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Introduction: Among the causes of cardiovascular diseases, abnormal blood 
pressure is especially significant. Blood pressure is a crucial hemodynamic 
biomarker of the cardiovascular health. Central aortic blood pressure correlates 
more closely with cardiovascular disease than peripheral arterial blood pressure. 
It can reflect the status of coronary arteries and aortas more directly and 
accurately, making it a significant tool for assessing cardiovascular risks. Invasive 
central aortic blood pressure measurement is considered the “gold standard” 
for evaluating left ventricular and coronary artery loads. However, due to the 
invasive and high cost of consumables, the widespread use of central aortic 
blood pressure is hindered in primary medical institutions and among large 
populations. Traditional non-invasive methods also have some limitations.
Methods: This paper proposes reconstructing central aortic pressure based on 
the TCN-Attention model, which primarily extracts local patterns from the time 
series. Simultaneously, the attention mechanism focuses on extracting global 
patterns to compensate for the shortcomings of the TCN model, which cannot 
perform global feature extraction. It efficiently extracts local patterns in the 
time series data that characterize mutations and other key time points and 
global patterns that indicate trends and periodicity, thus enabling the efficient 
reconstruction of central aortic pressure.
Results: The experimental results demonstrate that the improved TCN-Attention 
model presented in this paper is more accurate than the TCN model.
Disussion: The precise measurement of central aortic pressure has significant 
clinical value in preventing, diagnosing, and treating cardiovascular diseases.
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 1 Introduction

The latest statistical data of the World Health Organization shows that cardiovascular 
diseases account for a considerable proportion of total global deaths. There are numerous 
types of cardiovascular diseases, including coronary heart disease, hypertensive heart 
disease, arrhythmia, etc (Vos et al., 2020) (World Health Organization, 2018). These 
diseases not only seriously threaten life and health, but also bring heavy economic and 
psychological burdens to patients and their families. Concurrently, these conditions impose 
substantial strain on public healthcare resources. Blood pressure abnormalities are highly
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critical among the causative factors of cardiovascular diseases. 
Blood pressure serves as a pivotal physiological parameter for 
cardiovascular health assessment, simultaneously reflecting cardiac 
pumping efficiency and the hemodynamic stress exerted on vascular 
walls. Maintaining normal blood pressure is essential for ensuring 
adequate blood perfusion and the proper functioning of all organs. 
When blood pressure remains at abnormal levels for a prolonged 
period, either hypertension or hypotension, it significantly increases 
the risk of cardiovascular disease. For example, high blood 
pressure will increase the load on the heart, leading to myocardial 
hypertrophy, damaging the endothelial of blood vessels, accelerating 
the process of atherosclerosis, which may lead to coronary heart 
disease, stroke, and other serious complications. Concurrently, 
numerous studies have shown that central aortic pressure (CAP) is 
superior to peripheral arterial pressure in assessing the effectiveness 
of anti-hypertensive treatments, predicting cardiovascular events, 
and guiding clinical decision-making (Roman et al., 2007). 
CAP is the lateral pressure exerted on the proximal vascular 
structures of the aorta, which is affected by factors such as left 
ventricular ejection, arterial resistance, and peripheral arterial load. 
Compared to peripheral arterial blood pressure, CAP correlates 
more closely with cardiovascular diseases and provides a more 
direct and accurate reflection of the state of the coronary 
artery and the aorta, making it a primary tool for assessing 
cardiovascular risks (Roman et al., 2007). Additionally, CAP can 
serve as a reference indicator for evaluating the efficacy of anti-
hypertensive medications (McGaughey et al., 2016). Therefore, 
accurate CAP measurement has significant clinical value in 
preventing, diagnosing, and treating cardiovascular diseases.

