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Unveiling the intricate
mechanisms of plant defense

Julie Guerreiro and Peter Marhavý*

Umea Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish
University of Agricultural Sciences, Umea, Sweden
Plants may lack mobility, but they are not defenseless against the constant

threats posed by pathogens and pests. Pattern Recognition Receptors (PRRs),

which are located on the plasma membrane, enable plants to effectively

recognize intruders. These receptors function by sensing elicitors or fragments

of the cell wall that arise from damage. Recent studies underscore the

significance of maintaining cell wall integrity in the coordination of defense

mechanisms following the detection of parasitism. Pathogen invasion often

triggers alterations in cell wall structure, which leads to the release of

molecules like b-glucans and oligogalacturonides. These small molecules are

then recognized by PRRs, which stimulate downstream signaling pathways that

involve both receptor-like kinases and calcium-dependent signaling. Here, we

present the latest insights into plant signaling that play a vital role in immunity: the

maintenance of cell wall integrity; the intricate interplay between receptor-like

kinases; and the involvement of calcium ions. The goal of the review is to provide

readers with a deeper understanding of the intricate mechanisms underlying

plant defense strategies.
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Introduction

The sessile nature of the plant kingdom has driven the evolution of intricate signaling

mechanisms that can effectively detect, as well as combat, the biotic stresses imposed by

pathogens and pests (Glazebrook, 2005). The plant cell wall serves as the primary barrier

against these stressors, and is crucial not only for protection, but also for sensing external

attack (Cosgrove, 2005). In the quest to identify potential threats, plants have developed a

sophisticated surveillance system that relies on the recognition of distinct molecules known

as microbe-associated molecular patterns (MAMPs), pathogen-associated molecular

patterns (PAMPs), damage-associated molecular patterns (DAMPs), and even herbivore-

associated molecular patterns (HAMPs) (Chisholm et al., 2006). These molecular patterns

are detected by specialized pattern recognition receptors (PRRs) (Jones and Dangl, 2006) as

well as surface receptors, e.g., receptor-like kinases (RLKs) and wall-associated kinases

(WAKs) (Decreux and Messiaen, 2005; Decreux et al., 2006). Recent advances have

provided insight into how plants maintain cell wall integrity (Bacete and Hamann,
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2020). In addition to orchestrating the immune response, the cell

wall has the vital function of detecting both mechanical and

pathogen-induced stress (Cosgrove, 2005). Specific RLKs play

pivotal roles in detecting cell wall damages and can engage plant

defense complexes to subsequently initiate pattern-triggered

immunity (PTI). Alongside protons (H+), calcium (Ca2+) has

recently emerged as a pivotal bivalent cation that is essential for

plant nutrition, cellular structure, and stress responses (Thor, 2019).

In plants, the maintenance of the cell wall integrity along with the

perception of cell wall damages, are intricately linked to Ca2+ ions,

which can participate in the cross-linking of negative charges at the

cell wall interface; as such, the cell wall is effectively a Ca2+ reservoir

in plants (Hepler and Winship, 2010). In plants, the primary role of

Ca2+ is to transmit electrical signals to neighboring cells and other

plant organs so that specific messages can be relayed once distinct

cues are detected (Bush, 1995; Choi et al., 2017). Interestingly,

recent research has revealed that calcium ions act as crucial

secondary messengers during cell wall damages perception, cell

wall integrity regulation, and the plant immune response.

In this review, we initially describe the realm of cell wall-related

plant immunity with a specific focus on the role of RLKs in both plant

defense mechanisms and cell wall integrity regulation. Next, we

explore the emerging evidence that Ca2+ acts as a pivotal secondary

messenger in both cell wall integrity regulation and plant immunity.
Plant cell wall perception and
signaling in immune responses

The plant cell wall (CW) serves as the primary barrier for

deterring pathogens; as such, there has been strong evolutionary

pressure for the development of cell wall perception, remodeling,

and reinforcement mechanisms in plant defense strategies (Cosgrove,

2005; Glazebrook, 2005). The primary cell wall is predominantly

composed of oligosaccharides (e.g., cellulose, hemicellulose, and

pectin), while the secondary cell wall has a similar composition but

lower lignin content (Bidlack, 1992; Cosgrove and Jarvis, 2012).

