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Silicon by modulating the
antioxidant defense system
reduces the need for water
and potassium: a review
Patrícia Messias Ferreira* and Renato de Mello Prado*

Laboratory of Plant Nutrition, Department of Agricultural Sciences, São Paulo State University
(UNESP), Jaboticabal, São Paulo, Brazil
Potassium (K) deficiency in soils is common across various regions of the world, a

problem exacerbated by the progression of drought due to climate change. A

sustainable strategy to increase plant tolerance to drought involves the use of

silicon (Si) and/or K; however, the biochemical mechanisms underlying this

relationship require further elucidation. The objective of this review is to

discuss the relevance of drought and nutritional deficiency to oxidative

damage in crops, as well as the role of Si and K in the antioxidant defense

system to enhance water use efficiency, including future research perspectives

on this topic. This article examines the biochemical mechanisms involved in the

interaction between Si, K, and the plant antioxidant system, emphasizing their

potential to improve productivity with reduced water consumption and to

mitigate challenges posed by climate change. The application of Si via

fertigation has proven effective in increasing water use efficiency and

modulating physiological processes, thereby promoting nutritional balance and

antioxidant protection in different crops. The antioxidant effects of Si observed in

field trials further reinforce its importance in enhancing physiological and

nutritional responses to stress conditions in crops. Efficient Si fertigation may

reduce the optimal Si rates compared to bulk applications in rainfed systems;

however, it may also increase the risk of Si leaching, underscoring the need for

additional research. The synergy between Si and K enhances water use efficiency

by stabilizing metabolism and increasing plant resilience under adverse

conditions. Future perspectives point to the optimization of Si and K fertigation

as a promising strategy for sustainable agriculture, particularly in regions with

water scarcity and nutrient deficiencies. The use of Si may also reduce the

optimal irrigation requirements for crops without compromising yield,

representing a viable alternative for irrigated agriculture that warrants further

investigation in different cropping systems.
KEYWORDS
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1 Introduction

Freshwater scarcity represents a growing and serious threat to

global sustainability, especially in regions that already face water-

limited conditions (Aqaei et al., 2020; Hejazi et al., 2023). This

problem has worsened alarmingly due to climate change, and

consequently we have seen longer, more intense and more

frequent periods of water scarcity (Fang et al., 2023; Ingrao et al.,

2023; Zahra et al., 2023). This drought problem harms crop

productivity and quality by decreasing the water content in plant

tissues, limiting metabolic functions and physiological and

biochemical aspects in plants (Aqaei et al., 2020; Seleiman

et al., 2021).

Water deficit is considered a multidimensional abiotic stress of

extreme relevance to agriculture, limiting not only energy

production but also global food security (Abbas et al., 2023). This

scenario is becoming particularly critical because of accelerated

population growth, which is progressively intensifying the demand

for food (O’Connell, 2017; Chieb and Gachomo, 2023).

The effects of water deficit stress on plants are severe due to the

decrease in water content in the plant (Teixeira et al., 2020), water

potential (de Oliveira Filho et al., 2021) and the imbalance in

osmotic adjustment (Pei et al., 2009), mainly due to the increase in

leaf transpiration (Verma et al., 2021). Under controlled conditions,

water deficit generally causes damage to the antioxidant system,

decreasing the action of enzymatic and non-enzymatic antioxidant

compounds (Seleiman et al., 2021; Weisany et al., 2023; Younes

et al., 2024). This impairment promotes oxidative stress, mediated

by the excessive production of reactive oxygen species (ROS), such

as singlet oxygen (1 O2), superoxide (O2
-), hydrogen peroxide

(H2O2) or hydroxyl radical (OH
-) in cells (Gratão et al., 2005). In

contrast, maize plants grown in the field under water deficit show an

increase in the activity of antioxidant enzymes (superoxide

dismutase (SOD), ascorbate peroxidase (APX), guaiacol

peroxidase (GPOX), catalase (CAT) and glutathione reductase

(GR)), and in the content of proline (Yousaf et al., 2022; Al-

Mokadem et al., 2023). This increase in antioxidant activity

occurred despite an increase in oxidative stress indicators (H2O,

OH- and Malondialdehyde (MDA) content), and a decrease in

water use efficiency (WUE) and photosynthetic activity. Curiously,

this activation of the antioxidant defense system was not enough to

mitigate the negative effects of water deficit, reflected in the decrease

in grain yield and quality. Additionally, in cowpea plants it was

observed that water stress under field conditions decreased leaf

water potential and increased enzyme activity, reaching 85% in APX

and 231% in CAT, as well as the content of proline and soluble

sugars (Cavalcante et al., 2024).

The increase in ROS induces the oxidation of proteins, DNA

and lipids (Hussain et al., 2020a; Shemi et al., 2021; Yousaf et al.,

2022). This occurs due to the transfer of energy to O2, originating

singlet oxygen (1 O2), from the transfer of up to three electrons to

O2, forming superoxide (O2
-), hydrogen peroxide (H2O2) (H and

hydroxyl radical (OH-) leading to lipid peroxidation of cell

membranes and other compounds (Gill and Tuteja, 2010).

