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Introduction: Among the causes of cardiovascular diseases, abnormal blood
pressure is especially significant. Blood pressure is a crucial hemodynamic
biomarker of the cardiovascular health. Central aortic blood pressure correlates
more closely with cardiovascular disease than peripheral arterial blood pressure.
It can reflect the status of coronary arteries and aortas more directly and
accurately, making it a significant tool for assessing cardiovascular risks. Invasive
central aortic blood pressure measurement is considered the “gold standard”
for evaluating left ventricular and coronary artery loads. However, due to the
invasive and high cost of consumables, the widespread use of central aortic
blood pressure is hindered in primary medical institutions and among large
populations. Traditional non-invasive methods also have some limitations.
Methods: This paper proposes reconstructing central aortic pressure based on
the TCN-Attention model, which primarily extracts local patterns from the time
series. Simultaneously, the attention mechanism focuses on extracting global
patterns to compensate for the shortcomings of the TCN model, which cannot
perform global feature extraction. It efficiently extracts local patterns in the
time series data that characterize mutations and other key time points and
global patterns that indicate trends and periodicity, thus enabling the efficient
reconstruction of central aortic pressure.

Results: The experimental results demonstrate that the improved TCN-Attention
model presented in this paper is more accurate than the TCN model.
Disussion: The precise measurement of central aortic pressure has significant
clinical value in preventing, diagnosing, and treating cardiovascular diseases.

KEYWORDS

deep learning, central aortic pressure, radial arterial pressure, temporalconvolution
network, attention mechanism

1 Introduction

The latest statistical data of the World Health Organization shows that cardiovascular
diseases account for a considerable proportion of total global deaths. There are numerous
types of cardiovascular diseases, including coronary heart disease, hypertensive heart
disease, arrhythmia, etc (Vos et al., 2020) (World Health Organization, 2018). These
diseases not only seriously threaten life and health, but also bring heavy economic and
psychological burdens to patients and their families. Concurrently, these conditions impose
substantial strain on public healthcare resources. Blood pressure abnormalities are highly
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critical among the causative factors of cardiovascular diseases.
Blood pressure serves as a pivotal physiological parameter for
cardiovascular health assessment, simultaneously reflecting cardiac
pumping efficiency and the hemodynamic stress exerted on vascular
walls. Maintaining normal blood pressure is essential for ensuring
adequate blood perfusion and the proper functioning of all organs.
When blood pressure remains at abnormal levels for a prolonged
period, either hypertension or hypotension, it significantly increases
the risk of cardiovascular disease. For example, high blood
pressure will increase the load on the heart, leading to myocardial
hypertrophy, damaging the endothelial of blood vessels, accelerating
the process of atherosclerosis, which may lead to coronary heart
disease, stroke, and other serious complications. Concurrently,
numerous studies have shown that central aortic pressure (CAP) is
superior to peripheral arterial pressure in assessing the effectiveness
of anti-hypertensive treatments, predicting cardiovascular events,
and guiding clinical decision-making (Roman et al, 2007).
CAP is the lateral pressure exerted on the proximal vascular
structures of the aorta, which is affected by factors such as left
ventricular ejection, arterial resistance, and peripheral arterial load.
Compared to peripheral arterial blood pressure, CAP correlates
more closely with cardiovascular diseases and provides a more
direct and accurate reflection of the state of the coronary
artery and the aorta, making it a primary tool for assessing
cardiovascular risks (Roman et al., 2007). Additionally, CAP can
serve as a reference indicator for evaluating the efficacy of anti-
hypertensive medications (McGaughey et al., 2016). Therefore,
accurate CAP measurement has significant clinical value in
preventing, diagnosing, and treating cardiovascular diseases.