Existing measurement methods include both invasive and 
non-invasive approaches. Invasive measurement methods use a 
catheter, which is fed into the radial or femoral artery to reach 
the proximal aorta. Its terminal is linked to an external pressure 
sensor. The pressure is delivered from the blood vessel to the 
external transducer under liquid pressure. The external transducer 
utilizes analog-to-digital conversion to convert the transducer 
pressure into digital data for further processing. These data are 
processed by collection systems or computers that can provide real-
time, dynamic blood pressure readings. Therefore, invasive CAP 
measurements are considered the “gold standard” for evaluating 
the load on the left ventricle and coronary arteries. However, 
cardiac catheterization and pressure guide-wire techniques are 
invasive operations that can injure the blood vessels and the heart. 
They may lead to complications such as bleeding at the puncture 
site, vascular tears and infections. In severe cases, arrhythmias, 
acute myocardial infarction, aortic coarctation, and other life-
threatening injuries may occur, such as aortic coarctation. It is 
primarily used for critically ill patients and those undergoing 
cardiac surgery. Moreover, the technique of operators must be 
strictly trained, and experienced and specialized interventionists 
must be involved to ensure the successful completion of the 
surgery. Invasive CAP measurements also require expensive X-
ray fluoroscope equipment, catheterization laboratories, and other 
specialized equipment. The cost of consumables is very high, which 
prevents their widespread adoption in primary medical institutions 
and among large populations.

Non-invasive measurement methods provide key tools for 
cardiovascular evaluation through pulse wave analysis, ultrasound, 

and other techniques (Morgan et al., 2004). Although calibration and 
individualization difficulties exist, the advantages of non-invasive 
and dynamic monitoring make it increasingly widely used in clinics 
and research. Non-invasive measurement techniques utilize the 
hemodynamic relationship between CAP and peripheral arterial 
pressure to establish mathematical models, and use peripheral 
arterial blood pressure to estimate CAP. Nowadays, non-invasive 
techniques have become the primary method for measuring CAP 
due to their practical and safe properties. Substituting, transferring 
functions, and multi-channel blinded system identification methods 
are commonly used. Peripheral arterial pressure is often used as a 
substitute for CAP due to its similarity to CAP, much like the use 
of the carotid artery (Zhou et al., 2024) (Kroeker and Wood, 1955). 
Although the substitution method has some promise in clinical 
practice, it can produce results similar to those obtained by direct 
measurement under certain circumstances. However, the technique 
has specific errors and limitations; more accurate measurements 
are needed in the clinic. Therefore, the method can only serve 
as an approximate estimation and cannot fully replace CAP. For 
this reason, the transfer function method is introduced with the 
multi-channel blind system identification method.

A quantifiable mathematical relationship exists between the 
peripheral arterial pulse wave and the central aortic pulse wave. 
The central aortic pressure waveform is estimated by modeling the 
propagation and reflection effects of the waveform through the 
establishment of a transfer function model (Cameron et al., 1998). It 
describes how the central aortic pressure waveform is transmitted 
and converted to the function of the peripheral arterial blood 
pressure waveform by the action of the heart and vascular system. It 
establishes a quantitative relationship between CAP and peripheral 
arterial pressure. The most widely used technique is the generalized 
transfer function to convert the peripheral arterial blood pressure 
waveform collected into the theoretical central arterial waveform, 
thereby indirectly deriving the CAP, which is the core technique 
for non-invasive CAP measurement (Payne et al., 2007). This 
technique is efficient and safe, and avoids the risks and complications 
associated with invasive catheterization. However, this method has 
limitations because the real arterial system may be nonlinear under 
high blood flow or pathological conditions, resulting in different 
arterial branching patterns among individuals and the location of 
reflection points, thereby influencing the transmission of waveform. 
Therefore, the results presented by the data are of very low precision. 
Moreover, the generalized transfer function is based on data from 
healthy individuals. It does not consider special populations, so the 
error for these populations, such as those with aortic stenosis and 
severe atherosclerosis, will be substantial and cannot be fully applied 
to all people. The accuracy will be limited by the individual and the 
pathological state. Therefore, this type of method is not widely used 
in clinical practice. The multi-channel blind system identification 
method regards the cardiovascular system as a system model 
with a single input and multiple outputs, by measuring peripheral 
arterial blood pressure at numerous locations and employing a blind 
identification algorithm to determine the channel parameters of 
system. This method eliminates the need to build a model and 
directly measures peripheral arterial blood pressure to reconstruct 
CAP. Blind identification refers to the fact that there is no need 
to know the input signals of the system or the parameters of the 
a priori model in advance. The key to this technique is to use the 
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statistical independence of signal or non-Gaussian properties to 
isolate the system response or use matrix decomposition to obtain 
the features of system. These properties bring advantages in resisting 
noise, displaying hidden features, and dealing with complex systems. 
However, simultaneous measurements of multiple peripheral signals 
also significantly inconvenience clinical applications.