Therefore, cellular detoxification of ROS is an extremely
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important defense mechanism in plants for resilience to water

deficit (Shehzad and Mustafa, 2023).

The plant’s antioxidant defense mechanism is primarily based

on the action of enzymes such as superoxide dismutase (SOD, EC

1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11) and guaiacol

peroxidase (GPOX, EC1.11.1.7), as well as non-enzymatic

antioxidants such as proline and phenolic compounds (Hua et al.,

2020; Al-Mokadem et al., 2023). SOD acts in the dismutation of O2
-

into H2O2 while APX and GPX in the detoxification of H2O2

transforming it into H2O (Gratão et al., 2005; Hua et al., 2020). In

addition, the contribution of non-enzymatic defense agents, such as

proline, which is an essential osmotic agent, play an important role

in metabolic signaling, while phenolic compounds which are crucial

in detoxifying excess hydrogen peroxide in plant cells (Ahammed

et al., 2020; Bashir et al., 2021).

Water deficiency can trigger secondary effects on plant

metabolism, limiting the absorption and transport of nutrients,

and potassium (K+) stands out (Hu and Schmidhalter, 2005; Qi

et al., 2019). This cation plays a fundamental role in various

physiological and biochemical processes in plants, including the

regulation of stomatal opening and closing, cell osmotic adjustment,

maintenance of water potential and stability of cell turgor pressure

(de Mello Prado, 2021; Johnson et al., 2022a), improving water

relations and increasing water use efficiency (WUE) in drought-

stressed plants (Egilla et al., 2005). However, K deficiency

aggravated by water scarcity greatly impairs plant metabolism and

resistance by triggering worsening oxidative stress (Johnson et al.,

2022a). This effect occurs due to the impairment of stomatal

regulation and photosynthetic CO2 fixation, limiting the

conversion of light energy into chemical energy. As a result, there

is a reduction in the transportation of photoassimilates through the

phloem to the drainage organs (Cakmak, 2005; Sardans and

Peñuelas, 2021).

Actions to mitigate the effects of drought on crops and

guarantee food and water security in the current and future

global scenario are urgent. It is therefore important to seek ways

to intensify the rational use of water in agricultural crops (Besharat

et al., 2020) and at the same time strategies to increase

crop resilience.

Despite the different mechanisms that plants develop to ensure

survival in drought conditions (Shehzad and Mustafa, 2023), an

additional promising strategy is the use of silicon (Rakesh, 2024).

The supply of Si is a beneficial strategy for plants under stress

conditions, because it reduces oxidative damage caused by ROS by

decreasing the content of H2O2, and lipid peroxidation (Rakesh,

2024; Younes et al., 2024). This is due to the multiple benefits

provided by Si, including an increase in the plant’s enzymatic and

non-enzymatic defense system, which work together to protect cell

membranes, minimizing oxidative damage resulting from lipid

peroxidation (Zargar et al., 2019).

Si can improve different aspects of plant physiology, such as

nutrient absorption, photosynthesis, hormone regulation (Pereira

et al., 2024) and decrease oxidative damage (Moldes et al., 2013), by

inducing the transcription of genes involved in defense responses

(Liang et al., 2007; Khandekar and Leisner, 2011; Alberto Moldes
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et al., 2013). Si can also stimulate K absorption in soybean (Miao

et al., 2010), maize plants (dos Santos Sarah et al., 2021),

consequently increase chlorophyll content and photosynthetic

rates in sorghum (Chen et al., 2016), bean plants (Gonzalez-

Porras et al., 2024), and improve water use efficiency and

nutritional balance in bean plants grown under field conditions

(Teixeira et al., 2024). In this situation, Si is relevant in reducing

oxidative stress (Teixeira et al., 2021) as it decreases H2O2

concentrations in plant cells (Irfan et al., 2023) due to the

regulation of the expression of some genes such as TaSOD,

TaCAT and TaAPX (Ma et al., 2016). This induces the activation

of enzymes responsible for neutralizing and eliminating excess ROS

in plant cells (Mahmoud et al., 2023; Sharf-Eldin et al., 2023; Li

et al., 2024).

This review is structured into three main sections. The first

addresses advances in irrigation for crops, highlighting current

challenges, the impacts on both irrigated and non-irrigated

systems, and emphasizing the importance of efficient water

management in the current context of climate change. The

second section discusses the impacts of water deficit on the plant

antioxidant system, focusing on the main physiological mechanisms

involved in the stress response. Finally, the third section explores

the role of Si and K in modulating the antioxidant system to

enhance plant tolerance to water deficit, with emphasis on

agronomic strategies such as Si fertigation.