Additionally, the plant cell wall contains a substantial proportion of

proteins, which account for approximately one-tenth of the total

biomass (Keller, 1993; Cassab, 1998). These proteins play a pivotal

role in modifying the CW, facilitating perception, and enabling signal

transduction. Recent empirical findings highlight how the

maintenance of CW integrity is critical to detecting parasitism and

monitoring plant defense responses (Vaahtera et al., 2019; Wan et al.,

2021). Intrusion by pathogens or parasites is frequently correlated

with changes in CW structure (Gigli-Bisceglia et al., 2020). For

instance, pathogens secrete cell-wall degrading enzymes (CWDEs),

such as cellulases, glucanases, and xylanases (van den Brink and de

Vries, 2011), and the action of these enzymes releases various elicitors

into the apoplast. These elicitors include b-1,2-glucans, degradation
product of cellulose, b-1,3-glucans, degradation product of callose, and
a-1,4-oligogalacturonides (OGs), which is the degradation product of

pectins. As a result of cell wall degradation, Ca2+ cations, which were

originally present in the pectin and hemicellulose components of the

cell wall, are released into the apoplast (Jarvis, 1982; Engelsdorf et al.,
Frontiers in Plant Physiology 02
2016). This triggers an influx of Ca2+ into the cytoplasm (Clapham,

2007). The degradation products of CWDE activity fall under a class

of molecules known as DAMPs, which are recognized by pattern

PRRs (Bacete and Hamann, 2020; Souza et al., 2017). Following the

perception of cell wall damage, PRRs transmit downstream signals via

receptor-like kinases (RLKs) or calcium (Ca2+)-dependent signaling to

ultimately initiate MAPK signaling cascades, which stimulates the

production of phytohormones such as jasmonate (JA), salicylic acid

(SA), ethylene (ET), and abscisic acid (ABA) (Figure 1, Zhou and

Zhang, 2020). The rapid influx of Ca2+ into the cytoplasm activates

enzymes that are responsible for the biosynthesis of phytohormones,

as well as stimulates the transcription factors that regulate genes linked

with phytohormone production (Zhou and Zhang, 2020). Changes in

apoplastic Ca2+ levels also mediate cell wall loosening and adjustments

via the action of PECTINMETHYL-TRANSFERASES (PMEs), which

require Ca2+ for activation and the cross-linking of pectin (Wu et al.,

2018; Gale et al., 2019). Moreover, shifts in distinct phytohormone

pools will activate the expression of specific genes, leading to

modifications in MAPKs signaling and subsequent changes in

cell wall structure and the defense response (Engelsdorf and

Hamann, 2014; Miedes et al., 2014; Zipfel, 2014; Bacete et al., 2017;

Wolf, 2017).

