena, A., Kahandawa, G., et al. (2025). Electromyography signal acquisition, filtering, and data analysis for Exoskeleton Development. *Sensors* 25 (13), 4004. doi:10.3390/s25134004
- Sun, H.-C., Lin, T.-Y., and Tsai, Y.-L. (2023). Performance prediction in major league baseball by long short-term memory networks. *Int. J. Data Sci. Anal.* 15 (1), 93–104. doi:10.1007/s41060-022-00313-4
- Sun, S., Tan, R., Tong, Y., Mo, S., Huang, Q., and Hu, K. (2024). "Research on training quantity and sports performance based on LSTM model: a case Study of marathon sports," *Proceedings of the 2024 international conference on sports technology and performance analysis.*
- Supriya, R., Singh, K. P., Gao, Y., Tao, D., Cheour, S., Dutheil, F., et al. (2022). Mimicking gene-environment interaction of higher altitude dwellers by intermittent hypoxia training: COVID-19 preventive strategies. *Biology* 12 (1), 6. doi:10.3390/biology12010006
- Taelman, J., Vanderhaegen, J., Robijns, M., Naulaers, G., Spaepen, A., and Van Huffel, S. (2011). Estimation of muscle fatigue using surface electromyography and near-infrared spectroscopy. Oxygen transport to tissue XXXII. Springer, 353–359.
- Tannheimer, M., and Lechner, R. (2019). The correct measurement of oxygen saturation at high altitude. *Sleep. Breath.* 23 (4), 1101–1106. doi:10.1007/s11325-019-01784-9
- Thevis, M., Kuuranne, T., and Geyer, H. (2024). Annual banned-substance review analytical approaches in human sports drug testing. *Drug Test. analysis* 12, 7–26. doi:10.1002/dta.2735
- Tomazin, K., Almeida, F., Stirn, I., Padial, P., Bonitch-Góngora, J., Morales-Artacho, A. J., et al. (2021). Neuromuscular adaptations after an altitude training camp in elite judo athletes. *Int. J. Environ. Res. public health* 18 (13), 6777. doi:10.3390/ijerph18136777
- Tong, T. K., Kong, Z., Lin, H., He, Y., Lippi, G., Shi, Q., et al. (2016). Effects of 12-Week endurance training at natural low altitude on the blood redox homeostasis of professional adolescent athletes: a quasi-experimental field trial. *Oxid. Med. Cell. Longev.* 2016, 4848015. doi:10.1155/2016/4848015
- van Veelen, M. J., Likar, R., Tannheimer, M., Bloch, K. E., Ulrich, S., Philadelphy, M., et al. (2025). Emergency care for high-altitude trekking and climbing. *High. Alt. Med. Biol.* 26 (1), 70–86. doi:10.1089/ham.2024.0065
- Vartika, J. S., Choudhary, M., Bhagyawant, S. S., and Srivastava, N. (2022). "High altitude sickness: environmental stressor and altered physiological response," in *High altitude sickness-solutions from genomics, proteomics and antioxidant interventions*. Springer, 19–35.
- Velasquez, W., and Alvarez-Alvarado, M. S. (2021). Outdoors evacuation routes algorithm using cellular automata and graph theory for uphills and downhills. Sustainability 13 (9), 4731. doi:10.3390/su13094731
- Viscor, G., Corominas, J., and Carceller, A. (2023). Nutrition and hydration for high-altitude alpinism: a narrative review. *Int. J. Environ. Res. Public Health* 20 (4), 3186. doi:10.3390/ijerph20043186
- Voisin, S., Cieszczyk, P., Pushkarev, V. P., Dyatlov, D. A., Vashlyayev, B. F., Shumaylov, V. A., et al. (2014). EPAS1 gene variants are associated with sprint/power athletic performance in two cohorts of European athletes. *BMC Genomics* 15 (1), 382. doi:10.1186/1471-2164-15-382
- Wachsmuth, N., Völzke, C., Prommer, N., Schmidt-Trucksäss, A., Frese, F., Spahl, O., et al. (2013). The effects of classic altitude training on hemoglobin mass in swimmers. *Eur. J. Appl. Physiology* 113 (5), 1199–1211. doi:10.1007/s00421-012-2536-0

- Wackerhage, H., and Schoenfeld, B. J. (2021). Personalized, evidence-informed training plans and exercise prescriptions for performance, fitness and health. *Sports Med.* 51 (9), 1805–1813. doi:10.1007/s40279-021-01495-w
- Waldner, N. F., Hartmann, S. E., Muralt, L., Lichtblau, M., Bader, P. R., Rawling, J. M., et al. (2025). Oxygen saturation and acute mountain sickness during repeated altitude exposures simulating high-altitude working schedules. *Sci. Rep.* 15 (1), 12987. doi:10.1038/s41598-025-97554-7
- Wang, B., Chen, S., Song, J., Huang, D., and Xiao, G. (2024). Recent advances in predicting acute mountain sickness: from multidimensional cohort studies to cutting-edge model applications. *Front. Physiology* 15, 1397280. doi:10.3389/fphys.2024.1397280