For the selection of information, a systematic literature review

was conducted using relevant scientific databases (e.g., Scopus, Web

of Science, PubMed) with specific search queries combining

keywords such as irrigation, fertigation, water stress, silicon,

silicates, potassium, plant antioxidant defense, and antioxidant

enzymes. Studies published within the last 10 years were selected,

with emphasis on experimental research under both field and

controlled conditions, aiming for a comprehensive and up-to-date

analysis of the topics addressed.

A strategy that is still little discussed is the interaction of Si and

K, as these two elements are involved in water use efficiency by

modulating the antioxidant defense system - an aspect that becomes

even more critical in view of the physiological and biochemical

effects triggered by water deficit in plants which is the biggest

challenge facing agriculture as climate change advances.

The aim of this review is to discuss the relevance of drought and

nutritional deficiency to oxidative damage in crops and the role of

silicon and potassium in the antioxidant defense system to enhance
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water use efficiency, including future research perspectives on this

topic. The structure of the review is illustrated in Figure 1.
2 Advances in crop irrigation

The advance of climate change has increased the frequency of

drought in different crops, and this has increased the need

for irrigation.

Irrigation is an essential agricultural practice to guarantee

productivity and food security, especially in regions where rainfall

distribution is irregular or insufficient (Darko et al., 2016). With

technological advances and increased demand for food, irrigation

systems combined with new water-saving strategies have been

widely studied and implemented to optimize the efficient use of

this resource. In this context, sustainable and innovative

technologies are increasingly being developed with the aim of

reducing waste and increasing crop yields, especially in bean and

maize crops (Darko et al., 2016; Al-Mokadem et al., 2023; Awad

et al., 2024).

However, despite its importance, irrigated agriculture is

responsible for approximately 40% of global food production,

while demanding a significant volume of fresh water - which

corresponds to more than 70% of the total available (Elshamly,

2023; Awad et al., 2024). This scenario is even more critical due to

the intensification of droughts, which have become the biggest

challenge for agricultural production worldwide, especially in arid

and semi-arid regions (Ingrao et al., 2023; Awad et al., 2024). In this

context, irrigation has become an indispensable tool for

guaranteeing the stability of crop production under climate

change (Darko et al., 2016), making it essential to develop more

efficient and sustainable methods for using irrigation water, thus

guaranteeing the maintenance of crop productivity.

The adoption of more efficient irrigation technologies makes it

possible to expand the irrigated area and optimize the use of water

resources and can increase crop yields by between 10% and 30%

compared to non-irrigated systems (Darko et al., 2016), which

represents great potential for boosting agricultural production

globally, especially of annual maize-bean crops. Research carried

out under conditions of water deficiency in common beans

indicates that water shortages during critical stages of

development, such as flowering and grain filling, can decrease

yields by up to 36% (Rivera, 2024), due to interference in pod
FIGURE 1

Schematic representation of the thematic structure of the review: The figure illustrates the sequential approach about advances in crop irrigation,
impacts of water deficit on the antioxidant defense system, and the role of silicon (Si) and potassium (K) in enhancing plant resilience.
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formation and grain development (Heshmat et al., 2021). In

addition, recent studies have shown that nutrient absorption,

photosynthetic rate, relative water content (RWC), shoot biomass

and grain yield in bean plants are significantly reduced under

conditions of water stress when compared to optimal irrigation

(Heshmat et al., 2021; Gonzalez-Porras et al., 2024; Teixeira et al.,

2024). Another relevant aspect to consider is the efficiency of water

use in the bean crop (Webber et al., 2006; Darko et al., 2016), a

fundamental parameter for the sustainability of irrigation. These

authors observed that the common bean has lower water use

efficiency under water deficit, which suggests that this crop is not

as adapted to conditions of water scarcity as other cultivars.

Poaceae are highly sensitive to water stress, especially during the

vegetative and reproductive stages (Ge et al., 2012; Al-Mokadem

et al., 2023). Water restriction impairs plant development, as it does

not meet the water consumption of between 390 and 575 mm of

water per year of the crop in drought conditions (Çakir, 2004).

There are reports in controlled environment crops that moderate

and severe water deficit conditions (60% and 40% of field capacity)

cause oxidative stress, increasing the production of reactive oxygen

species (ROS) and decreasing growth and yield in different maize

hybrids (Anjum et al., 2017; Parveen et al., 2019), and also increase

the activity of antioxidant enzymes (SOD, POD, CAT, APX, GR)

and the content of proline and phenolic compounds, compared to

the optimal irrigation condition (Anjum et al., 2017).

Plants grown in the field under water deficit showed greater

oxidative stress due to an increase in MDA, H2O2 and OH-content

(Yousaf et al., 2022), a decrease in water use efficiency (WUE) and

delayed grain maturation under severe water stress (35% of field

capacity) (Ge et al., 2012). In addition, decreasing available soil

water (AW) to 80% and 60% decreased plant height by 23% and

42%, ear length and diameter by 43% and 62%; 44% and 70%, the

number of grains per year by 14% and 36.08%, and yield by up to

10% and 22%, respectively, compared to 100% AW. In addition,

water deficit also decreases chlorophyll content, photosynthetic

activity and nutrient content such as N, P, K and Si in grains (Al-

Mokadem et al., 2023).