Existing measurement methods include both invasive and
non-invasive approaches. Invasive measurement methods use a
catheter, which is fed into the radial or femoral artery to reach
the proximal aorta. Its terminal is linked to an external pressure
sensor. The pressure is delivered from the blood vessel to the
external transducer under liquid pressure. The external transducer
utilizes analog-to-digital conversion to convert the transducer
pressure into digital data for further processing. These data are
processed by collection systems or computers that can provide real-
time, dynamic blood pressure readings. Therefore, invasive CAP
measurements are considered the “gold standard” for evaluating
the load on the left ventricle and coronary arteries. However,
cardiac catheterization and pressure guide-wire techniques are
invasive operations that can injure the blood vessels and the heart.
They may lead to complications such as bleeding at the puncture
site, vascular tears and infections. In severe cases, arrhythmias,
acute myocardial infarction, aortic coarctation, and other life-
threatening injuries may occur, such as aortic coarctation. It is
primarily used for critically ill patients and those undergoing
cardiac surgery. Moreover, the technique of operators must be
strictly trained, and experienced and specialized interventionists
must be involved to ensure the successful completion of the
surgery. Invasive CAP measurements also require expensive X-
ray fluoroscope equipment, catheterization laboratories, and other
specialized equipment. The cost of consumables is very high, which
prevents their widespread adoption in primary medical institutions
and among large populations.

Non-invasive measurement methods provide key tools for
cardiovascular evaluation through pulse wave analysis, ultrasound,
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and other techniques (Morgan et al., 2004). Although calibration and
individualization difficulties exist, the advantages of non-invasive
and dynamic monitoring make it increasingly widely used in clinics
and research. Non-invasive measurement techniques utilize the
hemodynamic relationship between CAP and peripheral arterial
pressure to establish mathematical models, and use peripheral
arterial blood pressure to estimate CAP Nowadays, non-invasive
techniques have become the primary method for measuring CAP
due to their practical and safe properties. Substituting, transferring
functions, and multi-channel blinded system identification methods
are commonly used. Peripheral arterial pressure is often used as a
substitute for CAP due to its similarity to CAP, much like the use
of the carotid artery (Zhou et al., 2024) (Kroeker and Wood, 1955).
Although the substitution method has some promise in clinical
practice, it can produce results similar to those obtained by direct
measurement under certain circumstances. However, the technique
has specific errors and limitations; more accurate measurements
are needed in the clinic. Therefore, the method can only serve
as an approximate estimation and cannot fully replace CAP. For
this reason, the transfer function method is introduced with the
multi-channel blind system identification method.

A quantifiable mathematical relationship exists between the
peripheral arterial pulse wave and the central aortic pulse wave.
The central aortic pressure waveform is estimated by modeling the
propagation and reflection effects of the waveform through the
establishment of a transfer function model (Cameron et al., 1998). It
describes how the central aortic pressure waveform is transmitted
and converted to the function of the peripheral arterial blood
pressure waveform by the action of the heart and vascular system. It
establishes a quantitative relationship between CAP and peripheral
arterial pressure. The most widely used technique is the generalized
transfer function to convert the peripheral arterial blood pressure
waveform collected into the theoretical central arterial waveform,
thereby indirectly deriving the CAP, which is the core technique
for non-invasive CAP measurement (Payne et al., 2007). This
technique is efficient and safe, and avoids the risks and complications
associated with invasive catheterization. However, this method has
limitations because the real arterial system may be nonlinear under
high blood flow or pathological conditions, resulting in different
arterial branching patterns among individuals and the location of
reflection points, thereby influencing the transmission of waveform.
Therefore, the results presented by the data are of very low precision.
Moreover, the generalized transfer function is based on data from
healthy individuals. It does not consider special populations, so the
error for these populations, such as those with aortic stenosis and
severe atherosclerosis, will be substantial and cannot be fully applied
to all people. The accuracy will be limited by the individual and the
pathological state. Therefore, this type of method is not widely used
in clinical practice. The multi-channel blind system identification
method regards the cardiovascular system as a system model
with a single input and multiple outputs, by measuring peripheral
arterial blood pressure at numerous locations and employing a blind
identification algorithm to determine the channel parameters of
system. This method eliminates the need to build a model and
directly measures peripheral arterial blood pressure to reconstruct
CAP. Blind identification refers to the fact that there is no need
to know the input signals of the system or the parameters of the
a priori model in advance. The key to this technique is to use the
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statistical independence of signal or non-Gaussian properties to
isolate the system response or use matrix decomposition to obtain
the features of system. These properties bring advantages in resisting
noise, displaying hidden features, and dealing with complex systems.
However, simultaneous measurements of multiple peripheral signals
also significantly inconvenience clinical applications.