The membrane-localized PRRs are a central part of how plants

detect damage from external pathogens via the perception of

PAMPs/DAMPs/MAMPs. Among these, the most extensively

studied is the LRR-RKs receptor FLAGELLIN-SENSING2 (FLS2),

which operates in conjunction with the co-receptor

BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1

(BAK1 or SERK3) from the SOMATIC EMBRYOGENESIS

RECEPTOR KINASES (SERK) family (Table 1, Goméz-Goméz

and Boller, 2000; Chinchilla et al., 2007; Heese et al., 2007). In

terms of the mechanism, FLS2 binds the PAMP-peptide flg22,

which promotes FLS2/BAK1/BIK1 complex formation and the

subsequent phosphorylation of BOTRYTIS INDUCED KINASE 1

(BIK1) cytoplasmic domains by BRI1-ASSOCIATED RECEPTOR

KINASE 1 (BAK1) (Lu et al., 2010). These phosphorylation events

are sensed by RECEPTOR-LIKE CYTOPLASMIC KINASES

(RLCKs) to initiate phosphorylation cascades that culminate in

the activation of target proteins; this is an example of PAMP-

triggered immunity (PTI) (Liang and Zhou, 2018; DeFalco and

Zipfel, 2021). Another significant LRR-RK receptor, PEPR1, has

recently emerged as a key player in the perception of CW damages

(Yamaguchi et al., 2010). Like FLS2, PEPR1 is a ligand-specific

receptor that recognizes the endogenous peptide signal DAMP-

associated PEPTIDE 1 (AtPep1). This AtPep1 peptide forms

following the C-terminal cleavage of AtProPep1, a product of the

PROPEP1 gene. PROPEP1 expression is strongly induced during

cell wall degradation, wound responses, and the recognition of

elicitors such as jasmonic acid (JA) and ethylene (Et) (Huffaker

et al., 2006). PEPR1 also operates by activating the immune

response, which exemplifies the convergence of bacterial elicitor

sensing and the perception of degradation products from cell wall

damage. The modes of action of both FLS2 and PEPR1, which are

members of the LRR-RKs family, highlight the intricate interplay

between MAMP/PAMP recognition and the perception of cell wall

degradation products (Figure 1; Table 1).
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The intricate role of receptor
kinases in calcium signaling and
cell wall perception

WALL-ASSOCIATED KINASES (WAKs) are a type of pattern

recognition receptors (PRRs) that are responsible for detecting

oligogalacturonides (OGs), the degradation products of pectin

(Brutus et al., 2010). The WAK-like (WAKL) family, which

comprises 26 members in Arabidopsis thaliana, plays a crucial role

in this process (Verica and He, 2002). More specifically, WAK1 and

WAK2 are receptors that can bind OGs, yet require Ca2+ for binding

to the OG backbone (Vallarino and Osorio, 2012; Benedetti et al.,

2015). While WAK1 is not directly involved in early PTI, it

eventually forms a complex with FLS2 (Danna et al., 2012).

WAKL5 and WALK7 are induced in response to mechanical

damage (Verica et al., 2003). Following the perception of OGs,

WAK1 and WAK2 activate downstream signaling pathways via

stimulating a Ca2+ influx, reactive oxygen species (ROS)

production, CDPK activation, and MAPK3,6 phosphorylation, all

of which can subsequently activate the transcription of genes linked

with the defense response (Brutus et al., 2010; Galletti et al., 2011;

Kohorn and Kohorn, 2012; Gravino et al., 2015). The redundancy
Frontiers in Plant Physiology 03
among the WAKL genes complicates the comprehensive

characterization of specific functions; as such, further investigation

is required because distinct WAKL members appear to be

differentially involved in the specific defense responses against

pests across various crop species (Li et al., 2009; Hurni et al., 2015;

Zuo et al., 2015; Tripathi et al., 2021; Barghahn et al., 2021). Another

PRR receptor that is activated upon OG binding is the PROLINE-

RICH EXTENSIN-LIKE RECEPTOR KINASE 4 (PERK4). Unlike

members of theWAK family, PERK4 binds pectin and is involved in

cell-wall loosening. Remarkably, PERK4 can inhibit root growth by

stimulating ABA signaling and, intriguingly, disrupts Ca2+

homeostasis to induce CW loosening under mechanical stress (Bai

et al., 2009). LYSIN MOTIF-RECEPTOR KINASE 5 (LYK5) and

CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1/LYK1)

represent well-documented PRRs that are essential for the

recognition of chitin, which is a fungal elicitor (Petutschnig et al.,

2010; Liu et al., 2012; Cao et al., 2014). CERK1, in particular, has a

critical role in glycan-based MAMP perception and was recently

identified as vital for 1,3-b-D-glucan-triggered immunity in

Plectosphaerella cucumerina (Mélida et al., 2018). CERK1 initiates

ROS production via the Rho GTPase pathway, which triggers an

oxidative burst that prompts a Ca2+ influx. Upon sensing this

transient increase in Ca2+ levels, CDPK activates downstream
FIGURE 1

Plant cell wall damages perception. PRR involved in CWD, and MAMPS/PAMPS/DAMPs are specifically recognizing their substrate and transducing
the signal to the cytoplasm. This signal consists in Ca2+ channels and RBOHD activation, leading to an oxidative burst and Ca2+ influx. RLCKs are also
PRR activated and phosphorylated, leading to Ca2+ channel activation such as CNGCs. The different Ca2+ influx transduce a specific Ca2+ signature
decoded via CPS CMLs, CBLs, CDPKs or CIPKS. The different CPS will then specifically TF to induce defence or cell wall maintenance related genes.
PRR are also directly activating MAPKs cascade signalling leading also to TF activation and defence genes expression. The different genes activated
will in turn activate specific phytohormones biosynthesis as well as cell modification enzyme or components (e.g., lignin).
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signaling cascades that trigger specific immune responses (Cao et al.,

2014; Keinath et al., 2015; Espinoza et al., 2017; Yuan et al., 2017).