In this context, it is necessary to adopt practices that promote

the efficient use of water and the sustainability of production

systems, such as investments in research and development of

irrigation technologies, combined with proper crop management,

which are crucial to guaranteeing food security and the resilience of

crop production in the context of climate change.

Techniques such as supplementary irrigation and proper water

management are essential to mitigate these effects, such as the

adoption of controlled deficit irrigation, precision irrigation systems

such as drip irrigation (Sezen et al., 2005, 2008) and the use of

cultivars that are more tolerant to water stress (Anjum et al., 2017;

Papathanasiou et al., 2022; Mladenov et al., 2023). Other promising

strategies to mitigate water deficit include Si fertigation. Studies

conducted in different locations indicate that maximum yield was

associated with Si application rates of 5.7 to 8.2 kg ha-¹ in common

bean crops (Gonzalez-Porras et al., 2024), 3 mM (SiO2

nanoparticles) in maize crops (Al-Mokadem et al., 2023),and 6 kg

ha-¹, 7 kg ha-¹, and 8 kg ha-¹ in common bean crops under different
Frontiers in Plant Physiology 04
water conditions—namely, 80% (no water deficit) and 60% and 40%

(water deficit) of soil water-holding capacity, respectively (Teixeira

et al., 2024). However, the number of studies indicating the optimal

Si dose for fertigation is still limited to a few soil types, highlighting

the need to establish critical levels or sufficiency ranges of available

Si in irrigated cropping systems.

One advantage of Si application in irrigated systems compared

with rainfed cultivation is the reduction in the optimal Si dose, as

more soluble sources are generally used, such as potassium silicate

and/or a combination with sodium silicate. Another promising Si

source for application in fertigation systems is nanoparticulate

silicon dioxide in colloidal suspension. A potential drawback of Si

fertigation, which requires further investigation, is the risk of Si

leaching, especially in soils with clay content below 35%. Research

in this area needs to advance to optimize Si fertigation management

without losses in cropping systems. Another concern when using Si

in fertigation is the application of solutions with high Si

concentrations (>3 mM), as they may present a risk of

polymerization, which reduces its availability and plant uptake.

Overall, Si fertigation is a promising strategy, but careful

management of this beneficial element is essential to prevent losses.

The beneficial effect of nutrient application, such as potassium,

is further studied, with many reported results, such as those of

Heshmat et al. (2021) in common bean plants and Weisany et al.

(2023) in maize plants.

Prospects include the adoption of sustainable technologies

combined with more effective irrigation methods, which improve

the use of water and fertilizers, contributing to increased

agricultural productivity (Yan et al., 2021; Elshamly, 2023;

Elshamly and Abaza, 2024). The combination of precision

irrigation with fertilizers and biostimulants such as Si is a

promising strategy to revolutionize water management in crops

by reducing water consumption without compromising growth and

production. This is essential to meet the current and future

challenges facing agriculture, given the growing need to optimize

the use of water resources and ensure environmental sustainability.
3 Water deficit and its impact on the
plant’s antioxidant defense system

Water deficit is characterized by insufficient fresh water to meet

the demands of human activities and ecosystems, resulting in low

soil moisture content, which is a consequence of natural climatic

events such as droughts (Balint et al., 2013). Droughts represent one

of the greatest challenges for agriculture today, being characterized

as multidimensional stress due to its recurring nature that is difficult

to predict and is not restricted to a specific region or period (Salehi-

Lisar and Bakhshayeshan-Agdam, 2016). It is a climatic

phenomenon associated with prolonged periods of drought and

low rainfall, directly compromising water availability, especially for

agricultural activities - a scenario that is intensifying in the face of

global climate change (Fang et al., 2023; Ingrao et al., 2023; Zahra

et al., 2023).
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In agriculture, water deficit can be classified into different stages

of stress, mild, moderate and severe, based on the relative water

content (RWC) of the plants (Laxa et al., 2019). The authors add

that, for example, under conditions of mild stress, the RWC varies

between 60-70%, moderate stress between 40-60%, while in severe

stress it can drop to less than 40%, compared to the control which is

≥90%. These stages reflect the progression of water deficit severity,

which can be reached quickly in soils with low water

retention capacity.

Water deficit worsens when water loss through transpiration

exceeds absorption by the roots, decreasing leaf water potential (Y
md), stomatal conductance and carbon assimilation, thus

compromising crop growth and yield (Avila et al., 2021). Low

water content also affects the activity of saccharolytic enzymes, such

as cell wall acid invertases, which reflect in lower carbon

partitioning from the leaves to the drain organs (Chen et al.,

2019; Du et al., 2020). Under these conditions, the availability of

carbohydrates to the reproductive organs decreases due to the

greater accumulation of reducing sugars, soluble sugars, and

starch in the leaves, which intensifies the generation of reactive

oxygen species, leading to oxidative damage (Avila et al., 2021).