This paper proposes a non-invasive central aortic pressure
waveform estimation method based on a single-channel radial
arterial pressure waveform (Du et al., 2022; Zeiler and Fergus, 2014;
Szegedy et al., 2015; Wang et al., 2012). The method builds upon
the temporal convolutional network (TCN) model, incorporates an
attention mechanism (Wang et al., 2025; Chen et al., 2025), and
further optimizes it to propose the TCN-Attention model, thereby
enhancing the model’s capability to focus on channel information.
The innovation of this method is that it effectively combines the
advantages of TCN and the attention mechanism. The TCN model is
mainly responsible for extracting the local patterns of the time series.
At the same time, the attention mechanism focuses on extracting
the global patterns to make up for the shortcomings of the TCN
model, which cannot carry out the global feature extraction, thus
realizing the efficient reconstruction of the CAP. Moreover, the
introduction of the attention mechanism allows the model not only
to capture the local dependencies in the sequence data by stacking
the convolutional layers and increasing the sensory field of the
convolutional kernel, but also allows the neural network to assign
different weights to different moments of the input sequence data,
so that it pays more attention to historical moments related to the
prediction results, thus achieving the balance between the extraction
of local features and global features.

2 Methods

The main structures of the TCN-Attention model are causal
inflationary convolution and residual module. The TCN-Attention
model has the properties of a concise form of convolution suitable
for sequence modeling, memory for history, and consistent output
and input dimensions of the model. The input sequence is denoted
as [ x, - xy] , and the output sequence is predicted as [ ¥y, -+, 7y ]-
In this way, the sequence model between input and output can be
represented as in Equation 1:

9,=G(xpx,),0<n<N 1)

In Equation 1, G denotes the sequence model obtained from
the training dataset; y, denotes the value of the predicted output
sequence at the nth moment. The model's parameters can be
obtained by minimizing the loss function L (y,7) , where the actual
output sequence is y = [y, -, yy] and the predicted output sequence

isy=[7p-In] -

2.1 Causal inflation convolution

The input sequence signal is denoted as x = [x,,--,xy], and the
output value of causally inflated convolution at moment n, F(n) is
described as in Equation 2:

k-1

F(n) =) f(i)-x(n-d-i) ©)
i=0
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Thereof, d=2' is the inflation factor, where 0 << L is the
number of network convolution layers, f:{0,---,k— 1} denotes the
filter, and k is the convolution kernel size; (n—d-i) indicates the
direction of past time. To effectively utilize the information from
long input sequence signals, the receptive field of the TCN model
is increased by increasing the larger filter size and expansion factor.
The effective history receptive field of each layer is (k— 1) - d, and the
sum of the receptive fields of all convolutional layers is:

I-1 I-1

R=1+) (k-1)-d=1+) (k-1)-2' 3)
1=0 1=0

To cover the length of the input sequence signal N, the receptive

field R must be greater than or equal to N, in Equation 3 and the

number of convolutional layers L must be greater than or equal to

logz(N;fl_z ), which can be obtained by solving Equation 4.
I-1
<1+Z(k—1)-d>2N 4)
10

As shown in Figure 1A, the TCN-Attention model is an
integrated deep learning architecture that combines Temporal
Convolutional Network (TCN) with attention mechanisms. As
shown in Figure 1C, an example represents the causal inflation
convolution. The TCN-Attention model requires that the output and
the input have the same length. To ensure that the output tensor
has the same length as the input tensor, zero-padding on the left
side of the input tensor is required, and causal convolution can be
guaranteed. In a convolutional neural network, p denotes padding;
s denotes step size; in this paper, s = 1. The size of the sequence N’
after causal expansion convolution is represented in Equation 5:

— ! — — . -
:N+2p k +1:N+2p lk+(k-1)-(d 1)]+
s s

N/

1 (5

After the convolution operation, the TCN-Attention model will
have a “chomp1d” function to cut the excess padding. Therefore,
the size of the output after processing by “chompld “N” is
represented as in Equation 6:

N'=N'-p=N+p-(k-1)-d (6)
Therefore, to ensure that the length of the input and the output

are the same, it is required that the size of N” = N, the input is p =
(k—1)-d.