Recently, MALECTIN-LIKE RECEPTOR KINASES (MLRKs)

or Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE

PROTEINS (CrRLK1Ls) have received increased research

attention. At present, 17 members of this family have been

identified, with 10 well-characterized in Arabidopsis thaliana

(Lindner et al., 2012; Li et al., 2016; Nissen et al., 2016; Franck

et al., 2018). Prior research has shown that CrRLK1Ls are involved

in various cellular processes, including cell growth, morphogenesis,

reproduction, hormone signaling, immunity, and stress responses

(Duan et al., 2010; Schoenaers et al., 2017; Feng et al., 2018; Solis-

Miranda et al., 2021).

The THESEUS1 (THE1) and FERONIA/SIRENE (FER/SIR)

receptors, both of which are MLRKs, were recently found to

perceive cell wall damage as well as play key roles in innate plant

immunity (Franck et al., 2018; Bacete and Hamann, 2020; Gonneau

et al., 2018). In this signaling cascade, THE1 operates upstream of

MID1-COMPLEMENTING ACTIVITY 1 (MCA1), with the

activation of signaling ultimately inducing jasmonic acid (JA),

salicylic acid (SA), and lignin production (Figure 1, Denness

et al., 2011); this chain of signaling hints at collaborative

interactions between maintenance of CW integrity and immune

responses during the reaction to biotic stressors (Furuichi et al.,

2012; Engelsdorf et al., 2018; Basu and Haswell, 2020; Hématy et al.,

2007). Research has also revealed that THE1 interacts with
Frontiers in Plant Physiology 04
GUANINE EXCHANGE FACTOR4 (GEF4) to elicit downstream

responses, yet further exploration is needed to completely unravel

the signaling pathway (Qu et al., 2017). FER, a member of the

CrRLK1Ls family, is also involved in CW integrity maintenance and

has a direct impact on innate immunity. More specifically, FER can

bind rapid alkalinization 23 (RALF23; peptide secreted in response

to a rapid alkalinization of the extracellular compartment;

Blackburn et al., 2020) peptide OGs and trigger cell specific Ca2+

fluxes, especially in response to salt stress; thus, this receptor

contributes to CW integrity stability (Feng et al., 2018). Recent

research has revealed that FER activity positively influences PTI by

enhancing interactions between FLS2, BAK1, and EFR (Stegmann

et al., 2017; Smakowska-Luzan et al., 2018).

The recently identified CELLO-OLIGOMER RECEPTOR 1

(CORK1)/IMPAIRED IN GLYCAN PERCEPTION 1 (IGP1),

which is an LRR/MALECTIN-RECEPTOR-LIKE KINASE (LRR-

MAL-RLK), is involved in activating PTI upon the recognition of

cello-oligomers, such as cellotriose, which are another degradation

products of cellulose (Tseng et al., 2022; Martin-Dacal et al., 2022).

In addition, IGP4 has been shown to be involved in plant immunity

not only through the perception of cell wall damage, but also via the

stimulation of Ca2+ influx following the binding of b-1,3/1,4 glucans
and glucan-derived oligosaccharides (Martıń-Dacal et al., 2023; and

Rebaque et al., 2021). However, the downstream signaling

mechanisms of the associated PRR have not yet been fully

elucidated. Despite evidence that several CrRLK1Ls serve as
TABLE 1 Membrane localized Pattern-Recognition-Receptors (PRRs) and their specific DAMPS identified in in Arabidopsis thaliana.