Aerobic metabolism naturally results in the formation of highly

reactive and toxic molecules in plant cells, called reactive oxygen

species (ROS). Under normal conditions, they are produced at low

levels in organelles such as chloroplasts, mitochondria and

peroxisomes, with photosystems II (PSII) and I (PSI) in the

thylakoids of chloroplasts being the main sources of these

compounds (Gill and Tuteja, 2010; Sharma et al., 2012).

ROS is a collective term that includes oxygen radicals such as

superoxide anion (O2
-), hydroxyl radical (OH-), peroxyl (ROO-),

etc., as well as other non-radicals such as singlet oxygen (1 O2),

hydrogen peroxide (H2O2) and ozone (O3), etc (Gratão et al., 2005;

Gill and Tuteja, 2010; Sharma et al., 2012; Del Rıó, 2015). Under

conditions of water deficit, the overproduction of these compounds

leads to what is known as “oxidative stress”, which occurs when the

antioxidant defense mechanisms are unable to control the levels of

ROS produced (Sharma et al., 2012), indicating that there is an

imbalance between production and the ability of the antioxidant

defense system to eliminate them efficiently. In high concentrations,

these molecules are extremely cytotoxic, causing serious oxidative

damage to cells by damaging essential macromolecules, causing

lipid peroxidation, protein oxidation, DNA damage, enzyme

inhibition, and ultimately programmed cell death (Hussain et al.,

2020a; Shemi et al., 2021; Yousaf et al., 2022).

During conditions of water deficit stress, plants tend to present

immediate mechanisms to deal with such conditions, the first

reaction being the closure of stomata, which is an efficient

strategy to reduce water loss through transpiration (Sharma et al.,

2012; Ahluwalia et al., 2021). However, this action becomes

harmful, because although stomatal closure mitigates

transpiration, it limits the entry of CO2 into the leaves, negatively

affecting photosynthesis (Chiappero et al., 2019; Laxa et al., 2019;

Abbas et al., 2023). When the light energy absorbed exceeds the

capacity to assimilate CO2 under conditions of water deficit, there is

an overproduction of ROS, and this occurs because when CO2 is in
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low concentration, there is a process of oxygenation of the enzyme

Rubisco (ribulose-1,5-bisphosphate), known as photorespiration,

which causes an increase in the production of H2O2 in the

peroxisomes (Laxa et al., 2019). In addition, the decrease in CO2

affects the reactions of the Calvin-Benson cycle by decreasing the

oxidation of NADPH and the consumption of ATP, leading to the

accumulation of electrons and an excessive reduction in the electron

transport chain (Chiappero et al., 2019). This results in the

reduction of oxygen as an alternative electron acceptor in

photosystem I (PSI), generating superoxide anion (O2
-) and

H2O2, decreasing the regeneration of electron acceptors (NADP+,

NAD+, FAD), which facilitates the transfer of electrons from the

electron transport chain to oxygen, leading to greater production of

ROS (Robinson and Bunce, 2000; Laxa et al., 2019).

Excessive reactive oxygen species (ROS) in plants cause

irreversible damage, including lipid peroxidation, protein damage,

and DNA impairment (Gill and Tuteja, 2010; Sharma et al., 2012).

The excess of ROS causes considerable damage to proteins, leading

to the inactivation of enzymes and increasing their susceptibility to

degradation through processes such as nitrosylation, carbonylation,

disulfide bond formation and glutathionylation, and proteins can

also undergo indirect modifications by conjugating with products

resulting from fatty acid peroxidation (Yamauchi et al., 2008). DNA

is also compromised by deoxyribose oxidation and chain breaks,

which can result in mutations and genomic instability, as well as

triggering processes such as apoptosis (programmed cell death),

necrosis, accelerated dehydration and, in extreme situations, plant

death (Sharma et al., 2012).

Lipid peroxidation is one of the main mechanisms of oxidative

damage in biological systems, characterized by the oxidative

degradation of membrane lipids, mediated by excess ROS (Gill

and Tuteja, 2010; Sharma et al., 2012). It is a process in which highly

reactive lipid-derived radicals such as peroxylipids and

hydroperoxylipids are produced (Gill and Tuteja, 2010). The

effects of this peroxidation include increased fluidity and

permeability of the cell membrane, resulting in membrane

rupture and leakage of electrolytes and other essential

components (Gill and Tuteja, 2010; Sharma et al., 2012).

