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Among the noninvasive electrical stimulation methods, transcutaneous auricular 
vagus nerve stimulation (taVNS) regulates the activity of various neural 
networks in the brain and autonomic nervous system and is expected to be 
applied clinically in many areas, including in patients with central nervous 
system, psychiatric, and cardiac diseases. Although systematic reviews and 
meta-analyses have been conducted on safety and efficacy, the variability 
of stimulation parameters and the lack of consistency in their effects 
remain significant issues. Therefore, the present study aimed to provide a 
comprehensive view of the safety, parameters, and efficacy of taVNS by focusing 
on studies in healthy participants, patients with stroke, and patients with 
Parkinson’s disease. A literature search was conducted from October 14 to 25 
November 2024, using PubMed, Google Scholar, Web of Science, the Cochrane 
Library, and Scopus. The following search terms were used: “noninvasive VNS 
or nVNS or noninvasive vagus nerve stimulation,” “transcutaneous vagus nerve 
stimulation or tVNS,” and “transcutaneous auricular vagus nerve stimulation 
or taVNS.” In total, 154 papers were included, of which 139 were on 
healthy participants, nine on patients with stroke, and six on patients with 
Parkinson’s disease. The safety of taVNS was relatively high. Although minor 
side effects were reported, no serious adverse events were attributed to 
taVNS parameters used. taVNS could regulate brain activity, motor and mental 
functions, and autonomic nervous system activity in patients with stroke and 
Parkinson’s disease. Modulation of the autonomic nervous system and cortical 
excitability was also observed in healthy individuals. However, these effects 
may depend on the stimulation parameters. The lack of reports on safety and 
the stimulation parameters used was also highlighted. Further validation of
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parameters and accumulation of evidence regarding the efficacy of taVNS are 
necessary.

KEYWORDS

noninvasive brain stimulation, taVNS, central nervous system disorder, 
neuromodulation, rehabilitation 

1 Introduction

Transcutaneous auricular vagus nerve stimulation (taVNS) is a 
noninvasive neuromodulation technique that influences autonomic 
nervous system activity by stimulating the auricular branch of the 
vagus nerve (ABVN). The afferent fibers of the ABVN enter the 
vagal trunk and project to the nucleus tractus solitarius (NTS). 
Activation of the NTS alters brain activity, including that in the locus 
coeruleus (LC) and raphe nucleus, while affecting the functions of 
the prefrontal cortex, basal ganglia, and limbic system (Badran et al., 
2018a). These effects improve consciousness, motor function, 
somatosensory function, and mental health in both healthy 
individuals and patients with neurological disorders (Gao et al., 
2023; Dong et al., 2023; Hagen et al., 2014; Colzato et al., 2018a; 
Colzato et al., 2018b). Although these effects depend on stimulation 
parameters, such as current intensity, frequency, duration, and 
on–off time, the influence of these parameters on the outcome 
remains unclear. Therefore, optimizing taVNS parameters may 
offer therapeutic benefits to patients with neurological disorders 
during neurorehabilitation. Unlike earlier systematic reviews and 
meta-analyses that primarily assessed aggregate efficacy outcomes 
(Hua et al., 2023; Ramos-Castaneda et al., 2022; Redgrave et al., 
2018), this review aimed to explore the potential clinical applications 
of taVNS in healthy participants, patients with stroke, and patients 
with Parkinson’s disease (PD), centering on three aspects: safety, 
stimulation parameters, and efficacy.

In this review, we focus on healthy individuals, stroke, 
and PD to align mechanistic insights with clinical translation. 
Healthy participants were included because most mechanistic 
studies of taVNS have been conducted in this group, providing 
essential information on stimulation parameters and physiological 
mechanisms. Healthy cohorts also offer a low-confounder setting 
to map taVNS stimulation parameters (frequency, duration, 
intensity, and on-off interval) onto neurophysiological effects 
(brainstem/cortical activity, electroencephalogram, and autonomic 
modulation). Stroke and PD then represent canonical motor 
network disorders in which these mechanisms are hypothesized to 
support recovery of motor control, gait, and learning (Mondal et al., 
2023; Engineer et al., 2019). In addition, taVNS has recently 
gained attention as a promising adjunct in neurorehabilitation 
for these conditions, where novel interventions to improve motor 
and cognitive outcomes are particularly needed (Dolphin et al., 
2022; Galvez-Garcia et al., 2024; Maraver et al., 2020; Shi et al., 

Abbreviations: ABVN, auricular branch of the vagus nerve; EEG, 
electroencephalogram; fMRI, functional magnetic resonance imaging; HR, 
heart rate; HRV, heart rate variability; LC, locus coeruleus; NTS, nucleus 
tractus solitarius; PD, Parkinson’s disease; sAA, salivary alpha-amylase; 
taVNS, transcutaneous auricular vagus nerve stimulation.

2023). Additionally, Zhang et al. (2025) provided a comprehensive 
review of both invasive and non-invasive VNS mechanisms in stroke 
rehabilitation. They reported that VNS promotes synaptic plasticity, 
inhibits inflammatory responses, facilitates vascular regeneration, 
and protects the integrity of the blood–brain barrier, collectively 
contributing to functional remodeling after ischemic injury. 
Furthermore, clinical evidence suggests that invasive VNS and 
taVNS yield significant improvements in upper-limb motor function 
post-stroke. Previous research on other neuropsychiatric conditions 
such as depression, epilepsy, and migraine has already been 
synthesized in systematic reviews and meta-analyses (Lim et al., 
2022; Reuter et al., 2019; Wu et al., 2018), whereas the evidence base 
for stroke and PD remains comparatively limited and heterogeneous. 
Focusing on these three groups enables harmonized outcome 
frameworks [e.g., functional magnetic resonance imaging (fMRI), 
electroencephalogram (EEG), heart rate variability (HRV), task 
performance, the Fugl–Meyer Assessment of the upper extremity 
(FMA-UE), gait metrics, Unified Parkinson’s Disease Rating Scale 
(UPDRS)] and avoids cross-indication heterogeneity that would 
obscure parameter–effect relationships central to this review. 
Optimizing taVNS parameters may offer therapeutic benefits to 
patients with neurological disorders during neurorehabilitation. 
Given the novelty of taVNS, the current evidence base is still 
heterogeneous, with relatively few controlled clinical trials available. 
Therefore, instead of a systematic review, we adopted a narrative 
review format to provide an overview of existing studies and to 
outline key challenges for future standardized research.