2.2 Residual module

Features can be enhanced by increasing the number of network
layers to obtain more helpful information. However, experiments
have found that the optimization effect worsens as the network
is deepened, and testing and training accuracy are reduced.
This phenomenon occurs because deepening the network causes
the gradient explosion or a gradient vanishing. To train deeper
networks, Kaiming He proposed a new network structure, ResNet
(He et al., 2016), as shown in Figure 1B, each residual block
having two branches. The first branch consists of two causally
inflated convolutional layers, two weight normalization layers
(WeightNorm), two activation function ReLU layers, and two
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FIGURE 1
Structure of the TCN-Attention model. (A) The overall architecture of the TCN-Attention model, superimposed by the residual module, where the
convolution kernel size k= 2 and the expansion factor d= 2! ((= 0, 1, ..., L-1); (B) The residual module of the TCN-Attention model. If the dimensions of
the inputs and outputs are different, they need to be manipulated with a 1 x 1 convolution, here Z' denotes the output of the [th module; (C) An
example of causal convolution with a hidden layer L of 4, a convolution kernel of size k of 2 (as indicated by the arrows) and an expansion factor d = 1,
2, 4, 8. The sensory field for each layer of the convolution is (k-1)-d.
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TABLE 1 Clinical characteristics of the subjects.

Parameter Mean + standard deviation

Sample size 1,032

Age 284+ 16.4

Height (cm) 171.0 £33.4

Weight (kg) 69.6 +21.1
Body mass index (kg/m2) 23.1£7.6
Heart rate (bpm) 67.5+9.8

Systolic blood pressure (mmHg) 119.8 £ 15.0
Diastolic blood pressure (mmHg) 75.1+9.8

Dropout layers (Gu et al., 2018), where the WeightNorm layer is
used to normalize the inputs of the implicit layer to counteract
the problem of gradient explosion. The activation function ReLU
introduces the nonlinearity. Dropout regularization is added to
prevent overfitting (Lin et al., 2021). The attention mechanism
is also introduced in the first branch. The second branch is the
skip connection of inputs. For the standard ResNet model, the
inputs are added directly to the output of the residual function.
However, for the TCN-Attention model, the residual block input
and output dimensions may not match. Therefore, a 1 x 1
convolution layer is used to ensure that the inputs are subjected
to a dimensionality upgrading operation, which allows for the
computation of summation between input and output sequences of
the same dimensionality (Lin et al., 2021) (Bai et al., 2018). To train
the model to optimality, the loss function defined in this chapter is
Mean Squared Error (MSE) as in Equation 7:

1N—l
_ 2 _5 )2
L_N’;)(yn yn) (7)

Here y, , y, respectively, denote the measured and estimated
central aortic pressure. To evaluate the accuracy of the proposed
TCN-Attention model for reconstructing central aortic pressure
waveforms, the Root Mean Squared Error (RMSE) was used here as
an index for assessment, and the significance between the estimated
and real measured central aortic pressure waveforms was analyzed
by a paired t-test (IBM SPSS Statistics, Version-23). The correlation
was analyzed by using Spearman’s correlation coefficient. A p-value
<0.05 was considered statistically significant.