It has been recognized that the oxidation of polyunsaturated

lipids during lipid peroxidation produces various molecules,

including small hydrocarbon fragments such as malondialdehyde

(MDA). This compound is frequently used as a parameter to

quantify cellular damage and to assess plant tolerance to stress

caused by water scarcity (Yamauchi et al., 2008; Garg and

Manchanda, 2009; Chiappero et al., 2019; Marques et al., 2019).

Increased lipid peroxidation has also been reported in many plants

under water restriction stress, such as bean (Mombeni and Abbasi,

2019), chickpea (Gunes et al., 2007), sunflower (Gunes et al., 2008),

lentil (Biju et al., 2017), sugarcane and energy cane (Teixeira et al.,

2022)) and maize (de Sousa Leite et al., 2023).

The excessive accumulation of ROS is neutralized by

sophisticated and efficient antioxidant defense systems, which

regulate the intracellular levels of these molecules, maintaining a

balance between their production and elimination (Gill and Tuteja,

2010). These systems include a variety of enzymes, such as SOD, EC
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1.15.1.1, APX, EC 1.11.1.11 and GPOX, EC1.11.1.7, as well as non-

enzymatic metabolites (Hua et al., 2020; Al-Mokadem et al., 2023;

Shehzad and Mustafa, 2023), such as proline and phenolic

compounds. The balance between the generation of ROS and the

activity of antioxidant enzymes determines whether cell signaling,

or oxidative damage will occur (Sharma et al., 2012; Kaur and

Asthir, 2017). According to the same authors, under conditions of

water deficit, the imbalance between the accumulation of ROS and

the capacity of the antioxidant system can lead to widespread

oxidative damage, compromising cell survival.

These components act cooperatively to detoxify cells,

neutralizing ROS and protecting them from oxidative damage,

thus ensuring the maintenance of essential metabolic functions

and plant development (Shehzad and Mustafa, 2023). SOD, EC

1.15.1.1 acts in the dismutation of O2
- into H2O2 while APX, EC

1.11.1.11 and GPOX, EC1.11.1.7 act in the detoxification of H2O2

transforming it into H2O (Gratão et al., 2005; Hua et al., 2020). In

addition, there is the contribution of non-enzymatic defense agents,

such as phenolic compounds and proline. The increase in proline

concentration is a notable response in plants exposed to water

deficit and is considered a versatile plant metabolite, because in

addition to being an important Osmo protectant, proline can play a

crucial role as a metabolic signal (Ahammed et al., 2020), while also

acting to increase the redox potential in cells, contributing to

replenishing the supply of NADP+ (Hassine et al., 2008),

providing protection against different types of ROS, such as

hydrogen peroxide, hydroxyl radicals and also singlet oxygen

(Rehman et al., 2021). Phenolic compounds also contribute to the

control and elimination of ROS in plant cells, because phenols are

secondary metabolites produced by metabolic activities with

antioxidant properties, which act by blocking different oxidative

reactions, eliminating free radicals, as well as serving as a substrate

for some enzymes such as peroxidases (Mukarram et al., 2022).
4 The role of Si and K in modulating
the antioxidant defense system in
plant tolerance to water restriction

Silicon (Si) is one of the most abundant mineral elements in the

earth’s crust, after oxygen (Zhu et al., 2020), accounting for up to

28% of the earth’s crust, and silicon dioxide (SiO2) comprises

approximately 50-70% of the soil mass (Epstein, 1994). It occurs

in many forms in the soil, mainly in the form of silicate minerals,

secondary aluminosilicates and different forms of silicon dioxide

(Tubaña and Heckman, 2015). In plant tissue, the Si content is

between 0.1 and 10% of the dry weight, varying between plant

species (Hodson et al., 2005). Based on this, plants were divided into

three groups: (i) non-accumulators or excluders; (ii) intermediate

accumulators; and (iii) accumulators, which must respectively

present the Si content per dry mass corresponding to: <0.5%; 0.5-

1% and >1% (Ma et al., 2002). In general, monocot species from the

Poaceae family are known as Si accumulators, as they have higher

levels of Si accumulation (10-15%) compared to other eudicot

species (0.5% or less) (Hodson et al., 2005).
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Although it is not considered essential for normal plant

development, Si is recognized as a beneficial element, acting

significantly in increasing plant resistance to water and oxidative

stress in various crops (Weisany et al., 2024), playing a similar role

to nutrients such as nitrogen, phosphorus and potassium in

strengthening the plant’s defense mechanisms, contributing to the

stabilization of cell membranes, helping with osmotic regulation

and modulating antioxidant compounds (Li et al., 2024; Rakesh,

2024; Weisany et al., 2024). In addition, Si regulates the expression

of genes associated with antioxidant defense, helping to maintain

the redox balance in stressful situations (Singh et al., 2023; Chen

et al., 2024). This is because Si acts to modulate enzymes that fight

oxidative stress, inducing the expression of defense genes in various

plant species (Liang et al., 2007; Khandekar and Leisner, 2011;

Alberto Moldes et al., 2013). Other benefits of Si include the ability

to reduce the effects of K deficiency by stimulating its absorption in

soybean (Miao et al., 2010) and corn (dos Santos Sarah et al., 2021)

plants, increase photosynthetic rates and chlorophyll levels in

sorghum (Chen et al., 2016), and modulate the accumulation of

polyphenols and their antioxidant action in barley (Benslima et al.,

2022) grown in pots.