Receptor Elicitor/DAMP Domain Signalling
trademarks

References

P
ep
ti
de
s

PEPR1,2 Pep1 LRR Ca2+, ROS, MAPK3,MAPK6,
ET, NO
Ca2+, ROS, MAPK3, MAPK6,
MKKK7,

Krol et al. (2010)

FLS2 Flg22 LRR MEKK1-MKK4,5 Chinchilla et al. (2007); Roux et al. (2011)

FER Ralf1 ,23/0Gs Malectin-
LRR

Ca2+, ROS, GTPases Haruta et al. (2014); Gonneau et al., 2018

THE1 Ralf34 Malectin-
LRR

Ca2+, ROS, ABA, JA, SA Van Der Does et al. (2017); Gonneau et al., 2018

O
lig
os
ac
ch
ar
id
es

PERK4 Pectin Proline-rich Ca2+ Bai et al. (2009)

WAK1 OGs DP10-16 EGF-like
repeat

Ca2+, ROS, MAPK3 , MAPK6,
ANPs

Brutus et al. (2010)

CERK1 b-1,3 glycans Lysin motif Ca2+, MAPK3, MAPK6 Kaku et al. (2006); Miya et al. (2007); Shimizu et al.
(2010);

CORK1 b-1,4 glycans, cellobiose Malectin Ca2+ Tseng et al. (2022)

IGP2,3,4 b-1,3/ 1,4 glycans dioligosaccharides,
cellobiose

Malectin Ca2+ Rebaque et al. (2021); Barghahn et al. (2021); Matin-
Dacal et al. (2022)

CAP1 nd Malectin-
LRR

Ca2+, ROS Snedden and Fomm, (2001); Bai et al., (2014);

HERK1,2 nd Malectin-
LRR

Ca2+, ROS Galindo-Trigo et al., (2020); ; Gigli-Bisceglia et al.,
(2022)

CVY1 nd Malectin-
LRR

Ca2+, ROS Gachomo et al., 2014 · Engelsdorf et al., 2018
OGs, o/igoga/acturonides; Nd, Not determined; LRR, Leucin-Rich Repeat; ROS, Reactive Oxygen Species; MAPK, Mitogen-Activated Protein Kinase.
frontiersin.org

https://doi.org/10.3389/fphgy.2023.1285373
https://www.frontiersin.org/journals/plant-physiology
https://www.frontiersin.org
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sensors of CW integrity (Shimizu et al., 2010), the precise

intracellular targets of this class of proteins, along with the

signaling pathways involved, remain incompletely understood. As

such, extensive experimental data is needed to better illuminate cell

wall remodeling following exposure to both biotic and abiotic

stressors. Moreover, further investigation of the signaling network

(s) through which the newly identified CW integrity sensors

transmit information across the cell wall is needed (Table 1). The

comprehensive characterization of FER exemplifies how cell-

specific Ca2+ signals are triggered, and underscores the need for

further research, which could potentially lead to the identification of

additional cell-specific receptors and the associated Ca2+ signatures.

In another study, Arabidopsis plant tissue was treated with CW

fragments, and the results demonstrated how exposure to cellobiose

elicited the strongest cytosolic Ca2+ spike. Interestingly, separate

treatment with the MAMP-peptide flg22 and cellobiose (DAMP)

returned distinct calcium spikes, both of which had a quantifiable

pattern (Souza et al., 2017). This finding suggests that CW damages

perception and PAMP recognition might operate synergistically,

even if the responses exhibit distinct Ca2+ signatures; nevertheless,

the evidence suggests that either can induce an immune response

when activated alone. This novel perspective warrants further

exploration of the intricacies of CW damages perception and PTI,

as the conventional focus on individual elicitors might not

comprehensively reflect all of the simultaneous environmental

interactions that occur in plants following an attack by a pathogen.