This paper proposes a non-invasive central aortic pressure 
waveform estimation method based on a single-channel radial 
arterial pressure waveform (Du et al., 2022; Zeiler and Fergus, 2014; 
Szegedy et al., 2015; Wang et al., 2012). The method builds upon 
the temporal convolutional network (TCN) model, incorporates an 
attention mechanism (Wang et al., 2025; Chen et al., 2025), and 
further optimizes it to propose the TCN-Attention model, thereby 
enhancing the model’s capability to focus on channel information. 
The innovation of this method is that it effectively combines the 
advantages of TCN and the attention mechanism. The TCN model is 
mainly responsible for extracting the local patterns of the time series. 
At the same time, the attention mechanism focuses on extracting 
the global patterns to make up for the shortcomings of the TCN 
model, which cannot carry out the global feature extraction, thus 
realizing the efficient reconstruction of the CAP. Moreover, the 
introduction of the attention mechanism allows the model not only 
to capture the local dependencies in the sequence data by stacking 
the convolutional layers and increasing the sensory field of the 
convolutional kernel, but also allows the neural network to assign 
different weights to different moments of the input sequence data, 
so that it pays more attention to historical moments related to the 
prediction results, thus achieving the balance between the extraction 
of local features and global features. 

2 Methods

The main structures of the TCN-Attention model are causal 
inflationary convolution and residual module. The TCN-Attention 
model has the properties of a concise form of convolution suitable 
for sequence modeling, memory for history, and consistent output 
and input dimensions of the model. The input sequence is denoted 
as [ x0,⋯,xN] , and the output sequence is predicted as [ ŷ0,⋯, ̂yN]. 
In this way, the sequence model between input and output can be 
represented as in Equation 1:

̂yn = G(x0,⋯,xn),0 ≤ n ≤ N (1)

In Equation 1, G denotes the sequence model obtained from 
the training dataset; ̂yn denotes the value of the predicted output 
sequence at the nth moment. The model’s parameters can be 
obtained by minimizing the loss function L (y, ̂y) , where the actual 
output sequence is y = [y0,⋯,yN] and the predicted output sequence 
is ŷ = [ ̂y0,⋯, ̂yN] . 

2.1 Causal inflation convolution

The input sequence signal is denoted as x = [x0,⋯,xN], and the 
output value of causally inflated convolution at moment n, F(n) is 
described as in Equation 2:

F(n) =
k−1

∑
i=0

f(i) · x(n− d · i) (2)

Thereof, d = 2l is the inflation factor, where 0 ≤ l ≤ L is the 
number of network convolution layers, f:{0,⋯,k− 1} denotes the 
filter, and k is the convolution kernel size; (n− d · i) indicates the 
direction of past time. To effectively utilize the information from 
long input sequence signals, the receptive field of the TCN model 
is increased by increasing the larger filter size and expansion factor. 
The effective history receptive field of each layer is (k− 1) · d, and the 
sum of the receptive fields of all convolutional layers is:

R = 1+
L−1

∑
l=0
(k− 1) · d = 1+

L−1

∑
l=0
(k− 1) · 2l (3)

To cover the length of the input sequence signal N, the receptive 
field R must be greater than or equal to N, in Equation 3 and the 
number of convolutional layers L must be greater than or equal to 
log2(

N+k−2
k−1
), which can be obtained by solving Equation 4.

(1+
L−1

∑
l=0
(k− 1) · d) ≥ N (4)

As shown in Figure 1A, the TCN-Attention model is an 
integrated deep learning architecture that combines Temporal 
Convolutional Network (TCN) with attention mechanisms. As 
shown in Figure 1C, an example represents the causal inflation 
convolution. The TCN-Attention model requires that the output and 
the input have the same length. To ensure that the output tensor 
has the same length as the input tensor, zero-padding on the left 
side of the input tensor is required, and causal convolution can be 
guaranteed. In a convolutional neural network, p denotes padding; 
s denotes step size; in this paper, s = 1. The size of the sequence N′

after causal expansion convolution is represented in Equation 5:

N′ =
N+ 2p− k′

s
+ 1 =

N+ 2p− [k+ (k− 1) · (d− 1)]
s

+ 1 (5)

After the convolution operation, the TCN-Attention model will 
have a “chomp1d” function to cut the excess padding. Therefore, 
the size of the output after processing by “chomp1d “N” is 
represented as in Equation 6:

N″ = N′ − p = N+ p− (k− 1) · d (6)

Therefore, to ensure that the length of the input and the output 
are the same, it is required that the size of N″ = N, the input is p =
(k− 1) · d.