In legumes grown in field conditions, the supply of Si via

fertigation was effective in increasing the efficiency of water use in

plants, promoting photosynthetic adjustment (Gonzalez-Porras

et al., 2024) and nutritional balance (Teixeira et al., 2024). This

effect has also been observed in other plants of the same family, such

as in field-grown canola plants, where the application of Si

nanoparticles (PSN) increased the activities of antioxidant

enzymes (peroxidase (POD) and catalase (CAT)), reduced

oxidative damage, improved stomatal conductance, relative leaf

water content and fatty acid composition, resulting in better grain

oil quality (Alghanem et al., 2025). Similar results were observed in

plants of the Poaceae family, such as wheat, suggesting that Si

improved water use and grain yield (Johnson et al., 2022b), while in

maize plants, Si improved antioxidant enzyme activities (SOD,

POD, CAT, APX, GR), non-enzymatic substances and

photosynthetic activity (Xu et al., 2022). In addition, the

beneficial role of Si has been shown to be effective in different

pot-grown species such as sugar cane and energy cane (Teixeira

et al., 2022), cucumber (Ma et al., 2004), chickpea (Gunes et al.,

2007), sunflower (Gunes et al., 2008), soybean (Shen et al., 2010);

tomato (Shi et al., 2016), lentil (Biju et al., 2017) and cowpea (de

Sousa Leite et al., 2023).

The interest in Si fertilization is because soils have low available

concentrations of the element (Gascho, 2001), and its relevance in

mitigating the deleterious effects of water deficit on plants.

However, most studies have been carried out in controlled

environments growing in containers, and there is still limited

research carried out in field conditions (Barão, 2023). Among the

sources of Si available for use in agriculture, calcium silicates from a

rock (wollastonite) or steel waste have limited solubility, requiring

application with incorporation to increase the solubilization

process. Field studies have shown evidence of the potential of Si

to mitigate the effects of water deficit in wheat plants (Johnson et al.,

2022b). The authors observed that the application of amorphous
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silica significantly reduced the negative effects of water deficit on

plant growth and grain yield, attributed to the benefits mediated by

Si in improving water use efficiency. Similarly, the exogenous

application of Si and SA to plants increased the activities of

antioxidant enzymes and the accumulation of osmolytes,

decreasing the levels of H2O2 and MDA in stressed wheat plants

(Maghsoudi et al., 2019).

One strategy to improve the efficiency of Si absorption by the

plant would be to use soluble sources in fluid form such as soluble

silicates (potassium silicate and sodium silicate) (Liang et al., 2015).

And the appropriate use of these sources in solution with

concentrations that avoid polymerization has been useful for

enhancing absorption and the effects on plant physiology even

under conditions of water deficit (Gonzalez-Porras et al., 2024;

Teixeira et al., 2024). To this end, the use of fertigation can improve

the use of water and fertilizers, contributing to increased

agricultural productivity (Yan et al., 2021; Elshamly, 2023;

Elshamly and Abaza, 2024). However, inadequate management of

this practice can result in losses in soil quality and productivity

associated with environmental impacts due to nutrient leaching and

aquifer contamination (Yan et al., 2021).

The use of Si is known to optimize gas exchange by forming a

physical barrier, reducing transpiration without affecting CO2

assimilation, favoring stomatal conductance and minimizing

oxidative stress by increasing antioxidant enzymes, ensuring

cellular integrity and optimal cellular and plant metabolism.

Another important element in increasing water use efficiency is

potassium. Potassium (K+) is a nutrient for plant metabolism,

acting as a key regulator in various physiological and biochemical

processes (Wang et al., 2013; Johnson et al., 2022a). Its functions

include controlling stomatal opening, cell osmotic balance,

maintaining water potential and preserving turgor pressure,

which are critical factors for the structural and functional

integrity of plants (de Mello Prado, 2021; Johnson et al., 2022a).

K+ also contributes to the survival of plants exposed to various

biotic and abiotic stresses, such as water deficit (Wang et al., 2013),

playing a vital role in activating antioxidant mechanisms and

helping to neutralize ROS. This protective action is directly

associated with its participation in the transport of solutes across

cell membranes and in the synthesis of proteins, fundamental

processes for plant growth and development (Sardans and

Peñuelas, 2021; Johnson et al., 2022a).

K+ deficiency, especially when combined with water scarcity,

can trigger serious metabolic imbalances, reduce photosynthetic

efficiency and plant resistance to adverse conditions (Johnson et al.,

2022a). This is because a lack of this nutrient impairs stomatal

regulation, affecting the conversion of light energy into chemical

energy and the transportation of photoassimilates via the phloem to

the reserve organs (Cakmak, 2005; Johnson et al., 2022a).