Regarding safety, the most commonly reported side effects are 
ear pain, headache, and numbness (Kim et al., 2022). Researchers 
have reported a low rate of adverse events and no serious events 
when applying taVNS to healthy individuals as well as patients with 
stroke, depression, epilepsy, cognitive impairment, and migraine 
(Redgrave et al., 2018; Tan et al., 2023; Wang et al., 2022; Wu et al., 
2020). No differences in the risk of adverse or serious events were 
observed between the active and sham stimulation conditions. 
However, the incidence and impacts of adverse events vary despite 
the application of the same parameters (Gerges et al., 2024b). 
Moreover, the relationship between taVNS parameters and the 
incidence or severity of adverse events remains unknown owing to 
inconsistent reporting of adverse events. Therefore, the association 
between these parameters and adverse events should be investigated.

The taVNS parameters vary according to individual stimulation 
sensitivity and disease specificity. To effectively apply taVNS, 
establishing stimulation parameters that reflect participant 
characteristics is essential.

Furthermore, the outcomes used to evaluate the effect of taVNS 
differ across studies, complicating comparisons and potentially 
hindering clinical applications (Badran et al., 2018b). This review 
serves as an initial step in exploring the variability and efficacy of 
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taVNS parameters by focusing on the parameters used for each 
disease and the associated evaluation indices.

Previous studies have reported the effect of taVNS on neural 
brain networks and motor performance in healthy individuals and 
those with stroke and PD (Li et al., 2022; Sigurdsson et al., 2021; 
Wang et al., 2021). However, a functional magnetic resonance 
imaging (fMRI) study indicated that varying the taVNS settings, 
such as frequency and stimulus duration, led to different brain 
network activities. In addition, HRV, which reflects the function 
of the autonomic nervous system, changes depending on the 
stimulus intensity and frequency of taVNS (Badran et al., 2018b; 
Clancy et al., 2014). Thus, it remains unclear which parameters are 
most effective in specific settings and populations, including healthy 
individuals and those with neurological disorders (Thompson et al., 
2021). Further studies are required to explore the differences 
and individual variabilities in the effect of taVNS according 
to different parameters to optimize and maximize its effect 
(Yokota et al., 2022; Ng et al., 2024). 

2 Methods

A literature search was conducted from October 14 to 25 
November 2024, using PubMed, Google Scholar, Web of Science, 
the Cochrane Library, and Scopus. The search terms and Boolean 
combinations used were: (“Non-invasive VNS” OR “nVNS” OR 
“Non-invasive vagus nerve stimulation”), (“Transcutaneous vagus 
nerve stimulation” OR “tVNS”), (“Transcutaneous auricular vagus 
nerve stimulation” OR “taVNS”).

The target population was defined to include healthy adults, 
patients with stroke, and patients with PD. This selection was 
guided by (i) original articles published in peer-reviewed journals 
and written in English; (ii) the density of parameterized taVNS 
studies in healthy cohorts; (iii) the neurorehabilitation relevance of 
stroke and PD, where motor and cognitive endpoints allow cross-
study comparability; and (iv) the need to minimize heterogeneity 
from conditions with disparate pathophysiology and outcomes (e.g., 
mood or cardiovascular indications), which would compromise 
our parameter-focused synthesis. For patient populations, all 
studies involving stroke or PD were eligible, irrespective of study 
design. Studies were included if they applied taVNS with reported 
stimulation parameters and outcome measures. Exclusion criteria 
were: (i) unspecified taVNS parameters, (ii) absence of assessment 
items, and (iii) preprints and study protocols.

The search terms “tVNS” and “nVNS” may also retrieve studies 
using percutaneous cervical vagus nerve stimulation (tcVNS, e.g., 
gammaCore), because using “tVNS” alone could exclude papers 
that mentioned the auricular approach but were labeled differently. 
Therefore, all abstracts and full texts identified by our search terms 
were screened, and non-auricular approaches were excluded. This 
review includes only studies using auricular stimulation (taVNS). 
Although transcutaneous cervical vagus nerve stimulation (tcVNS) 
is also a promising approach, it differs in stimulation site and 
mechanisms; thus, our scope was limited to taVNS.

Studies involving healthy adults of any age were eligible. No 
specific age restrictions were applied; however, most included 
studies were conducted in young to middle-aged adults, with only 
a few explicitly targeting older adults.

This review was conducted in a narrative format. A systematic 
literature search was performed, and findings were synthesized 
qualitatively. No statistical pooling or meta-analysis was undertaken 
because of the heterogeneity of study designs, stimulation protocols, 
and outcome measures. Outcomes were extracted and narratively 
organized into three domains: safety, stimulation parameters, and 
efficacy. This narrative review was not pre-registered on OSF or 
any other public repository. Screening and data extraction were 
performed by a single reviewer. 

3 Results

3.1 Overview

A total of 4,822 records were retrieved from PubMed, Web 
of Science, Scopus, Google Scholar, and the Cochrane Library. 
After removing duplicates, 711 unique records remained. Following 
title/abstract and full-text screening based on the inclusion and 
exclusion criteria, 154 studies were included in this review (139 
healthy, nine stroke, six PD). A simplified flow summary is 
presented in Figure 1.

Regarding the safety of taVNS, most studies found that the 
participants did not experience any adverse events. Common side 
effects included warmth, vibration, and numbness; however, these 
were not serious. Some studies lacked descriptions of side effects or 
adverse events.

The parameters varied according to disease and stimulation 
target, demonstrating less consistency across studies involving 
healthy participants, patients with stroke, and patients with PD 
(Tables 1, 2). For each parameter, a frequency of 25 Hz and a 
pulse duration of 200–300 μs were the most commonly used in 
both healthy participants and patient populations in the included 
studies. The most common stimulation intensity was below the pain 
threshold, followed by the sensory threshold, mild tingling, uniform 
intensity, and 200% sensory threshold. Methods for determining 
intensity varied across studies, and there were also nuances in 
the interpretations of terms such as “tolerable” and “below the 
pain threshold.” For the on-off interval, a 30-s “on” and 30-s “off ” 
pattern was applied in both healthy participants and patients with 
stroke; however, the duty cycle in patients with PD varied across 
studies, including patterns such as 60-s “on” and 10-s “off ” or 60-
s “on” and 30-s “off ”. Some studies applied continuous stimulation 
without on-off cycle. taVNS was applied for ≤60 min in most studies. 
However, in healthy individuals, large variations were observed, 
such as >60 min, only a few minutes, and occasionally during task 
performance. The outcome measures primarily included disease-
specific rating scales and taVNS efficacy measures.

Regarding electrode lateralization, both right-sided and left-
sided taVNS were found to equally enhance cortical excitability 
and induce neurophysiological changes in the frontal area 
(Konakoglu et al., 2023; Camargo et al., 2024). Bilateral stimulation 
also showed a modulating effect on heart rate variability 
(Percin et al., 2024; De Couck et al., 2017). Hatik et al. (2023) 
and Laqua et al. (2014) reported that bilateral stimulation resulted 
in significantly less stimulation-related pain. Peng et al. (2023) 
examined the effects of taVNS delivered to different ear targets 
relative to the lesion (ipsilesional vs. contralesional vs. bilateral 
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FIGURE 1
Summary of the present review.