2.2 Residual module

Features can be enhanced by increasing the number of network 
layers to obtain more helpful information. However, experiments 
have found that the optimization effect worsens as the network 
is deepened, and testing and training accuracy are reduced. 
This phenomenon occurs because deepening the network causes 
the gradient explosion or a gradient vanishing. To train deeper 
networks, Kaiming He proposed a new network structure, ResNet 
(He et al., 2016), as shown in Figure 1B, each residual block 
having two branches. The first branch consists of two causally 
inflated convolutional layers, two weight normalization layers 
(WeightNorm), two activation function ReLU layers, and two 
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FIGURE 1
Structure of the TCN-Attention model. (A) The overall architecture of the TCN-Attention model, superimposed by the residual module, where the 
convolution kernel size k= 2 and the expansion factor d= 2l (l= 0, 1, …, L-1); (B) The residual module of the TCN-Attention model. If the dimensions of 
the inputs and outputs are different, they need to be manipulated with a 1 × 1 convolution, here Zl denotes the output of the lth module; (C) An 
example of causal convolution with a hidden layer L of 4, a convolution kernel of size k of 2 (as indicated by the arrows) and an expansion factor d = 1, 
2, 4, 8. The sensory field for each layer of the convolution is (k− 1) ·d.
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TABLE 1  Clinical characteristics of the subjects.

Parameter Mean ± standard deviation

Sample size 1,032

Age 28.4 ± 16.4

Height (cm) 171.0 ± 33.4

Weight (kg) 69.6 ± 21.1

Body mass index (kg/m2) 23.1 ± 7.6

Heart rate (bpm) 67.5 ± 9.8

Systolic blood pressure (mmHg) 119.8 ± 15.0

Diastolic blood pressure (mmHg) 75.1 ± 9.8

Dropout layers (Gu et al., 2018), where the WeightNorm layer is 
used to normalize the inputs of the implicit layer to counteract 
the problem of gradient explosion. The activation function ReLU 
introduces the nonlinearity. Dropout regularization is added to 
prevent overfitting (Lin et al., 2021). The attention mechanism 
is also introduced in the first branch. The second branch is the 
skip connection of inputs. For the standard ResNet model, the 
inputs are added directly to the output of the residual function. 
However, for the TCN-Attention model, the residual block input 
and output dimensions may not match. Therefore, a 1 × 1 
convolution layer is used to ensure that the inputs are subjected 
to a dimensionality upgrading operation, which allows for the 
computation of summation between input and output sequences of 
the same dimensionality (Lin et al., 2021) (Bai et al., 2018). To train 
the model to optimality, the loss function defined in this chapter is 
Mean Squared Error (MSE) as in Equation 7:

L = 1
N

N−1

∑
n=0
(yn − ̂yn)

2 (7)

Here yn , ̂yn respectively, denote the measured and estimated 
central aortic pressure. To evaluate the accuracy of the proposed 
TCN-Attention model for reconstructing central aortic pressure 
waveforms, the Root Mean Squared Error (RMSE) was used here as 
an index for assessment, and the significance between the estimated 
and real measured central aortic pressure waveforms was analyzed 
by a paired t-test (IBM SPSS Statistics, Version-23). The correlation 
was analyzed by using Spearman’s correlation coefficient. A p-value 
<0.05 was considered statistically significant. 

3 Experimental datasets and 
pre-processing

3.1 Datasets

Subjects were recruited from the Northeastern University and 
a community at Shenyang, China. Approval has been obtained 
from the Research Ethics Committee of the Northeastern University 
(EC-2020B017), and all participants gave written informed consent. 