- Wang, J., Lian, N., Tang, K., Deng, Y., and Li, T. (2025). Comparative effects of pharmacological interventions for the prevention of acute mountain sickness: a systematic review and Bayesian network meta-analysis. *Travel Med. Infect. Dis.* 66, 102868. doi:10.1016/j.tmaid.2025.102868
- Wardenaar, F. C. (2022). Human hydration indices: spot urine sample reference values for urine concentration markers in athletic populations. *Dietetics* 1 (1), 39–51. doi:10.3390/dietetics1010005
- Wei, C. Y., Chen, P. N., Lin, S. S., Huang, T. W., Sun, L. C., Tseng, C. W., et al. (2022). Using machine learning to determine the correlation between physiological and environmental parameters and the induction of acute Mountain sickness. *BMC Bioinforma*. 22 (Suppl. 5), 628. doi:10.1186/s12859-022-04749-0
- Westmacott, A., Sanal-Hayes, N. E., McLaughlin, M., Mair, J. L., and Hayes, L. D. (2022). High-intensity Interval Training (HIIT) in Hypoxia improves Maximal aerobic capacity more than HIIT in normoxia: a systematic review, metanalysis, and meta-regression. *Int. J. Environ. Res. Public Health* 19 (21), 14261. doi:10.3390/ijerph192114261
- Wiśniewska, A., Płoszczyca, K., and Czuba, M. (2020). Changes in erythropoietin and vascular endothelial growth factor following the use of different altitude training concepts. *J. Sports Med. Phys. Fit.* 60 (5), 677–684. doi:10.23736/S0022-4707.20.10404-3
- Wolf, M., and Gaddy, J. (2025). EMS altitude related conditions and treatment. StatPearls. Treasure Island, FL, United States: StatPearls Publishing LLC.
- Xie, J., Xie, S., Zhong, Z., Dong, H., Huang, P., Zhou, S., et al. (2024). Hypoxic preacclimatization combining intermittent hypoxia exposure with physical exercise significantly promotes the tolerance to acute hypoxia. *Front. Physiol.* 15, 1367642. doi:10.3389/fphys.2024.1367642
- Xu, J., Lv, L., He, B., Wang, G., and Bianbazhuoma, K. D. (2021). Characteristics of High Altitude Pulmonary Edema in Naqu at the Altitude of 4500 m. *Am. J. Med. Sci.* 362 (2), 154–160. doi:10.1016/j.amjms.2020.12.015
- Yang, Y. (2025). "Prediction on sports performance of primary school students based on LSTM neural network," in *Proceedings of the 2025 international conference on artificial intelligence and computational intelligence*. New York, NY, United States: Association for Computing Machinery (ACM), 133–139.
- Yang, J., Tan, H., Sun, M., Chen, R., Zhang, J., Liu, C., et al. (2021). Prediction of high-altitude cardiorespiratory fitness impairment using a combination of physiological parameters during exercise at Sea level and genetic information in an integrated risk model. *Front. Cardiovasc. Med.* 8, 719776. doi:10.3389/fcvm.2021.719776
- Ye, X., Sun, M., Yu, S., Yang, J., Liu, Z., Lv, H., et al. (2023). Smartwatch-Based maximum oxygen consumption measurement for predicting acute Mountain sickness: diagnostic accuracy evaluation study. *JMIR Mhealth Uhealth* 11, e43340. doi:10.2196/43340
- Ye, X., Liu, H., Yang, H., Zhang, H., Gong, M., Duan, Z., et al. (2024). A prospective, self-controlled study of sub-plateau heart rate variability in healthy adults. *Front. Physiol.* 15, 1464144. doi:10.3389/fphys.2024.1464144
- Yu, Y., Wang, R., Li, D., and Lu, Y. (2022). Monitoring physiological performance over 4 weeks moderate altitude training in elite Chinese cross-country skiers: an observational study. *Int. J. Environ. Res. Public Health* 20 (1), 266. doi:10.3390/ijerph20010266
- Zelmanovich, R., Pierre, K., Felisma, P., Cole, D., Goldman, M., and Lucke-Wold, B. (2022). High altitude cerebral edema: improving treatment options. Biologics~2~(1), 81–91.~doi:10.3390/biologics2010007
- Zhang, Q., Zhang, X., Hu, H., Li, C., Lin, Y., and Ma, R. (2022). Sports match prediction model for training and exercise using attention-based LSTM network. *Digital Commun. Netw.* 8 (4), 508–515. doi:10.1016/j.dcan.2021.08.008
- Zhao, C., Zhao, X., Ma, Y., Liu, Y., Chen, R., and Sha, L. (2024). Dynamics in the prevalence and clinical manifestations of acute Mountain sickness of different ascent protocols during high altitudes exposure. *Front. Public Health* 12, 1472935. doi:10.3389/fpubh.2024.1472935
- Zisapel, N. (2018). New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation. *Br. J. Pharmacol.* 175 (16), 3190–3199. doi:10.1111/bph.14116