TABLE 1  Electrode placement for taVNS (the number of manuscripts).

Category Healthy participants Patients with stroke Patients with Parkinson’s disease

Right or left

Right 2 0 0

Left 127 8 6

Bilateral 10 1 0

vs. sham) in patients with stroke and found that ipsilesional 
stimulation produced the largest direct brain activation. However, in 
healthy individuals, activity increased in the wrist extensor muscles 
on the side opposite to the stimulated side (Konakoglu et al., 
2023). Overall, this review found no studies reporting negative 
results for bilateral stimulation; however, effects may differ 
between healthy individuals and patient populations, necessitating 
further investigation. Only 2 studies performed right-sided taVNS 
(Gauthey et al., 2020; Sinkovec et al., 2021).

Across all included studies (including overlaps), 52 assessed 
autonomic outcomes (e.g., HR, HRV, pupil size, salivary markers), 
60 investigated cortical/neurophysiological indices (e.g., fMRI, EEG, 
TMS), 42 reported motor outcomes, and 25 assessed cognitive or 
affective measures. Representative findings included HRV increases 
and improved pupil size in autonomic measures, modulation 
of limbic and prefrontal activity in neurophysiological studies, 
improvements in gait and upper-limb function in motor outcomes, 
and enhanced attention and reduced anxiety in cognitive/affective 
measures. Studies involving patients with stroke and those with 

PD more often evaluated motor function than autonomic nervous 
system activity. In contrast, studies in healthy participants primarily 
investigated the neurological and physiological mechanisms of 
taVNS, employing fMRI, HRV, and electroencephalography (EEG) 
(Badran et al., 2018a; Gianlorenco et al., 2024; Keute et al., 2021; 
Rufener et al., 2018; Rufener et al., 2023; Sclocco et al., 2019). 
Other studies have demonstrated improved performance in tasks 
involving rewards, fatigue, and memory. In studies on patients 
with stroke, taVNS contributed to reducing inflammation and 
vasospasm and enhancing motor and sensory functions, walking 
speed, gait cycle, balance, and emotional responses (Capone et al., 
2017; Chang et al., 2021; Li et al., 2022; Sellaro et al., 2015b; 
Wang M. H. et al., 2024). Modulation of the default mode network 
using taVNS underlies these effects (Peng et al., 2023). Regarding 
the effect of taVNS in patients with PD, the improvement in walking 
velocity or stride length, anxiety, and modulation of brain areas, 
such as the superior parietal lobule, anterior central gyrus, posterior 
central gyrus, middle occipital gyrus, and cuneus, has been reported 
(van Midden et al., 2024b; Fu et al., 2024; Zhang et al., 2024).
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TABLE 2  Electrode attachment sites used in taVNS studies (number of manuscripts by participant type).

Category Healthy participants Patients with stroke Patients with Parkinson’s disease

Target (active)

Tragus 24 2 2

Cymba concha 90 6 4

Concha 7 1 0

Others 20 0 0

Target (sham)

Ear lobe 97 2 5

Same as active 24 6 0

Others 12 1 1

3.2 Healthy participants

3.2.1 Safety
Of the 139 studies in healthy participants, 76 (55%) did not 

report adverse events, 41 (29%) explicitly stated that no adverse 
events occurred, and 13 (9%) described minor adverse events 
(e.g., headache, ear pain, tingling, transient fatigue), and nine 
(6.5%) provided insufficient detail for classification. All reported 
events were mild and self-limiting, with no serious adverse events 
documented. Nine studies included sham stimulation, and none 
observed significant differences in adverse event rates between 
active and sham groups. 13 studies reported various side effects, 
including headache; pain; discomfort; nausea; muscle contractions, 
tingling, or burning sensations; and fatigue. These studies also noted 
that such side effects were not serious (D’Agostini et al., 2021; 
Jacobs et al., 2015; Tona et al., 2020). One study concluded that 
the physiological and potential side effects of taVNS were unknown 
when used bilaterally because the parasympathetic nervous system 
of the heart is innervated by the right vagus nerve (Kraus et al., 
2007). However, Hatik et al. (2023) subsequently reported that 
taVNS did not cause bradycardia or hypotension even with bilateral 
stimulation. Overall, this high rate of non-reporting underscores the 
potential for underreporting bias; therefore, it was unclear whether 
any adverse events had occurred. These findings suggest that taVNS 
is generally safe, although underreporting remains a limitation. 

3.2.2 Parameters
The taVNS parameters are summarized in Tables 3a–c as well 

as illustrated in Figures 2, 3. Table 3 presents the total number 
of studies that examined multiple frequencies, durations, and 
intensities. The most commonly used parameters were a frequency 
of 25 Hz, stimulus interval of 250 μs, and intensity below the 
pain threshold. However, the stimulus parameters varied among 
studies. Several studies examined the effects of these parameters. 
For instance, a study that applied taVNS at different intensities 
and examined its effects reported that pupillary dilation was most 
effectively induced at 2 mA (Capone et al., 2021). Regarding other 
parameters, 500 μs and 10 Hz had the most substantial effect on 
heart rate (HR) (Badran et al., 2018b), and taVNS at 250 μs, 
100 Hz, and 3.0 mA was effective in suppressing pain (St Pierre 
and Shinohara, 2023; Yokota et al., 2024). Additionally, taVNS at 

100 Hz increased cerebellar brain inhibition to a greater extent than 
that at 25 Hz (van Midden et al., 2024a).

Regarding the location of the electrodes, stimulation of the 
cymba conchae elicited a stronger and more significant activation 
of the NTS and LC, key brainstem targets of vagal afferents, 
compared with stimulation of other auricular sites (Forte et al., 2022; 
Yakunina et al., 2017). However, the fossa triangularis was also an 
effective stimulation site (Machetanz et al., 2021), and some studies 
applied bilateral stimulation (Camargo et al., 2024; Ferstl et al., 2022; 
Gianlorenco et al., 2024; Hatik et al., 2023; Konakoglu et al., 2023; 
Laqua et al., 2014; Machetanz et al., 2021; Müller et al., 2021; Ng et al., 
2024; Percin et al., 2024). On the other hand, Borges et al. (2020) 
have reported the cardiac vagal activity may be similarly influenced 
by afferent vagal stimuli triggered by active and sham stimulation 
with different stimulation intensities.

Overall, the taVNS parameters are an important consideration; 
however, the optimal settings remain uncertain because of the 
variability in parameter combinations and assessment methods. 