The inclusion criterion for this study was age between 18 and 
50 years. The exclusion criteria included age under 18 years, severe 
organic diseases of the heart, liver, or kidneys, and mental illness 
or cognitive impairment. The experiment included 1032 individuals 
with a mean age of 28.4 ± 16.4, height of 171.0 ± 33.4 cm, weight 
of 69.6 ± 21.1 kg, and other parameters as shown in Table 1. The 
data collection process was divided into two main steps: first, the 
subjects were seated and kept in a stable position, and the systolic 
and diastolic blood pressure were collected three times from the 
subjects to be averaged by using a mercury sphygmomanometer; 
and second, the radial artery pulse wave was collected at least 
twice. After each acquisition, if the built-in signal quality assessment 
parameter Operator Index was less than 80, the instrument was 
reacquired to ensure that the Operator Index of the two data sets 
was greater than or equal to 80. The radial artery pulse wave 
was collected with the SphygmoCor CVMS device from AtCor 
(Australia), which utilized a Millar tonometer (Millar Instruments, 
Houston, United States) force transducer to capture radial artery 
pulse waves, with a sampling frequency of 128 Hz (Ding et al., 2011). 
Using a high-fidelity pressure transducer, the device can record pulse 
waveform at superficial arteries, most commonly the radial artery, 
followed by the carotid, brachial, or femoral arteries (Zuo et al., 
2010). This peripheral arterial waveform is then converted to 
an estimated central aortic waveform by applying a generalized 
conversion function or a patient-specific calibrated mathematical 
model to derive parameters such as central systolic, diastolic, and 
pulse pressure.

The distribution of systolic (SBP) and diastolic (DBP) values 
in the measurement dataset (NEU-PWDB) is shown in Figure 2. 
The systolic blood pressure of the radial artery (SBP of the radial 
artery, rSBP) was higher than the systolic blood pressure of the 
central artery (SBP of the central aorta, aSBP), ranging from 
0 mmHg to 43 mmHg (Mean ± SD, 14.59 ± 5.95 mmHg). The 
diastolic blood pressure of the radial artery (DBP of the radial 
artery, rDBP) and the diastolic blood pressure of the central 
aorta (DBP of the central aorta, aDBP) were essentially the same. 
Even in some individuals, the aDBP was slightly higher than the 
rDBP, with a range of 0.20 mmHg–14 mmHg (Mean ± SD, 1.40 
± 1.02 mmHg). The experimental statistics were also consistent 
with the “arterial pressure amplification phenomenon,” (Ohte et al., 
2007) the mean difference between systolic blood pressure in 
the central and peripheral arteries was approximately 15 mmHg. 
The dataset was randomly partitioned into a training set (70%) 
for model parameter optimization and a testing set (30%) for 
the final, unbiased evaluation of generalization performance, with 
the latter kept completely separate and never accessed during
model tuning. 

3.2 Data pre-processing

A notable challenge in studies using pulse waveform to predict 
blood pressure is that the range of blood pressure values varies 
widely between individuals, e.g., systolic blood pressure in healthy 
adults typically fluctuates between 90 and 140 mmHg. By contrast, 
values in patients with hypertension or hypotension may fall well 
above or below this range. This wide distribution of values threatens 
the training stability of deep learning models, potentially causing 
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FIGURE 2
Blood pressure values based on the measurement data set. (A) systolic blood pressure of the radial artery and systolic blood pressure of the central 
artery; (B) diastolic blood pressure of the radial artery and diastolic blood pressure of the central artery.

gradient explosion or gradient vanishing, thus hindering effective 
model convergence and prediction accuracy. Therefore, normalizing 
the raw pulse wave data before model training is crucial. One of the 
core tasks of this process is to normalize the range of values in the 
pulse wave signal that characterizes the blood pressure amplitude. 
This normalization is significant not only for making the data format 
conform to the model input requirements, but also for its ability 
to improve the training efficiency significantly by compressing the 
numerical spans, so that the optimization algorithms can find stable 
and effective solutions faster and accelerate the model to reach the 
performance plateau. At the same time, normalization is also a key 
strategy to improve data quality, which helps to suppress all kinds of 
noise interference (including physiological fluctuations, equipment 
measurement errors, and individual baseline differences) mixed in 
the signal, to more clearly extract the practical waveform features 
reflecting the state of blood pressure. To make the training data 
format meet the requirements of the model, this paper standardizes 
the acquired data sequences before model training, normalizes 
the range of blood pressure amplitude in the pulse waveform 
sequences, accelerates the training speed of the model, and quickly 
reaches the optimized stable state. The purpose is to improve 
the data quality, reduce the noise interference, and extract the
practical features.