In summary, numerous PRRs/RLKs demonstrate distinct and

precise Ca2+ spikes (Figure 1), frequently transmitted through

CDPKs, when activated; this knowledge suggests that these

receptors have a pivotal role in calcium-mediated signaling within

plants. Deciphering which calcium-dependent signaling pathways

are activated by distinct RLKs following damage perception has the

potential to offer invaluable insight for the field of plant immunity.
Decoding Ca2+ signaling in
plant immunity

Upon pathogen detection at the CW, diverse PRR signaling

pathways coincide with rapid Ca2+ influx into the cytoplasm

(Figure 1 ; Clapham, 2007; Boller and Felix, 2009; Yu et al.,

2017; DeFalco and Zipfel, 2021). Ca2+ serves as a universal

secondary messenger, yet can also exhibit specific concentration

patterns which plant cells decode to adequately activate the immune

response. Termed Ca2+ signatures, these transient fluctuations in

Ca2+ levels depend on factors like duration and amplitude (Knight,

1996). Ca2+ signaling comprises three stages: (1) encoding a specific

trigger via Ca2+ flux magnitude and duration; (2) decoding of these

signals by specific sensor proteins; and (3) initiation of downstream

responses (Köhler et al., 1999; Bhar et al., 2023; Köster et al., 2022).

Ca2+ signature features can be determined by the type of PAMPs/

MAMPs and their concentration (Yu et al., 2017). A Ca2+ influx

primarily involves CYCLIC NUCLEOTIDE-GATED CHANNELS

(CNGCs) (Kohler et al., 1999), GLUTAMATE RECEPTOR-LIKE

CHANNELS (GLRs) (Lam et al., 1998; Wudick et al., 2018; Alfieri

et al., 2020), and REDUCED HYPEROSMOLARITY INDUCED
Frontiers in Plant Physiology 05
Ca2+ INCREASE (OSCA1) (Yuan et al., 2014). The efflux of calcium

ions involves Ca2+/H+ exchangers (CAXs) and autoinhibited Ca2

+-ATPases (ACAs) (Geisler et al., 2000; Shigaki and Hirschi, 2000;

Garcıá Bossi et al., 2020). PRRs can induce transient Ca2+ increases

via three mechanisms: the generation of signaling molecules like ROS

or cyclic nucleotide monophosphate (cNMP); direct activation of ion

channels by binding to, and activating, Ca2+ pumps or channels; and

the stimulation of downstream RLCKs to trigger ROS production and

Ca2+ influx. For example, in Arabidopsis, during PAMP-induced

signalling, two genes encoding the Ca2+ channels CNGC2 and

CNGC4 are required (Ma et al., 2012; Tian et al., 2019). CNGC2 and

CNGC4 can form a channel that is phosphorylated by the effector-

kinase BIK1, thus triggering Ca2+ influx into the cytosol (Tian et al.,

2019). Studies also reported that PEPR/Pep-signalling duringDAMP-

triggered immunity generates Ca2+ burst through activation of

CNGC2 and act synergistically with PAMP-receptor FLS2 (Ma et al.,

2012).Hence, the CNGC-mediated calcium influx establishes a crucial

connection between the calcium-dependent immunity during PAMP-

triggered immunity signalling pathways and PRR complex.

Interestingly, it was also shown that the MRLK FER, involved in CW

damages perception and CW integrity maintenance, can induce cell-

specific calcium burst upon salt stress (Feng et al., 2018).

These changes in cytosolic Ca2+ levels are sensed by Ca2+

SENSOR PROTEINS (CSPs), which relay information through

downstream cascades (Figure 1; Ranty et al., 2016). CSPs

encompass CALMODULIN (CaM), CaM-LIKE PROTEINS

(CMLs), CALCINEURIN B-LIKE PROTEINS (CBLs), and

CALCIUM-DEPENDENT PROTEIN KINASES (CDPKs; CPKs in

Arabidopsis) (Cheng et al., 2002; Yang and Poovaiah, 2003; Luan,

2009; Batistič and Kudla, 2012; Delormel and Boudsocq, 2019). CBLs

interact with CBL-INTERACTINGKINASES (CIPKs), while CDPKs

are well-documented Ca2+ sensors that include phosphorylation sites

within the CaM binding domain (Larrainzar et al., 2007; Xie et al.,

2012). In response to changes in Ca2+ levels, CDPKs activate the

kinase domains of downstream signaling molecules (Harmon et al.,

1994; Harper et al., 1994; Yoo and Harmon, 1996; Schulz et al., 2013).

As such, CIPKs/CDPKs transform pathogen-induced Ca2+ signals

into phosphorylation events (Seybold et al., 2014; Delormel and

Boudsocq, 2019). CDPKs directly influence ROS production, Ca2+

influx and transcriptional reprogramming (Kobayashi et al., 2007;

Boudsocq and Sheen, 2013; Dubiella et al., 2013; Shinya et al., 2014).