3.2.3 Effects
The effects of taVNS were predominantly categorized into three 

domains: modulation of activity in the brainstem and cortical 
areas; regulation of the autonomic nervous system, including the 
cardiovascular and gastrointestinal systems; and enhancement of 
motor and cognitive functions. 

3.2.3.1 Modulation of activity in the brainstem and 
cortical areas

fMRI studies investigating the neuromodulatory effects of 
taVNS consistently demonstrated increased BOLD signals in key 
regions, such as the insular cortex, thalamus, prefrontal cortex, 
and cingulate cortex (Borgmann et al., 2021; Kraus et al., 2007). 
Furthermore, brainstem regions, including the NTS and LC, were 
activated following taVNS (Sclocco et al., 2019). These areas 
constitute the core components of vagal afferent pathways and 
are critically involved in interoception, autonomic regulation, 
and emotional processing (Alicart et al., 2021; Dietrich et al., 
2008; Johnson and Steenbergen, 2022; Mao et al., 2022). Several 
studies examining the effects of taVNS on the resting-state brain 
network have reported increased activation in limbic system 
regions, including the putamen, caudate, posterior cingulate cortex, 
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TABLE 3  Stimulation parameters in healthy participants (including 
multiple applications).

a. Frequency

Frequency [Hz] Number of published 
manuscripts

10 7

20 6

25 100

30 11

100 9

300 1

Others 15

Median: 25 Hz, IQR: 0

b. Duration

Duration [µs] Number of published 
manuscripts

50 1

100 4

150 2

200 20

250 38

300 12

400 2

450 2

500 11

200–300 33

200–250 2

Unidentified 13

Others 4

Median: 250 ㎲, IQR: 100 (200–300)

c. Current intensity

Current intensity [mA] Number of manuscripts

Perceptual threshold 28

200% of the participant’s perceptual 
threshold

3

(Continued on the following page)

TABLE 3  (Continued) Stimulation parameters in healthy participants 
(including multiple applications).

c. Current intensity

Current intensity [mA] Number of manuscripts

Mild tingling (not pain) 19

Below the pain threshold 51

Consistent intensity 36

Not described 2

Others 2

FIGURE 2
Number of manuscripts by stimulation frequency.

FIGURE 3
Number of manuscripts by stimulation duration.

amygdala, and parahippocampal gyrus (Keatch et al., 2022; 
Peng et al., 2018). Teckentrup et al. (2021) reported that taVNS 
increased network activation in the NTS. However, Kraus et al. 
(2007) reported that taVNS led to decreased network activation in 
the limbic system. This apparent discrepancy is likely attributable 
to variations in stimulation parameters and electrode placement. 
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Specifically, studies reporting increased limbic system activation 
used electrodes affixed to the cymba concha, whereas those 
observing reduced activity used electrodes placed on the tragus. 
Several EEG-based studies demonstrated that taVNS enhanced 
attention, motor learning, and emotion regulation, indicating 
its potential as a tool for cognitive and affective modulation 
(Muller et al., 2022; Wang et al., 2023). Specifically, taVNS 
modulated alpha and beta brainwave activities, particularly within 
regions associated with attention, working memory, and cognitive 
processing (Konjusha et al., 2023; Sun et al., 2021; Vertanen, 2023). 
Notably, reductions in high-frequency (HF) alpha activity correlated 
with increased reaction times (RTs), suggesting enhanced cortical 
alertness and attention (Chen, et al., 2023a; Konakoglu et al., 2023; 
Konjusha et al., 2022). Changes in motor-related cortical potentials 
and RT following taVNS suggested enhanced neural efficiency 
during motor execution (Chen et al., 2024a; Chen et al., 2022; 
Chen, et al., 2023b; Gadeyne et al., 2022; Gurtubay et al., 2023). 
Functional connectivity analyses further highlighted alterations in 
the parietal lobe, reinforcing its role in sensorimotor integration 
(Poppa et al., 2022; Warren et al., 2020). Emotion-related event-
related potentials were also affected by taVNS, with evidence 
suggesting that taVNS modulated neurophysiological activity in 
the frontal lobe. Specifically, taVNS enhanced the lateralization 
of alpha waves toward the right frontal hemisphere during 
Go/No-Go tasks, potentially supporting improved executive control 
(Keute et al., 2018; Kuhnel et al., 2020). However, although 
taVNS consistently produces neurophysiological effects, certain 
anticipated outcomes, such as alpha suppression, emotional memory 
formation, emotional responses, and autonomic modulation—have 
not been reliably replicated. These inconsistencies suggest that the 
precise mechanisms underlying the effects of taVNS remain poorly 
understood and warrant further investigation (Camargo et al., 
2024). Moreover, motor-evoked potentials (MEPs) and TMS-evoked 
EEG potentials (TEPs) were used to evaluate the effects of taVNS, 
particularly on motor-related brain activities. MEPs and TEPs were 
not significantly influenced at the group level; taVNS with a higher 
intensity (>2.5 mA) decreased cortical excitability, as evidenced by 
increased resting motor thresholds, reduced MEP amplitudes, and 
EEG analysis (D’Agostini, 2023; Pihlaja et al., 2020; Sharon et al., 
2021; Ventura-Bort et al., 2021; Warren et al., 2019). taVNS 
selectively influenced motor performance through the modulation 
of the GABAergic system in the motor cortex without cholinergic 
circuits. These were evaluated using short-interval intracortical 
inhibition and short-latency afferent inhibition. These outcome 
measures are integral to cognitive processing and motor function 
(Capone et al., 2015; Horinouchi et al., 2024; Mertens et al., 2022; 
van Midden et al., 2024a; Wang et al., 2022).

Overall, taVNS modulates cortical activity related to motor 
function, and these effects can be evaluated using noninvasive brain 
imaging techniques. 

3.2.3.2 Regulation of the autonomic nervous system
Autonomic nervous system effects were assessed using HR, 

blood pressure, HRV, pupil size, and salivary biomarkers as key 
outcome measures. Sinkovec et al. (2021) reported significant 
reductions in HR, left ventricular contractility, and left ventricular 
output with right taVNS, resulting in a beneficial reduction 
in left ventricular workload. HRV serves as a robust indicator 