There are four standard methods for pre-processing time 
series data: 

3.2.1 Min-max normalization
Min-max normalization, or deviation normalization, is a 

linear transformation of the original data. So that the data 
features are mapped to [0, 1]. The transformation function is 
represented as in Equation 8:

̃x =
x−min (x)

max (x) −min (x)
(8)

 

3.2.2 Mean-variance normalization
Mean-variance standardization, also known as Z-score 

standardization, is data standardization through the mean and 
standard deviation of the original data. After the data are pre-
processed to follow a standard normal distribution, i.e., the mean 
is 0, the standard deviation is 1, the transformation function is 
represented as in Equation 9:

̃x =
x−mean(x)

std(x)
(9)

 

3.2.3 Mean value standardization
Mean value standardization, the data features are mapped 

to between [-0.5, 0.5], the transformation function is 
represented as in Equation 10:

̃x =
x−mean(x)

max (x) −min (x)
(10)
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FIGURE 3
Histogram of blood pressure distribution based on the measurement data set. (A) Systolic blood pressure of the radial artery; (B) Diastolic blood 
pressure of the radial artery; (C) Systolic blood pressure of the aorta; (D) Diastolic blood pressure of the aorta.

3.2.4 Unit Norm Scaling
Unit Norm Scaling, which equals the mode of the data features 

to 1, the transformation function is represented as in Equation 11:

̃x = x
norm(x)

(11)

In the above four different data pre-processing methods, 
max indicates the operation of taking the maximum value; 
min suggests the operation of taking the minimum value; mean 
indicates the operation of taking the mean value; std suggests the 
operation of taking the variance; and norm indicates the operation 
of taking the mode. The study shows that after pre-processing 
the pulse sequence data using mean-variance normalization, 
mean normalization, and unit normalization, the pulse waveform 
predicted by the model shows a peak shaving phenomenon, 
i.e., the peaks and valleys can not be estimated, and a straight 
line phenomenon occurs here. This phenomenon is because the 
mean-variance normalization, mean - value normalization, and 

unit-normalization pre-processing methods are easily affected by 
the minimum and maximum values of the pulse waveform. If 
the data exceeds the range of the extreme values of the training 
set, it cannot be processed effectively. In this paper, minimum-
maximum normalization is chosen as the best pre-processing 
method. However, the minimum-maximum normalization method 
also has a drawback; when new data is added, it may lead to changes 
by calculating the maximum and minimum values, which need 
redefined. This paper uses minimum-maximum normalization in 
Equations 12, 13, where the minimum and maximum values are 
taken from all sample inputs and outputs.

{{
{{
{

̃xi =
xi − a

b
,

̃yi =
yi − a

b
,

i = 0,1,2, ...,N (12)

{
{
{

a =min (xi,yi),

b =max (xi,yi) −min (xi,yi),
i = 0,1,2,…,N (13)
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FIGURE 4
Comparison of the accuracy of the prediction results of different models on different indices. (A) total waveform (TW); (B) systolic blood pressure (SBP);
(C) diastolic blood pressure (DBP); (D) mean arterial pressure (MAP).

Here xi , yi denote the input radial artery pressure waveform and 
the actual central artery pressure waveform signals, respectively. ̃xi
and ̃yi represent the normalized radial artery pressure waveform 
signal and the actual central artery pressure waveform signal, 
respectively. As shown in Figure 3, for the measurement dataset 
(NEU-PWDB), the mean value of diastolic blood pressure at 
the radial artery is 49 mmHg; the mean value of systolic blood 
pressure is 178 mmHg. Considering the combined dataset, 
Equations 12, 13, a takes the value of 45 mmHg and b takes the
value of 135 mmHg. 

4 Comparative analysis of 
experimental results

4.1 Evaluation indices

4.1.1 Mean absolute error
Mean absolute error (MAE) is a commonly used evaluation 

index. It calculates the average of the absolute value of the prediction 
error of each sample, reflecting the average error magnitude. The 
advantage of MAE is that it intuitively demonstrates the magnitude 
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TABLE 2  Comparison of the accuracy of prediction results of different 
models on different indices (Mean ± standard deviation in mmHg).