In Arabidopsis, AtCPK4, AtCPK5, AtCPK6 and AtCPK11 are

described as early transcriptional regulators in MAMP-signalling

pathway (Boudsocq et al., 2010). In Solanum tuberosum (St),

StCDPK4/5 (At homologues: AtCPK5/6) induce ROS production

by direct phosphorylation of the NADPH oxidase RBOHB

(Kobayashi et al., 2012). Although many studies and advances put

CDPKs as a central regulator of Ca2+-mediated stress and immune

responses, further research, particularly studies involving elicitor

treatment, is needed if we are to comprehensively understand the

myriad roles of CDPKs in the immune response.

Well-documented Ca2+ sensors, like CCaMK, possess multiple

phosphorylation sites (Larrainzar et al., 2007; Xie et al., 2012). This

means that Ca2+ sensors could participate in various signaling

pathways, and more research in Arabidopsis is needed to clarify

the roles of these sensors in immunity, such as decoding the Ca2+
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spikes that arise following DAMP release and perception. While the

role of Ca2+ influx in plant immunity is already quite well

understood, clarifying the specific targets of various Ca2+

signatures remain an understudied aspect of the response to

pathogens. This is especially relevant for differences in Ca2+ influx

signatures are particularly relevant during ETI and HR.
Conclusion

Recent research has unveiled the intricate interplay between

calcium-mediated signaling and the triggering of immune

responses by the perception of pathogens and CW damage. Despite

advancements in the field, a comprehensive understanding of how

distinct Ca2+ signaling patterns correspond to specific elicitors, as well

as how these patterns translate into effective immune reactions

against pathogens, is lacking. To address these knowledge gaps,

future research should apply the latest conceptual frameworks and

analytical tools. High-resolution techniques, which could be used to

monitor transient Ca2+ fluxes, are imperative for locating the

subcellular sites at which cytosolic calcium fluxes occur.

Furthermore, unraveling the intricate networks involving Ca2+

receptors could provide insight into how distinct Ca2+ signatures

correspond with certain target proteins. In addition, understanding

the interactions between Ca2+ and EF-hand domains in Ca2+ sensors

could clarify the underlying mechanisms of these signaling proteins.

RLKs, particularly PRRs, are inducing Ca2+ bursts after activation

and then modulate the downstream signalling necessary for PTI.

However, the specific Ca2+ signatures induced by each specific PRRs

remain enigmatic. Investigating calcium pumps at the single-cell level,

could offer valuable insight into the dynamics of Ca2+ fluxes and the

respective targets of this form of signaling. Ca2+ signaling has been

shown to influence cell wall perception and modification, both of

which are crucial aspects of plant defense against pathogen infection.

More specifically, Ca2+ signaling regulates the activities of CWDE and

the deposition of reinforcing components. This intricate interplay

results in the finely tuned cell wall modifications that are pivotal to

defensemechanisms inplants. In thisway, plants can stimulate specific

signalingpathways to fortify cellwalls in a bid tohinderpathogen entry

and constrain pathogen proliferation. In summary, exploring Ca2+

signaling in the context of plant immunity, especially the early

detection of pathogens via cell wall damage perception, is critical to

advancing our understanding of plant resilience.
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et al. (2018). Non-branched b-1,3-glucan oligosaccharides trigger immune responses in
Arabidopsis. Plant J. 93, 34–49. doi: 10.1111/tpj.13755

Miedes, E., Vanholme, R., Boerjan,W., andMolina, A. (2014). The role of the secondary
cell wall in plant resistance to pathogens. Front. Plant Sci. 5. doi: 10.3389/fpls.2014.00358

Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., et al. (2007).
CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis.
Proc. Natl. Acad. Sci. U.S.A. 104, 19613–19618. doi: 10.1073/pnas.0705147104

Nissen, K. S., Willats, W. G. T., and Malinovsky, F. G. (2016). Understanding
crRLK1L function: cell walls and growth control. Trends Plant Sci. 21, 516–527.
doi: 10.1016/j.tplants.2015.12.004

