
Original research article
published: 17 June 2011

doi: 10.3389/fpls.2011.00021

from the bark thus acts as a buffer to preclude low water potentials in 
xylem as a result of transpiration peaks. Therefore, there is evidence 
that the living cells of the bark parenchyma, phloem, and cambium 
are among the most important compartments for water storage in 
trees (Lassoie, 1973; Waring et al., 1979; Steppe et al., 2005).

When dehydrating and rehydrating, living cells shrink and swell. 
Because of these elastic properties and following the transpiration 
from leaves and water uptake from roots, the daily rhythms of 
depletion and replenishment of water storage in the outermost 
tissues of the stem cause quantifiable variations in its size, which 
can be measured with automatic dendrometers (Deslauriers et al., 
2003; Giovannelli et al., 2007). As a general rule, stem and roots 
contract in the daytime, when the transpiration and photosynthesis 
processes are vigorous, and expand at night, when water reserves are 
gradually replenished. Most variations in size occur in the elastic 
bark tissues outside the cambium, whereas xylem undergoes only 
small daily variations (Irvine and Grace, 1997). Moreover, under 
the natural ranges of water potential currently reached in the stem, 
changes in radius are directly proportional to the water content in 
bark (Hergoz et al., 1995; Zweifel and Häsler, 2001; Zweifel et al., 
2001; Cermak et al., 2007). Automatic measurements of radius vari-
ations in the stem can therefore provide an effective and sensitive 
proxy for the water status of trees.

INTRODUCTION
In the short term, trees rely on internal storage to constantly fulfill 
their water needs because there may be a significant delay between 
water loss from leaves and water uptake by roots (Cermak et al., 2007). 
Transpiration, mainly during warm and sunny days, induces sudden 
and wide changes in water potential that propagate within the tree, 
initiating the water flow and a wave of water depletion at increasing 
distances from the crown (Chaves et al., 2003). Consequently, the 
water storage capacity in trees is of considerable biological interest 
because it influences the ability to sustain photosynthesis and growth, 
not only during periods of drought (Cruiziat et al., 2002; Cermak 
et al., 2007; Giovannelli et al., 2007; Rossi et al., 2009), but whenever 
water transport occurs within the xylem conduits.

Trees can store water in three different compartments: (i) in sap-
wood, (ii) in the cell walls or inactive vessels, and (iii) within the 
living cells of leaves, bark, and wood rays (Zimmermann, 1983). 
However, water is not necessarily directly available for transpiration 
from all these compartments. If water is rapidly withdrawn from the 
dead cells of xylem, cavitation may occur because of the rigidity of 
this tissue (Jarvis, 1975). Instead, the water stored in the living cells of 
bark can more efficiently contribute to the daily transpiration stream 
because of the elasticity of the tissue and their high connectivity with 
xylem (Herzog et al., 1995; Steppe et al., 2005). The water released 
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Historical climate analyses and current projections indicate that 
the climate is changing at a rate never previously experienced. In 
the past century, mean annual temperature over southern regions 
of Canada has increased by an average of 0.9°C (Zhang et al., 2000). 
This temperature increase affects the hydrological cycle by increas-
ing evapotranspiration of plants and leads to a modification of 
the amount and distribution of precipitation. Consistent with the 
global trend observed at high latitudes (Easterling et al., 2000), 
Canada as a whole is experiencing increased annual precipitation, 
but mainly in the form of snowfall (Zhang et al., 2001; Motha and 
Baier, 2005), while extreme conditions, such as dry periods, are 
occurring more frequently during summer (Zhang et al., 2000). 
There is general agreement that the increase in precipitation will 
be unable to balance the increase in evaporation induced by the 
higher air temperatures, causing declines in soil moisture as well 
as periods of intense drought (Easterling et al., 2000; Motha and 
Baier, 2005). The cold temperatures occurring in the boreal forest 
keep evaporation to a minimum, and the soils are often wet. These 
cold environments with high ground water levels are optimal condi-
tions for the growth of black spruce [Picea mariana (Mill.) B.S.P.]. 
However, because of its shallow root system (Polomski and Kuhn, 
1998), black spruce may be dramatically dependent on precipita-
tions, so modifications to the temperature and rainfall distribution 
could significantly affect growth and survival of the individuals 
growing on shallower soils with reduced water availability.