Methods BP MAE RMSE Max error 

TCN

TW 0.71 ± 0.71 0.89 ± 0.86 2.91 ± 2.09

SBP 1.01 ± 1.73 1.01 ± 1.73 5.74 ± 3.51

DBP 0.39 ± 0.28 0.39 ± 0.28 1.16 ± 0.43

MAP 0.48 ± 0.58 0.48 ± 0.58 2.02 ± 1.02

TCN-Attention

TW 0.57 ± 0.46∗ 0.69 ± 0.57 1.94 ± 1.73∗

SBP 0.27 ± 0.25∗∗ 0.27 ± 0.25∗∗ 0.86 ± 0.24∗∗

DBP 0.42 ± 0.39 0.42 ± 0.39 1.75 ± 0.51

MAP 0.31 ± 0.28∗ 0.31 ± 0.28∗ 0.99 ± 0.30∗

∗indicates P < 0.05; ∗∗ indicates P < 0.01.

of the gap between the model’s predicted values and the actual 
values, which does not consider the positive or negative of the 
expected value. Also, MAE pays more attention to the size of the 
absolute error, which makes it more reflective of the degree of 
deviation of the predicted value than the mean squared error. The 
range of values of the MAE is [0, + ∞), and it will be more 
accurate when the predicted value and the real value match exactly 
is equal to 0, i.e., the perfect model; the larger the error, the larger 
the value. In Equation 14, N is the number of samples, yi is the actual 
value of the first i sample, ̂yi is the predicted value of the first i sample.

MAE = 1
N

N

∑
i=1
|yi − ̂yi| (14)

 

4.1.2 Root mean square error
Root mean square error (RMSE) is a normal indicator to assess 

prediction models’ accuracy. It measures the degree of deviation 
between the predicted and the actual value. It is calculated as the 
square root of the sum of the squares of the difference between the 
predicted and the actual value. The value of RMSE ranges from [0, 
+ ∞). The smaller the RMSE is, the smaller the prediction error of 
the model is, and the better the prediction ability of the model. The 
specific formula is as follows in Equation 15:

RMSE = √ 1
N

N

∑
i=1
(yi − ̂yi)

2 (15)
 

4.1.3 Maximum error
Maximum error (MAX error) is one indicator for assessing the 

model’s prediction performance, indicating the maximum value of 
the absolute error between the predicted and the actual value in 
all samples. Its core focus is on the model’s performance in the 
worst case, rather than the average or overall error level. The specific 
formulas are given as in Equation 8:

MAX Error =max(|y1 − ̂y1|,…, |yN − ̂yN|) (16)
 

4.1.4 Spearman’s correlation coefficient
Spearman’s correlation coefficient (SCC) is a non-parametric 

statistic that measures the monotonic relationship between two 
variables. It is based on the rank order of the data rather than the 
raw values. Therefore, it does not require the data to satisfy the 
assumptions of a normal distribution or a linear relationship. This 
also leads to its difference from the Pearson correlation coefficient, 
which is less sensitive to outliers. At the same time, SCC is effective 
in capturing monotonic relationships between variables, whether 
linear or nonlinear. Where N is the number of samples, di is the rank 
difference of the first i sample of the two variables.i.e., the difference 
between the true value’s rank and the predicted value’s rank. The 
specific formula is as follows in Equation 17:

SCC = 1−
6∑N

i=1
di

2

N(N2 − 1)
(17)

 

4.2 Experimental results

As shown in Figure 4, the TCN-Attention-based model is 
superior to the TCN model in reconstructing central aortic pressure. 
The prediction errors of the TCN-Attention model were significantly 
lower than those of the TCN model (p < 0.05) in terms of the 
MAE, RMSE, MAX error assessment indices, as well as the total 
waveform, systolic blood pressure, and mean arterial pressure, which 
verified that the attention mechanism enhances temporal feature 
extraction. For diastolic blood pressure prediction, the performance 
of the two models was comparable, and the TCN-Attention-
based model was slightly better regarding the result indicators. 
As shown in Table 2, the result of TCN-Attention model was 
significantly lower in reconstructing the entire waveform of central 
aortic pressure (MAE: 0.57 ± 0.46 mmHg) than the TCN model 
(MAE: 0.71 ± 0.71 mmHg); the result of TCN-Attention model 
(RMSE: 0.69 ± 0.57 mmHg) was significantly lower than the TCN 
model (RMSE: 0.89 ± 0.86 mmHg); the MAX value based on the 
TCN-Attention model (MAX: 1.94 ± 1.73 mmHg) was significantly 
lower than that of the TCN model (MAX: 2.91 ± 2.09 mmHg). The 
TCN-Attention model outperforms the TCN model in the overall 
waveform prediction, and in particular, the performance of TCN-
Attention model is outstanding in the control of the maximum error, 
with an error reduction of 33%. The results of TCN-Attention model 
were significantly lower than the TCN model in estimating systolic 
blood pressure (MAE and RMSE: 0.27 ± 0.25 mmHg) (MAE and 
RMSE: 1.01 ± 1.73 mmHg). The result of TCN-Attention model was 
significantly lower in estimating systolic blood pressure (MAX: 0.86 
± 0.24 mmHg) than the TCN model (MAX: 5.74 ± 3.51 mmHg). 
The TCN-Attention model performed very well in SBP prediction, 
with an error reduction of more than 70%, and the maximum 
error reduction was 85%. The results of TCN-Attention model were 
slightly higher than the TCN model in estimating diastolic blood 
pressure (MAE and RMSE: 0.42 ± 0.39 mmHg), and the result of 
the TCN-Attention model (Max Error: 1.75 ± 0.51 mmHg) was 
slightly higher than the TCN model (Max Error: 1.16 ± 0.43 mmHg). 
However, the difference was insignificant.