of parasympathetic activity and sympathetic suppression, with 
increases in the root mean square of successive differences and HF 
components of HRV, along with decreases in the low-frequency 
(LF) to HF (LF/HF) ratio, representing significant markers of 
autonomic modulation (Geng D. et al., 2022; Geng D. Y. et al., 2022; 
Petersen et al., 2024; Sclocco et al., 2020; Tobaldini et al., 2019; 
Toschi et al., 2023). Changes in HRV have been associated with 
elevated nociceptive withdrawal reflex thresholds and attenuated 
stress responses, highlighting their potential for treating chronic 
pain and psychiatric disorders (Yokota et al., 2024). Furthermore, 
HRV enhancement has been implicated in the restoration 
of autonomic balance through sympathetic inhibition and 
parasympathetic activation, particularly in conditions characterized 
by sympathetic overactivity, such as heart failure (Clancy et al., 
2014). Additionally, taVNS improves cardiac baroreflex sensitivity 
and autonomic modulation (Antonino et al., 2017). HRV 
modulation is also associated with the mitigation of initial 
stress responses, nociceptive processing, and the enhancement of 
cognitive function, highlighting its broader physiological relevance 
(Austelle et al., 2024; Le Roy et al., 2023). taVNS influences 
pupil diameter under specific conditions, with significantly 
greater dilation observed during scotopic illumination and phasic 
stimulation compared with sham conditions (Skora et al., 2024). The 
pupillary response appears to scale with the intensity of the taVNS, 
suggesting possible engagement of the LC–noradrenergic (LC–NA) 
system (D’Agostini et al., 2023). However, interindividual variability 
and dependence on prestimulation pupil diameter, a proxy for 
tonic LC–NA activity, pose challenges to consistency. Further 
investigations are warranted to determine whether the evoked 
pupillary changes reflect orienting responses or are attributable 
to somatosensory perception. Hence, although pupillometry shows 
promise as a noninvasive biomarker of taVNS effect, its reliability 
and specificity require rigorous validation (Keute et al., 2019b; 
Villani et al., 2022; Wienke et al., 2023).

Salivary alpha-amylase (sAA) has been used as a biomarker 
to evaluate the effects of taVNS, potentially reflecting its NA 
activity. Although some studies have reported significant increases 
in sAA following taVNS, others have found no difference compared 
with sham conditions, resulting in inconsistent findings. Although 
sAA elevation has been observed under both sustained and brief 
stimulations, it remains unclear whether these changes directly 
correspond to NA activation. However, further studies are required 
to validate the reliability of sAA as a biomarker. Overall, although 
sAA has potential as an indicator of the effects of taVNS, 
further validation studies are required (Bömmer et al., 2024; 
D’Agostini et al., 2022; Fischer et al., 2018; Zhu et al., 2022).

Furthermore, in a study that simultaneously evaluated 
neurological indices, such as the autonomic nervous index and 
EEG, pupil dilation after taVNS suggested temporary noradrenaline 
activation and was associated with autonomic nervous regulation; 
however, no evident effect was observed on EEG (Lloyd et al., 2023). 
Thus, although effects have been observed for a single endpoint, 
inconsistent results have been reported across endpoints. In terms 
of gastrointestinal effects, HF taVNS enhances gastric motility by 
increasing the amplitude of peristaltic waves (Frokjaer et al., 2016; 
Steidel et al., 2021; Teckentrup et al., 2020). Furthermore, taVNS 
strengthens gastric-to-brain connectivity in the NTS and midbrain 
while simultaneously enhancing connectivity across broader brain 
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regions (Muller et al., 2022). However, Gancheva et al. (2018) 
reported that taVNS did not acutely modulate the autonomic 
tone to the visceral organs, indicating discrepancies in findings 
between studies. 

3.2.3.3 Enhancement of motor and cognitive functions
To investigate the effects of taVNS on the performance, 

Hatik et al. (2023) examined the effects of taVNS on exercise-
induced pain and fatigue. Although taVNS significantly reduced 
pain and fatigue, it did not improve exercise performance. The 
observed fatigue recovery effect was attributed to attenuation 
of exercise-induced sympathetic overactivity by taVNS. 
Performance outcomes appear to be strongly influenced by 
individual motivation during experimental tasks (St Pierre and 
Shinohara, 2023; Wang et al., 2022).

Combining taVNS with interference control training enhances 
both cognitive function and task performance (Borges et al., 
2019). In contrast, failure to apply taVNS at a certain time 
may impair motor learning (St Pierre and Shinohara, 2023). 
Studies investigating the effects of taVNS on memory have 
reported improved memory task scores (Cibulcova et al., 2024; 
Giraudier et al., 2020; Muller et al., 2022; Yakunina et al., 2017), 
although no significant effects have been observed on delayed 
recall (Keatch et al., 2022). Taking advantage of the overlapping 
brain modulation regions of taVNS and transcranial direct current 
stimulation (tDCS), a combined stimulation protocol yielded 
greater enhancement in working memory performance than either 
intervention alone (Zhao et al., 2022). Furthermore, taVNS may 
modulate selective aspects of memory processing.

In a multiday fear conditioning and extinction 
paradigm, Szeska et al. (2020) demonstrated that long-term use 
of taVNS enhanced the amygdala modulation of the fear-enhancing 
startle and its cognitive effects. Administering taVNS during 
the memory extinction phase facilitates the suppression of fear-
enhancing startle responses and cognitive risk assessment, thereby 
reducing the likelihood of fear reinstatement. Collectively, these 
findings suggest that taVNS improves cognitive and memory 
functions and may influence memory processing mechanisms, 
potentially contributing to enhanced learning.

Based on the modulatory effects of taVNS on emotion and 
mood, studies have suggested that taVNS reduces emotional 
reactions or anxiety (Burger et al., 2016; Burger et al., 2017 
Burger et al., 2018; Burger, 2019; Burger et al., 2019; Ferreira et al., 
2024; Finisguerra et al., 2019; Jongkees et al., 2018; Keatch et al., 
2023; Sellaro et al., 2018; Steenbergen et al., 2021; Szeska et al., 
2021) and improves positive mood during effort tasks (Ferstl et al., 
2022). Specifically, the lower the baseline positive mood, the 
more immediate was the improvement in motivation with taVNS. 
Regarding its effects on the reward system, some studies have 
reported the activation of reward functions, indicating increased 
motivation for reward acquisition rather than effort maintenance 
(Ferstl et al., 2022; Neuser et al., 2020). Conversely, taVNS does 
not result in reward activation, regardless of the reward type, scale, 
or trial difficulty in effort tasks (Lucchi et al., 2024). Neurological 
investigations have shown that taVNS may enhance the inhibitory 
control of emotions by acting within the inhibitory control network 
of the prefrontal cortex (Zhu et al., 2023).

Several studies have demonstrated the effectiveness of taVNS 
in addressing obesity, sleep disorders, pain, motion sickness, 
and language skills (Alicart et al., 2021; Altinkaya et al., 2023; 
Anzolin et al., 2023; Crupper, 2023; Kozorosky et al., 2022; 
Honda et al., 2024; Jackowska et al., 2022; Llanos et al., 2020; 
Maharjan, 2018; Mertens et al., 2020; Molefi et al., 2023; Müller et al., 
2021; Obst et al., 2020; Phillips et al., 2021; Thakkar et al., 2020; 
Vosseler et al., 2020; Vishal et al., 2025). 