Petutschnig, E. K., Jones, A. M. E., Serazetdinova, L., Lipka, U., and Lipka, V. (2010).
The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding
protein in arabidopsis thaliana and subject to chitin-induced phosphorylation. J. Biol.
Chem. 285, 28902–28911. doi: 10.1074/jbc.M110.116657

Qu, S., Zhang, X., Song, Y., Lin, J., and Shan, X. (2017). THESEUS1 positively
modulates plant defense responses against Botrytis cinerea through GUANINE
EXCHANGE FACTOR4 signaling: THE1 functions in plant defense responses. J.
Integr. Plant Biol. 59, 797–804. doi: 10.1111/jipb.12565

Ranty, B., Aldon, D., Cotelle, V., Galaud, J.-P., Thuleau, P., and Mazars, C. (2016).
Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front.
Plant Sci 7, 327. doi: 10.3389/fpls.2016.00327
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Guerreiro and Marhavý 10.3389/fphgy.2023.1285373
Tian, W., Hou, C., Ren, Z., Wang, C., Zhao, F., Dahlbeck, D., et al. (2019). A
calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature
572, 131–135. doi: 10.1038/s41586-019-1413-y

Tripathi, R. K., Aguirre, J. A., and Singh, J. (2021). Genome-wide analysis of wall
associated kinase (WAK) gene family in barley. Genomics 113, 523–530. doi: 10.1016/
j.ygeno.2020.09.045

Tseng, Y.-H., Scholz, S. S., Fliegmann, J., Krüger, T., Gandhi, A., Furch, A. C. U., et al.
(2022). CORK1 is required for cellooligomer-induced responses in arabidopsis
thaliana. Cells 11, 2960. doi: 10.3390/cells11192960

Vaahtera, L., Schulz, J., and Hamann, T. (2019). Cell wall integrity maintenance
during plant development and interaction with the environment. Nat. Plants 5, 924–
932. doi: 10.1038/s41477-019-0502-0

Vallarino, J. G., and Osorio, S. (2012). Signaling role of oligogalacturonides derived
during cell wall degradation. Plant Signaling Behav. 7, 1447–1449. doi: 10.4161/
psb.21779

van den Brink, J., and de Vries, R. P. (2011). Fungal enzyme sets for plant
polysaccharide degradation. Appl. Microbiol. Biotechnol. 91, 1477–1492. doi: 10.1007/
s00253-011-3473-2

Van Der Does, D., Boutrot, F., Engelsdorf, T., Rhodes, J., McKenna, J. F.,
Vernhettes, S., et al. (2017). The Arabidopsis leucine-rich repeat receptor kinase
MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response
to abiotic and biotic stresses. PloS Genet. 13, e1006832. doi: 10.1371/journal.pgen.
1006832

Verica, J. A., Chae, L., Tong, H., Ingmire, P., and He, Z.-H. (2003). Tissue-specific
and developmentally regulated expression of a cluster of tandemly arrayed cell wall-
associated kinase-like kinase genes in arabidopsis. Plant Physiol. 133, 1732–1746.
doi: 10.1104/pp.103.028530

Verica, J. A., and He, Z.-H. (2002). The cell wall-associated kinase (WAK ) andWAK
-like kinase gene family. Plant Physiol. 129, 455–459. doi: 10.1104/pp.011028

Wan, J., He, M., Hou, Q., Zou, L., Yang, Y., Wei, Y., et al. (2021). Cell wall associated
immunity in plants. Stress Biol. 1, 3. doi: 10.1007/s44154-021-00003-4

Wolf, S. (2017). Plant cell wall signalling and receptor-like kinases. Biochem. J. 474,
471–492. doi: 10.1042/BCJ20160238
Frontiers in Plant Physiology 09
Wu, H.-C., Bulgakov, V. P., and Jinn, T.-L. (2018). Pectin methylesterases: cell wall
remodeling proteins are required for plant response to heat stress. Front. Plant Sci. 9.
doi: 10.3389/fpls.2018.01612

Wudick, M. M., Michard, E., Oliveira Nunes, C., and Feijó, J. A. (2018). Comparing
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