The result of the TCN model was slightly better than the TCN-
Attention model in DBP prediction, but did not reach statistical 
significance, which the physiological fluctuation of DBP is relatively 
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FIGURE 5
Estimated central aortic pressure waveform based on different models.

light. The results of the TCN-Attention model were significantly 
lower than the TCN model (MAE and RMSE: 0.31 ± 0.28 mmHg) in 
estimating mean arterial pressure (MAP) (MAE and RMSE: 0.48 ± 
0.58 mmHg); the TCN-Attention model (MAX: 0.99 ± 0.30 mmHg) 
was significantly lower than the TCN model (MAX: 2.02 ± 
1.02 mmHg). The TCN-Attention model significantly outperformed 
the TCN in MAP prediction, with more than 35% reduction in 
error and 51% reduction in maximum deviation, improving stability 
significantly. The SCC of the total waveform for both models was 
as high as 0.9985 and 0.9970, indicating that both could capture 
the trend of blood pressure changes well. As shown in Figure 5, 
the central aortic pressure waveform estimated by the two different 
methods, the blood pressure estimation based on the TCN-
Attention model, are closer to the real measured central aortic 
pressure waveform than the TCN model in the total waveform and 
the key feature points. 

5 Discussion and conclusion

The TCN-Attention model outperforms the traditional TCN 
model in most metrics, especially in systolic blood pressure 
estimation. It indicates that the attention mechanism effectively 
captures the key features in the blood pressure signals. DBP has 
limited room for model improvement due to small physiological 
fluctuations. TCN-Attention is a deep learning model that combines 
time-series convolution networks and the attention mechanism 
architecture designed for time series prediction tasks. The model 
utilizes temporal convolution layers to capture local and long-term 
dependencies of time series data. The attention mechanism realizes 

dynamic allocation of weights at different time steps to highlight 
essential features. The standard deviations of TCN-Attention 
metrics are generally smaller than those of TCN, indicating that its 
prediction results are more stable and reliable. The SCCs of both 
models are as high as 0.9985 and 0.9970, suggesting that both can 
capture the blood pressure trend well.

The total waveform usually contains full-cycle features of the 
blood pressure signal, such as systole, diastole, and pulse wave 
morphology, which have a wide range of numerical variations and 
high dynamics. The model prediction needs to capture various 
features simultaneously, leading to different MAE and RMSE 
sensitivities to other types of errors (e.g., systematic deviation and 
random fluctuation). The distribution of errors across the waveform 
metrics may exhibit a long-tailed distribution, with a few samples 
containing substantial errors. The RMSE values are sensitive to 
outliers, while the MAE is more robust.

The estimation of systolic, diastolic, and mean arterial pressure 
relies on identifying specific critical points in a continuous 
physiological signal. When a model’s prediction error stems 
predominantly from systematic bias—such as a consistent 
overestimation or underestimation across measurements—the error 
distribution for each of these point estimates may approximate 
a fixed-offset distribution. In such cases, the MAE and RMSE 
values tend to converge, as the uniform nature of the systematic 
offset diminishes the influence of outlier-dependent penalization in 
RMSE. Considering individual variations and the specific prediction 
requirements for special populations (e.g., hypertensive patients), 
multimodal data fusion has been actively explored, for instance, 
by integrating photoplethysmography signals with complementary 
physiological data. Future efforts could incorporate a wider array
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of physiological features, such as heart rate variability, to further 
enhance the accuracy and robustness of predictive models.
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