3.3 Stroke

3.3.1 Safety
No serious adverse events were observed during the 

experiments in six of the nine studies. Li et al. (2022) noted 
that 2 of the 60 participants experienced skin redness, which 
promptly and completely subsided after adjusting the current 
intensity. Capone et al. (2017) reported no adverse events 
or discomfort. Two studies did not describe adverse events 
(Baig et al., 2019; Peng et al., 2023). 

3.3.2 Parameters
All nine studies provided detailed information on the 

stimulation parameters (Baig et al., 2019; Capone et al., 2017; 
Chang et al., 2021; Huguenard et al., 2024; Li et al., 2022; Liu et al., 
2024; Peng et al., 2023; Wang L. et al., 2024; Wang M. H. et al., 
2024). The parameters are summarized in Tables 4a–c. The 
predominant frequencies used were 25 Hz, with a duration of 
300 µs and a duty cycle of 30 s “on” and 30 s “off ”. However, 
there were inconsistencies in determining the intensity across 
studies. Most studies implemented session schedules lasting ≥10 
days, indicating medium-to long-term intervention strategies 
(Capone et al., 2017; Chang et al., 2021; Li et al., 2022; 
Liu et al., 2024; Wang M. H. et al., 2024).

3.3.3 Efficacy
The clinical efficacy of taVNS in conjunction with rehabilitation 

interventions and other neuromodulatory devices has been 
demonstrated. Of the nine stroke studies, three applied taVNS 
alone and reported improvements in upper-limb motor recovery, 
sensory function, or depressive symptoms. The remaining six studies 
combined taVNS with rehabilitation training, robotic therapy, 
or tDCS, reported enhanced functional outcomes such as gait, 
balance, and activities of daily living (Baig et al., 2019; Capone et al., 
2017; Chang et al., 2021; Li et al., 2022; Wang L. et al., 2024; 
Wang M. H. et al., 2024). In the robotic therapy trials, participants 
received identical robotic training with either taVNS or sham 
taVNS; both studies reported larger gains in upper-limb function in 
the taVNS + robotic arm relative to robotic + sham, indicating 
an added benefit of taVNS under matched co-intervention 
(Capone et al., 2017; Chang et al., 2021). In trials combining taVNS 
and tDCS, arm structures varied (e.g., taVNS + tDCS vs. tDCS 
alone vs. taVNS alone vs. control). The combination arm generally 
showed the largest improvements; however, formal taVNS × tDCS 
interaction tests were not reported, so synergy cannot be established. 
Across studies, taVNS-alone arms improved motor outcomes 
versus their control/sham comparators, albeit with small samples 
and heterogeneous dosing (Wang M. H. et al., 2024). Futhermore, 
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TABLE 4  Stimulation parameters in patients with stroke.

a. Frequency

Frequency [Hz] Number of published manuscripts

20 4

25 4

30 1

Median: 25 Hz, IQR: 5 (20–25)

b. Duration

Duration [µs] Number of published manuscripts

100 1

250 1

300 5

500 2

Median: 300 ㎲, IQR: 0

c. Current intensity

Current intensity [mA] Number of published 
manuscripts

below the pain threshold 2

tolerable level 3

200% Perceptual Threshold 1

discomfort level 1

uniformly determined 1

Not defined 1

combining taVNS with rehabilitation has demonstrated notable 
improvements in motor and sensory functions and in managing 
post-stroke depression (Baig et al., 2019; Li et al., 2022). Peng et al. 
(2023) indicated that all active taVNS conditions (ipsilesional, 
contralesional, and bilateral) significantly attenuated activity in 
the contralesional default mode network compared with the 
sham condition. However, only ipsilesional taVNS led to a 
significant increase in activation in the ipsilesional visuomotor 
and secondary visual cortices, while simultaneously reducing 
visuomotor activity in the contralesional hemisphere. These results 
highlighted the strong influence of laterality on the effectiveness 
of taVNS, with ipsilesional stimulation having the most direct 
effect on brain activation. Huguenard et al. (2024) demonstrated the 
immunomodulatory effects of taVNS in patients with subarachnoid 
hemorrhage. This study excluded patients with SAH of traumatic 
etiology, patients with negative vascular imaging for aneurysm, 
and those receiving ongoing cancer therapy or immunosuppressive 
medication. taVNS significantly reduced pro-inflammatory 
cytokine levels in the plasma, attenuated moderate-to-severe 

vasospasm, and increased vessel caliber, highlighting its potential
therapeutic role.

For the clinical evaluation to verify the effects of taVNS, 
FMA-UE was frequently used, with some studies also including 
assessments of the FMA lower extremity and the FMA 
sensory function. Motor performance outcomes, such as the 
Wolf Motor Function Test, timed up and go test (TUGT), 
Modified Barthel Index, and Berg Balance Scale scores, were 
measured. Only one study has used MEPs to assess cortical 
excitability (Wang M. H. et al., 2024). The evaluation of 
mental function included scales for depressive symptoms, such 
as the Hamilton Rating Scale for Depression and Hospital 
Anxiety and Depression Scale. fMRI was used to assess the 
effectiveness of taVNS. 

3.4 Parkinson’s disease

3.4.1 Safety
Four studies reported no adverse reactions during the trials 

(Fu et al., 2024; Van Midden et al., 2024b; Zhang et al., 2023; 
Zhang et al., 2024). Lench et al. (2023) reported that some 
participants who received either taVNS or sham reported adverse 
events. The most frequently reported adverse event in the active 
taVNS group was difficulty sleeping, followed by lightheadedness, 
fatigue, nausea, tinnitus, tooth grinding, ear fluid, anxiety, and 
dizziness. The most frequently reported adverse event in the 
sham group was lightheadedness, followed by difficulty sleeping, 
headache, fatigue, difficulty concentrating, and neck pain. Only a 
few patients present with each of these symptoms. There were no 
reports of pain at the stimulation site, and no serious adverse events 
occurred in either group (Lench et al., 2023). One study reported no 
adverse events (Marano et al., 2024). 

3.4.2 Parameters
In all six studies, the electrodes were placed in the left ear. 

The specific parameters varied across each study. The parameters 
are summarized in Tables 5a–c. van Midden et al. (2024b) 
proposed that 25 Hz taVNS enhanced physical function and gait 
in patients with PD.