3 Experimental datasets and
pre-processing
3.1 Datasets

Subjects were recruited from the Northeastern University and
a community at Shenyang, China. Approval has been obtained
from the Research Ethics Committee of the Northeastern University
(EC-2020B017), and all participants gave written informed consent.
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The inclusion criterion for this study was age between 18 and
50 years. The exclusion criteria included age under 18 years, severe
organic diseases of the heart, liver, or kidneys, and mental illness
or cognitive impairment. The experiment included 1032 individuals
with a mean age of 28.4 + 16.4, height of 171.0 + 33.4 cm, weight
of 69.6 + 21.1 kg, and other parameters as shown in Table 1. The
data collection process was divided into two main steps: first, the
subjects were seated and kept in a stable position, and the systolic
and diastolic blood pressure were collected three times from the
subjects to be averaged by using a mercury sphygmomanometer;
and second, the radial artery pulse wave was collected at least
twice. After each acquisition, if the built-in signal quality assessment
parameter Operator Index was less than 80, the instrument was
reacquired to ensure that the Operator Index of the two data sets
was greater than or equal to 80. The radial artery pulse wave
was collected with the SphygmoCor CVMS device from AtCor
(Australia), which utilized a Millar tonometer (Millar Instruments,
Houston, United States) force transducer to capture radial artery
pulse waves, with a sampling frequency of 128 Hz (Ding et al., 2011).
Using a high-fidelity pressure transducer, the device can record pulse
waveform at superficial arteries, most commonly the radial artery,
followed by the carotid, brachial, or femoral arteries (Zuo et al.,
2010). This peripheral arterial waveform is then converted to
an estimated central aortic waveform by applying a generalized
conversion function or a patient-specific calibrated mathematical
model to derive parameters such as central systolic, diastolic, and
pulse pressure.

The distribution of systolic (SBP) and diastolic (DBP) values
in the measurement dataset (NEU-PWDB) is shown in Figure 2.
The systolic blood pressure of the radial artery (SBP of the radial
artery, rSBP) was higher than the systolic blood pressure of the
central artery (SBP of the central aorta, aSBP), ranging from
0 mmHg to 43 mmHg (Mean + SD, 14.59 + 5.95 mmHg). The
diastolic blood pressure of the radial artery (DBP of the radial
artery, rDBP) and the diastolic blood pressure of the central
aorta (DBP of the central aorta, aDBP) were essentially the same.
Even in some individuals, the aDBP was slightly higher than the
rDBP, with a range of 0.20 mmHg-14 mmHg (Mean + SD, 1.40
+ 1.02 mmHg). The experimental statistics were also consistent
with the “arterial pressure amplification phenomenon,” (Ohte et al.,
2007) the mean difference between systolic blood pressure in
the central and peripheral arteries was approximately 15 mmHg.
The dataset was randomly partitioned into a training set (70%)
for model parameter optimization and a testing set (30%) for
the final, unbiased evaluation of generalization performance, with
the latter kept completely separate and never accessed during
model tuning.

3.2 Data pre-processing

A notable challenge in studies using pulse waveform to predict
blood pressure is that the range of blood pressure values varies
widely between individuals, e.g., systolic blood pressure in healthy
adults typically fluctuates between 90 and 140 mmHg. By contrast,
values in patients with hypertension or hypotension may fall well
above or below this range. This wide distribution of values threatens
the training stability of deep learning models, potentially causing
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FIGURE 2

Blood pressure values based on the measurement data set. (A) systolic blood pressure of the radial artery and systolic blood pressure of the central
artery; (B) diastolic blood pressure of the radial artery and diastolic blood pressure of the central artery.

gradient explosion or gradient vanishing, thus hindering effective
model convergence and prediction accuracy. Therefore, normalizing
the raw pulse wave data before model training is crucial. One of the
core tasks of this process is to normalize the range of values in the
pulse wave signal that characterizes the blood pressure amplitude.
This normalization is significant not only for making the data format
conform to the model input requirements, but also for its ability
to improve the training efficiency significantly by compressing the
numerical spans, so that the optimization algorithms can find stable
and effective solutions faster and accelerate the model to reach the
performance plateau. At the same time, normalization is also a key
strategy to improve data quality, which helps to suppress all kinds of
noise interference (including physiological fluctuations, equipment
measurement errors, and individual baseline differences) mixed in
the signal, to more clearly extract the practical waveform features
reflecting the state of blood pressure. To make the training data
format meet the requirements of the model, this paper standardizes
the acquired data sequences before model training, normalizes
the range of blood pressure amplitude in the pulse waveform
sequences, accelerates the training speed of the model, and quickly
reaches the optimized stable state. The purpose is to improve
the data quality, reduce the noise interference, and extract the
practical features.