Consequently, there is a decrease in photosynthetic efficiency

(Verma et al., 2021), causing serious damage to plant

development, resulting in lower biomass accumulation and

negatively impacting crop yields.

Studies highlight K’s ability to improve water and nutrient

absorption, as well as promoting greater plant resilience to
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limiting water conditions (Alghanem et al., 2025). For example,

it has been observed that in sugar beet plants the application of K

increased the RWC, decreased membrane damage due to the

efficiency of the defense system during water deficit stress (Aksu

and Altay, 2020). In maize plants, the application of K+ was

efficient in osmotic adjustment, contributing to higher nutritional

quality and grain yield (Hussain et al., 2020b; Ul-Allah

et al., 2020).

The joint application of K and Si can promote additive or

synergistic effects on water use efficiency by optimizing stomatal

function (Kaya et al., 2006), since by decreasing leaf transpiration

(Gong et al., 2005), it increases the relative water content in the

leaves (Ahmad & Haddad, 2011) without decreasing the

photosynthesis rate even under water stress (Zhu & Gong, 2014;

Farooq et al., 2016). It is believed that this synergy between K and Si

in gas exchange only occurs due to the stability of the plant’s

metabolism thanks to the action of the antioxidant defense system,

but this needs to be better studied. In addition, Si can improve the

efficiency of potassium use by plants, favoring its transport and

metabolic use (Eneji et al., 2008).

These benefits of Si can increase the leaf area index, reduce the

frequency of irrigation and increase productivity per volume of

water applied, even in K-deficient areas. It should also be noted that

the combined use of K and Si can have a synergistic effect on

physiological performance due to the efficient antioxidant defense

system, resulting in gains in productivity even under conditions of

water limitation and/or deficit irrigation. This Si and K synergy can

increase crop tolerance to moderate water deficits and/or water-

saving irrigation. The main hypothesis is that this interaction

between Si and K may occur because the effect of Si is more

pronounced under stress conditions—specifically K deficiency—

compared to scenarios of nutrient sufficiency, thereby enhancing its

physiological benefits.
5 Future prospects

It is important that silicon researchers focus their efforts on

developing innovative strategies based on optimizing Si fertigation

with adequate doses to ensure greater nutritional efficiency,

minimizing environmental risks and increasing crop resilience

and sustainable productivity. More studies are still needed on the

effects of Si on enzymatic antioxidative mechanisms in field crops,

as different non-nutritional factors are usually interacting with the

soil-plant system and these aspects are little known.

Most studies involving Si are associated with Si accumulator

species, although there are clear indications of the benefits of Si in

the antioxidant defense of non-accumulator species, but more

research is needed on these species to better understand the

mechanisms involved. Studies on the synergy between Si and K

in water use efficiency are lacking at a physiological and

biochemical level, and further research is needed. It is necessary

to test whether this synergy is more evident when K is less than

optimal in the plant. Further research is needed to gain a better

understanding of the role of Si at a transcriptomic level to identify
frontiersin.org

https://doi.org/10.3389/fphgy.2025.1658648
https://www.frontiersin.org/journals/plant-physiology
https://www.frontiersin.org


Ferreira and Prado 10.3389/fphgy.2025.1658648
the activated genes that promote greater crop tolerance to drought

and nutritional deficiency.
6 Conclusion

The main damage caused by water limitation is nutritional,

especially potassium, both of which potentiate oxidative stress and

consequently limit crop growth and productivity. The use of silicon

and/or potassium can reverse this damage by increasing the

enzymatic antioxidant defense system, inducing an increase in

drought and/or nutritional tolerance.

The use of Si in irrigated systems can reduce pressure on water

resources, minimize nutrient leaking and contribute to greater

resilience of the production system in the face of climate change.

Therefore, silicon represents a promising agronomic tool for

improving water use efficiency in irrigated systems, favoring

greater productivity with lower water consumption.

The synergy between potassium and silicon represents an

effective agronomic strategy to increase water use efficiency in

agricultural crops. Applying these nutrients together improves the

physiological performance induced by the plants’ efficient

antioxidant defense system, reduces the negative effects of water

stress and contributes to more sustainable production systems.

Adopting this approach, especially via fertigation, could be

decisive in meeting the water challenges facing agriculture in

the future.
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Del Rıó, L. A. (2015). ROS and RNS in plant physiology: an overview. J. Exp. Bot. 66,
2827–2837. doi: 10.1093/JXB/ERV099

de Mello Prado, R. (2021). Mineral nutrition of tropical plants. Mineral Nutr. Trop.
Plants. doi: 10.1007/978-3-030-71262-4

de Oliveira Filho, A. S. B., de Mello Prado, R., Teixeira, G. C. M., Rocha, A. M. S., de
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