3.4.3 Efficacy
In PD, all six included studies investigated taVNS as a standalone 

intervention. Reported benefits included improvements in gait 
(speed, stride length, turning) and reductions in anxiety, with no 
combination interventions reported. Several studies have reported 
improvements in gait parameters, including gait speed, stride length, 
and 360° turn duration (van Midden et al., 2024b; Marano et al., 
2024; Zhang et al., 2024). However, Marano et al. (2024) and 
Lench et al. (2023) found no significant clinical changes in the 
UPDRS scores in their respective reports. In terms of the mental 
function, Zhang et al. (2023) used the Hamilton Anxiety Rating 
Scale to assess anxiety symptoms and concluded that taVNS 
could alleviate anxiety in patients with PD. Regarding neurological 
background, MRI studies have shown that taVNS is associated with 
a widespread decrease in the amplitude of LF fluctuations (ALFF) 
in the right hemisphere, including the superior parietal lobule, 
precentral gyrus, postcentral gyrus, middle occipital gyrus, and 
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TABLE 5  Stimulation parameters in Patient with PD.

a. Frequency

Frequency [Hz] Number of published manuscripts

20 3

25 3

100 2

Median: 25 Hz, IQR: 23.75 (20–43.75)

b. Duration

Duration [µs] Number of published manuscripts

200 2

300 2

500 2

Median: 300 ㎲, IQR: 225 (225–450)

c. Current intensity

Current intensity [mA] Number of published 
manuscripts

perceptual threshold 2

200% perceptual threshold 1

maximum tolerate without pain 2

not described 1

cuneus. The ALFF in the right superior parietal lobule during taVNS 
was negatively correlated with the UPDRS Part III (Fu et al., 2024).

To confirm the efficacy of taVNS in patients with PD, 
the brain neural activity and autonomic nervous system were 
assessed using functional near-infrared spectroscopy, fMRI, HR 
monitoring, and blood pressure measurements. The UPDRS and 
TUGT scores were used as outcome measures to assess PD
symptoms. 

4 Discussion

This review investigated taVNS, a noninvasive neuromodulation 
technique, focusing on three aspects, safety, efficacy, and stimulation 
parameters, in healthy participants, patients with stroke, and 
patients with PD. A total of 154 articles, including 6,485 participants, 
were examined. The majority of studies in healthy participants 
involved young to middle-aged adults, with relatively few focused 
on older populations. Age-related differences in neuroplasticity and 
autonomic regulation may influence the response to taVNS and 
warrant further investigation, particularly when comparing healthy 
adults with patients with stroke or PD. taVNS was demonstrated 
to be safe, with no serious adverse events reported in healthy 
individuals or in patients with stroke or PD. In terms of efficacy, 

taVNS modulates cortical excitability and autonomic nervous 
system activity, leading to improvements in motor and cognitive 
functions, as well as learning. The results were evaluated using 
neurophysiological indicators and task performance. However, 
outcome measures are insufficiently uniform, leading to differences 
in results and perspectives. Although commonly used parameters 
have been identified, they vary across studies, and many studies have 
emphasized their importance. Although some studies have focused 
on these parameters, the number of studies remains limited. It was 
also suggested that the effect may be influenced by the stimulus 
condition.

The overall quality of the evidence base is limited. Most 
studies had small sample sizes, many lacked blinding or sham 
controls, and outcome measures and stimulation parameters 
were heterogeneous. Reporting of adverse events was frequently 
incomplete. Consequently, confidence in efficacy remains low-
to-moderate, whereas conclusions on safety are more consistent 
but constrained by potential under-reporting. In addition, a 
limitation of this review is that its scope excludes other indications 
(e.g., depression, epilepsy, gastrointestinal or cardiac disorders), 
which may limit generalizability. Future reviews should extend 
this parameter–outcome framework to additional conditions once 
sufficient methodologically comparable evidence becomes available. 
Finally, a methodological limitation of this review is that screening 
and data extraction were performed by a single reviewer. Although 
this ensured consistency in study selection and data handling, it 
may have increased the risk of bias compared to a double-review 
process. Future reviews in this field should ideally incorporate 
independent screening and extraction by at least two reviewers to 
enhance methodological rigor. 

4.1 Safety of taVNS

taVNS activates the ipsilateral NTS to stimulate and send 
impulses to the heart via the efferent cervical vagus nerve, suggesting 
the possibility of avoiding direct and asymmetric stimulation of the 
vagus nerve, unlike implanted VNS (Kim et al., 2022). Previous 
systematic reviews and meta-analyses have noted a low incidence 
of arrhythmia and bradycardia, which are concerning side effects 
of implantable VNS. Furthermore, cardiac side effects are rare, 
because taVNS is currently used to treat heart failure and atrial 
fibrillation (Dalgleish et al., 2021). Based on these results, taVNS is 
considered safe.

In this review, the adverse events associated with taVNS mainly 
included transient ear pain, redness, itching, and other forms of 
discomfort. No severe adverse effects were observed. However, safety 
reports may be inadequate, which can be considered a limitation of 
the study. Most clinical studies, including those involving patients 
with stroke and PD, have reported the presence or absence of 
adverse events and their safety. Consistent with our findings, a recent 
systematic review of tVNS in patients with PD reported a favorable 
safety profile, with no serious adverse events and only mild, transient 
side effects such as headache, fatigue, or local discomfort (Shan et al., 
2024). This further supports the view that tVNS can be safely 
applied in PD when appropriate stimulation parameters are used. 
However, 54% of the studies included in this review on healthy 
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participants did not report the adverse events, leaving it unclear 
whether any occurred.

Previous reviews have stated that taVNS is well-tolerated 
and safe in humans at the doses tested, with no adverse events 
directly attributable to it. However, concerns have been raised 
regarding underreporting, mandatory reporting of safety and 
tolerability results, and the need for standardization of adverse event 
measurement methods. Moreover, the different taVNS parameters 
used in studies reporting adverse events may not allow accurate 
comparisons (Redgrave et al., 2018). Based on these insights, 
although this review partially supports previous findings on the 
safety of taVNS, the evidence remains insufficient for generalization. 
Future studies should thoroughly report side effects and adverse 
events as well as focus on the conditions of use, including stimulation 
parameters, to ensure safety. 

4.2 Parameters of taVNS

This review found that although parameters are important for 
safety and efficacy, more consistent parameters and measures are 
required to assess them. The most frequently used frequency was 
25 Hz, and the duration was 200–300 μs, which was consistently 
adopted. However, there are various ways to determine the current 
intensity, such as below the pain threshold, at the sensory threshold, 
twice the sensory threshold, and mild tingling. This result highlights 
the importance of not only maintaining consistency in the intensity 
value itself but also clearly defining how the intensity is set. 
Future studies focusing on the current intensity are necessary. 
Similarly, the stimulation time and duty cycle significantly vary 
among studies and should be considered in the context of subject 
burden and safety. Although most included studies applied taVNS 
to the left ear, partly owing to theoretical concerns regarding 
cardiac parasympathetic innervation of the right vagus, right-sided 
and bilateral approaches were also reported as safe and effective. 
Laterality is a crucial parameter, and although the majority of studies 
used left-ear stimulation for safety reasons, studies employing 
right-sided or bilateral stimulation similarly demonstrated safety 
and effects. Future research should continue to explore laterality 
to determine the conditions for optimal taVNS effectiveness. 
Parameter considerations have received attention in studies of 
healthy participants, and further studies aimed at clarifying stimulus 
parameters are expected in the future. The outcome measures were 
relatively consistent in basic studies including healthy individuals 
but varied owing to the multiple measures of autonomic assessment, 
such as HR, HRV, pupil size, and sAA. However, another limitation is 
the variability across studies, largely because of the small number of 
available clinical investigations. Therefore, in the present review, the 
variability in the assessment measures identified as challenges could 
be due to the selection of multiple autonomic activity measures 
and the small number of clinical studies. A relatively large number 
of assessments using the same indicators in healthy participants 
may facilitate the establishment of evidence in the field of taVNS 
research by allowing for comparisons of stimulus settings and 
treatment outcomes.