There are four standard methods for pre-processing time

series data:
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3.2.1 Min-max normalization

Min-max normalization, or deviation normalization,
linear transformation of the original data. So that the data
features are mapped to [0, 1]. The transformation function is
represented as in Equation 8:

is a

x —min (x)
X=—"—" 8
max (x) — min (x) ®
3.2.2 Mean-variance normalization
Mean-variance standardization, also known as Z-score

standardization, is data standardization through the mean and
standard deviation of the original data. After the data are pre-
processed to follow a standard normal distribution, i.e., the mean
is 0, the standard deviation is 1, the transformation function is
represented as in Equation 9:

x —mean(x)

std(x) ©)

X =

3.2.3 Mean value standardization

Mean value standardization, the data features are mapped
to between [-0.5, 0.5], the
represented as in Equation 10:

transformation function is

. x—mean(x)
* max (x) — min (x) (10)
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FIGURE 3
Histogram of blood pressure distribution based on the measurement data set. (A) Systolic blood pressure of the radial artery; (B) Diastolic blood
pressure of the radial artery; (C) Systolic blood pressure of the aorta; (D) Diastolic blood pressure of the aorta.

3.2.4 Unit Norm Scaling

Unit Norm Scaling, which equals the mode of the data features

to 1, the transformation function is represented as in Equation 11:
F=—2 (11)
norm(x)

In the above four different data pre-processing methods,
max indicates the operation of taking the maximum value;
min suggests the operation of taking the minimum value; mean
indicates the operation of taking the mean value; std suggests the
operation of taking the variance; and norm indicates the operation
of taking the mode. The study shows that after pre-processing
the pulse sequence data using mean-variance normalization,
mean normalization, and unit normalization, the pulse waveform
predicted by the model shows a peak shaving phenomenon,
i.e., the peaks and valleys can not be estimated, and a straight
line phenomenon occurs here. This phenomenon is because the
mean-variance normalization, mean - value normalization, and

Frontiers in Physiology

unit-normalization pre-processing methods are easily affected by
the minimum and maximum values of the pulse waveform. If
the data exceeds the range of the extreme values of the training
set, it cannot be processed effectively. In this paper, minimum-
maximum normalization is chosen as the best pre-processing
method. However, the minimum-maximum normalization method
also has a drawback; when new data is added, it may lead to changes
by calculating the maximum and minimum values, which need
redefined. This paper uses minimum-maximum normalization in
Equations 12, 13, where the minimum and maximum values are
taken from all sample inputs and outputs.

y2a  i=0L2.N (12)
~ _ 1

yi b’

a=min (x.y,)

i=0,1,2,...,N (13)
b=max (x,3)-min (x5,
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FIGURE 4
Comparison of the accuracy of the prediction results of different models on different indices. (A) total waveform (TW); (B) systolic blood pressure (SBP);

(C) diastolic blood pressure (DBP); (D) mean arterial pressure (MAP).

Here x;, y, denote the input radial artery pressure waveform and 4 Com Ppara tive ana l.yS is of
the actual central artery pressure waveform signals, respectively. £; experi mental results
and j, represent the normalized radial artery pressure waveform
signal and the actual central artery pressure waveform signal, 4.1 Evaluation indices
respectively. As shown in Figure 3, for the measurement dataset
(NEU-PWDB), the mean value of diastolic blood pressure at 4.1.1 Mean absolute error
the radial artery is 49 mmHg; the mean value of systolic blood Mean absolute error (MAE) is a commonly used evaluation
pressure is 178 mmHg. Considering the combined dataset,  index. It calculates the average of the absolute value of the prediction
Equations 12, 13, a takes the value of 45 mmHg and b takes the  error of each sample, reflecting the average error magnitude. The
value of 135 mmHg. advantage of MAE is that it intuitively demonstrates the magnitude
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TABLE 2 Comparison of the accuracy of prediction results of different
models on different indices (Mean + standard deviation in mmHg).

Methods ‘ BP MAE ‘ RMSE Max error
™ 0.71+0.71 0.89 +0.86 2.91 +2.09
SBP 1.01 +1.73 1.01+1.73 574 +3.51
TCN
DBP 0.39 +0.28 0.39 +0.28 1.16 +0.43
MAP 0.48 +0.58 0.48 +0.58 2.02+1.02
™ 0.57 + 0.46" 0.69 +0.57 1.94 +1.73*
SBP | 027+025 | 0.27+025 0.86 +0.24™*
TCN-Attention
DBP 0.42 +0.39 0.42+0.39 1.75 £ 0.51
MAP | 0.31+0.28° 0.31 +0.28° 0.99 +0.30*

*indicates P < 0.05; ** indicates P < 0.01.

of the gap between the models predicted values and the actual
values, which does not consider the positive or negative of the
expected value. Also, MAE pays more attention to the size of the
absolute error, which makes it more reflective of the degree of
deviation of the predicted value than the mean squared error. The
range of values of the MAE is [0, + ©0), and it will be more
accurate when the predicted value and the real value match exactly
is equal to 0, i.e., the perfect model; the larger the error, the larger
the value. In Equation 14, N is the number of samples, y, is the actual
value of the first i sample, , is the predicted value of the first i sample.

N

1 R

MAE = NZ'J’;“)’J (14)
i

4.1.2 Root mean square error

Root mean square error (RMSE) is a normal indicator to assess
prediction models’ accuracy. It measures the degree of deviation
between the predicted and the actual value. It is calculated as the
square root of the sum of the squares of the difference between the
predicted and the actual value. The value of RMSE ranges from [0,
+ 00). The smaller the RMSE is, the smaller the prediction error of
the model is, and the better the prediction ability of the model. The
specific formula is as follows in Equation 15:

RMSE = (15)

4.1.3 Maximum error

Maximum error (MAX error) is one indicator for assessing the
model’s prediction performance, indicating the maximum value of
the absolute error between the predicted and the actual value in
all samples. Its core focus is on the model’s performance in the
worst case, rather than the average or overall error level. The specific
formulas are given as in Equation 8:

MAX Error = max ([y, =y, |,.... [y = yl) (16)

Frontiers in Physiology

09

10.3389/fphys.2025.1693431

4.1.4 Spearman'’s correlation coefficient
Spearman’s correlation coefficient (SCC) is a non-parametric
statistic that measures the monotonic relationship between two
variables. It is based on the rank order of the data rather than the
raw values. Therefore, it does not require the data to satisfy the
assumptions of a normal distribution or a linear relationship. This
also leads to its difference from the Pearson correlation coefficient,
which is less sensitive to outliers. At the same time, SCC is effective
in capturing monotonic relationships between variables, whether
linear or nonlinear. Where N is the number of samples, d, is the rank
difference of the first i sample of the two variables.i.e., the difference
between the true value’s rank and the predicted value’s rank. The
specific formula is as follows in Equation 17:
6y d?

SCC=1- ——1—

N(N?-1) 17

4.2 Experimental results

As shown in Figure 4, the TCN-Attention-based model is
superior to the TCN model in reconstructing central aortic pressure.
The prediction errors of the TCN-Attention model were significantly
lower than those of the TCN model (p < 0.05) in terms of the
MAE, RMSE, MAX error assessment indices, as well as the total
waveform, systolic blood pressure, and mean arterial pressure, which
verified that the attention mechanism enhances temporal feature
extraction. For diastolic blood pressure prediction, the performance
of the two models was comparable, and the TCN-Attention-
based model was slightly better regarding the result indicators.
As shown in Table 2, the result of TCN-Attention model was
significantly lower in reconstructing the entire waveform of central
aortic pressure (MAE: 0.57 + 0.46 mmHg) than the TCN model
(MAE: 0.71 + 0.71 mmHg); the result of TCN-Attention model
(RMSE: 0.69 + 0.57 mmHg) was significantly lower than the TCN
model (RMSE: 0.89 + 0.86 mmHg); the MAX value based on the
TCN-Attention model (MAX: 1.94 + 1.73 mmHg) was significantly
lower than that of the TCN model (MAX: 2.91 + 2.09 mmHg). The
TCN-Attention model outperforms the TCN model in the overall
waveform prediction, and in particular, the performance of TCN-
Attention model is outstanding in the control of the maximum error,
with an error reduction of 33%. The results of TCN-Attention model
were significantly lower than the TCN model in estimating systolic
blood pressure (MAE and RMSE: 0.27 + 0.25 mmHg) (MAE and
RMSE: 1.01 + 1.73 mmHg). The result of TCN-Attention model was
significantly lower in estimating systolic blood pressure (MAX: 0.86
+ 0.24 mmHg) than the TCN model (MAX: 5.74 + 3.51 mmHg).
The TCN-Attention model performed very well in SBP prediction,
with an error reduction of more than 70%, and the maximum
error reduction was 85%. The results of TCN-Attention model were
slightly higher than the TCN model in estimating diastolic blood
pressure (MAE and RMSE: 0.42 + 0.39 mmHg), and the result of
the TCN-Attention model (Max Error: 1.75 + 0.51 mmHg) was
slightly higher than the TCN model (Max Error: 1.16 £ 0.43 mmHg).
However, the difference was insignificant.