Future studies should report the detailed and standardized 
parameters and metrics used. The clinical effectiveness must 
be tested in consistent stimulus settings, which would allow 

for comparisons between taVNS studies and contribute to 
evidence building.

4.2.1 Standardized reporting and parameter 
recommendations

To facilitate clinical translation, future studies should adopt 
standardized reporting guidelines, including complete disclosure 
of stimulation parameters (frequency, duration, intensity relative 
to pain/sensory thresholds, electrode placement, and session 
duration) and participant characteristics (Badran et al., 2018b; 
Dumoulin et al., 2021; Wang M. H. et al., 2024; Zhang et al., 
2024). Based on currently available evidence, commonly applied 
settings, such as 25 Hz frequency, 200–300 μs duration, and 
sub-pain threshold intensities, may serve as starting points 
but should be validated and optimized across conditions. Core 
outcome measures, including HRV for autonomic modulation, 
the Fugl–Meyer Assessment or UPDRS for motor outcomes, and 
validated cognitive and mood scales, should be prioritized to enable 
comparability and evidence accumulation. Inconsistencies among 
studies may stem not only from methodological heterogeneity but 
also from biological and clinical variability. Factors such as age, sex, 
disease severity, and concomitant treatments may modulate vagal 
sensitivity and responsiveness. Study design differences—including 
unilateral versus bilateral stimulation, task-related versus resting-
state application, and acute versus multi-session protocols—also 
likely contribute to divergent findings (Camargo et al., 2024; 
Gerges et al., 2024a; Janner et al., 2018; Sellaro et al., 2015a; 
Yokota et al., 2022; Szulczewski et al., 2023). Addressing these 
dimensions in future research will be critical to clarify mechanistic 
underpinnings and maximize the therapeutic potential of taVNS. 

4.3 Efficacy of taVNS

The mechanism of action of taVNS is projection from the 
ABVN, which is an afferent fiber innervating mainly the ear, to 
the LC and raphe nuclei via the NTS, and modulatory effects on 
the cortex, limbic system, and other areas. Consequently, taVNS 
has shown potential for the treatment of epilepsy, depression, 
stroke, and PD. The vagus nerve is an important component 
of the parasympathetic nervous system, and taVNS increases 
parasympathetic activity (Kania et al., 2021). Modulation of 
parasympathetic activity is associated with clinical conditions, such 
as heart failure, inflammatory bowel disease, and chronic pain 
syndromes (Butt et al., 2020; Veiz et al., 2022). Mechanistically, 
taVNS activates afferent projections from the auricular branch of 
the vagus nerve to the NTS. The NTS, in turn, engages the locus 
coeruleus–noradrenergic and raphe nuclei–serotonergic systems, 
influencing widespread cortical and subcortical regions, including 
the prefrontal cortex, cingulate cortex, basal ganglia, and limbic 
areas (Ludwig et al., 2021; Huang et al., 2023). In addition, taVNS 
has been reported to modulate GABAergic activity in the motor 
cortex (Van Midden et al., 2023; Chen et al., 2024b; Keute et al., 
2019a; Beste et al., 2016). Collectively, these pathways provide 
a neurophysiological basis for the observed effects of taVNS on 
cognition, motor control, and emotional regulation (Johnson and 
Steenbergen, 2022). This review focuses on the applications of 
taVNS in central nervous system diseases. These findings indicate 
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FIGURE 4
Proposed mechanism of taVNS.

that taVNS enhances activity in brainstem regions, such as the 
NTS, LC, and raphe nuclei, and in the insular cortex, thalamus, 
prefrontal cortex, motor cortex, cingulate cortex, amygdala, and 
striatum, as observed in experiments utilizing fMRI and EEG. 
This stimulation increases the cortical excitability and affects motor 
function, attention, and emotion regulation. Modulatory effects on 
autonomic nervous system activity have also been reported using 
biomarkers, such as HR, blood pressure, HRV, pupil diameter, 
and salivary amylase. These markers are promising in determining 
the effect of taVNS. These effects have also been observed in 
previous patient studies. Modulation of these brain regions and 
their functions have also been observed in healthy participants, 
although some reports have found no effects on HRV, pupil diameter, 
sAA, or memory performance. These differences indicate that 
consistent results have not been achieved. Thus, the present review 
found that the effects of taVNS were typically consistent with 
the mechanism of action described in previous studies; however, 
further studies are needed to confirm whether consistent results can 
be achieved (Figure 4).

In clinical reserches, in stroke patients, taVNS has been used 
in combination with rehabilitation and tDCS. However, because 
most combination studies did not implement full factorial designs 
or report interaction terms, current evidence supports an added 
benefit of taVNS when layered onto rehabilitation or tDCS, rather 
than demonstrating synergy per se. Differences in session number, 
stimulus dosing, and small samples further limit causal attribution. 
Future trials should adopt adequately powered factorial designs with 

matched dosing and pre-specified interaction analyses to formally 
adjudicate additivity vs. synergy. In patients with PD, after our 
search window closed, a recent meta-analysis reported no significant 
overall improvement in global motor symptoms with non-invasive 
VNS in PD, while suggesting a possible benefit for freezing of gait; 
these findings reinforce the need for larger, well-controlled trials 
with harmonized endpoints (Abouelmagd et al., 2025). Further 
research and discussion are required to examine the consistent 
efficacy of taVNS in clinical studies. 

5 Conclusion

taVNS appears to be safe and shows promise for modulating 
motor, cognitive, and autonomic functions in healthy individuals, 
as well as in patients with stroke and PD. However, the current 
evidence is limited by small sample sizes, heterogeneous protocols, 
and short-term follow-up. Future research should prioritize long-
term safety monitoring, standardization of stimulation parameters, 
harmonization of outcome measures, and large-scale multicenter 
clinical trials to generate definitive evidence for clinical application.
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