The result of the TCN model was slightly better than the TCN-
Attention model in DBP prediction, but did not reach statistical
significance, which the physiological fluctuation of DBP is relatively
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FIGURE 5
Estimated central aortic pressure waveform based on different models.

light. The results of the TCN-Attention model were significantly
lower than the TCN model (MAE and RMSE: 0.31 + 0.28 mmHg) in
estimating mean arterial pressure (MAP) (MAE and RMSE: 0.48 +
0.58 mmHg); the TCN-Attention model (MAX: 0.99 + 0.30 mmHg)
was significantly lower than the TCN model (MAX: 2.02 *
1.02 mmHg). The TCN-Attention model significantly outperformed
the TCN in MAP prediction, with more than 35% reduction in
error and 51% reduction in maximum deviation, improving stability
significantly. The SCC of the total waveform for both models was
as high as 0.9985 and 0.9970, indicating that both could capture
the trend of blood pressure changes well. As shown in Figure 5,
the central aortic pressure waveform estimated by the two different
methods, the blood pressure estimation based on the TCN-
Attention model, are closer to the real measured central aortic
pressure waveform than the TCN model in the total waveform and
the key feature points.

5 Discussion and conclusion

The TCN-Attention model outperforms the traditional TCN
model in most metrics, especially in systolic blood pressure
estimation. It indicates that the attention mechanism effectively
captures the key features in the blood pressure signals. DBP has
limited room for model improvement due to small physiological
fluctuations. TCN-Attention is a deep learning model that combines
time-series convolution networks and the attention mechanism
architecture designed for time series prediction tasks. The model
utilizes temporal convolution layers to capture local and long-term
dependencies of time series data. The attention mechanism realizes
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metrics are generally smaller than those of TCN, indicating that its

essential features.

prediction results are more stable and reliable. The SCCs of both
models are as high as 0.9985 and 0.9970, suggesting that both can
capture the blood pressure trend well.

The total waveform usually contains full-cycle features of the
blood pressure signal, such as systole, diastole, and pulse wave
morphology, which have a wide range of numerical variations and
high dynamics. The model prediction needs to capture various
features simultaneously, leading to different MAE and RMSE
sensitivities to other types of errors (e.g., systematic deviation and
random fluctuation). The distribution of errors across the waveform
metrics may exhibit a long-tailed distribution, with a few samples
containing substantial errors. The RMSE values are sensitive to
outliers, while the MAE is more robust.

The estimation of systolic, diastolic, and mean arterial pressure
relies on identifying specific critical points in a continuous
physiological signal. When a model’s prediction error stems
predominantly from systematic bias—such as a consistent
overestimation or underestimation across measurements—the error
distribution for each of these point estimates may approximate
a fixed-offset distribution. In such cases, the MAE and RMSE
values tend to converge, as the uniform nature of the systematic
offset diminishes the influence of outlier-dependent penalization in
RMSE. Considering individual variations and the specific prediction
requirements for special populations (e.g., hypertensive patients),
multimodal data fusion has been actively explored, for instance,
by integrating photoplethysmography signals with complementary
physiological data. Future efforts could incorporate a wider array
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of physiological features, such as heart rate variability, to further
enhance the accuracy and robustness of predictive models.
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