In conifers, the daily rhythms of water depletion and replenish-
ment are determined by several factors such as soil water content, 
atmospheric vapor pressure deficit (VPD), and rainfall (Zweifel 
et al., 2005; Deslauriers et al., 2007). During the growing season, 
precipitation events <1 mm can be quickly followed by a marked 
stem swelling (Braekke and Kozlowski, 1975; Zweifel et al., 2005). 
Therefore, even minor variations in the precipitation regime may 
have an important impact on water storage replenishment in trees. 
In the boreal forest, the consequences of a warming on the dynam-
ics of growth have recently been estimated (Rossi et al., 2011), 
but the influence of a changing precipitation regime on the water 
reserves of trees is unknown because the relationships between 
plants and water in the boreal forest have been less studied and a 
number of factors play a role in the responses of trees to water stress. 
Developing a clear understanding of the way black spruce reacts to 
specific climatic and weather conditions could provide information 
for predicting the responses of the boreal forest to future global 

changes. We therefore monitored radius variation in black spruce 
in continuum using stem and root dendrometers. Specifically, the 
aims of the study were (1) to investigate the amplitude and duration 
of the daily cycle of radius variation (2) to compare the responses 
to precipitation events in two sites with different soil characteristics 
in the boreal forest of Quebec, Canada.

MATERIALS AND METHODS
STUDy SITES
The study was carried out in two black spruce stands in the boreal 
forest of Quebec, Canada. The first site, BER, is located at 611 masl 
in the Monts Valins (48°51′N, 70°20′W). The second site, SIM, 
is in the Parc des Laurentides at 350 masl (48°12′N, 71°14′W). 
Both sites are typical, even-aged and mature stands established 
after a forest fire, with black spruce being the dominant species. 
The climate is continental, with long cold winters and short warm 
summers. BER is colder, with a higher soil water content and snow 
depth than in SIM, although the amount of rainfall is similar in 
the two sites (Table 1). Soils of both stands are classified as podzols 
formed on post-glacial till deposits, but the depth of the organic 
layer in BER ranges between 20 and 40 cm, while that in SIM is only 
10–20 cm. The maximum rooting depth in SIM is thus restricted 
by the bedrock and adventitious roots appear to be disposed almost 
horizontally on the top of the soil. By contrast, rooting is deeper 
in BER, with the adventitious roots plunging into the soil at an 
angle of c.a. 60°.

DATA COLLECTION
Six trees were sampled at each study site among those with upright 
stem and growth patterns similar to the average of the stand 
(Table 1). The homogeneity in growth rates was assessed during a 
preliminary investigation by extracting wood cores and counting 
the number of tracheids in three previous tree rings (Lupi et al., 
2010). The study was conducted from mid-June to mid-September 
2008. This period corresponded approximately to the period of 
vigorous growth observed in this species and in the same sites (Rossi 
et al., 2011).

Electronic point dendrometers (Agricultural Electronics Corp., 
Tucson, AZ, USA) were used to measure tree radius variations 
in continuum (Figure 1). All trees were equipped with a point 
dendrometer installed at breast height. A further nine dendrom-
eters, six in SIM and three in BER, were installed at 20 cm from 

Table 1 | Characteristics of climate and studied trees [height, diameter at breast height (DBH), and age] of two black spruce stands in the boreal 

forest of Quebec, Canada.

Site Annual 

temperature 

(°C)

May to 

September 

temperature 

(°C)

Characteristics of climate Characteristics of the studied trees

Absolute 

maximum 

temperature 

(°C)

Absolute 

minimum 

temperature 

(°C)

June to 

September 

soil water 

content (%)

May to 

September 

rainfall 

(mm)

Maximum 

snow 

depth 

(cm)

Height 

(m)

DBH (cm) Age

SIM 1.9 13.3 32.3 −34.8 50.4 401.8 108 21.2 ± 3.1 18.0 ± 3.0 88

BER 0.2 11.4 30.3 −36.2 81.3 425.4 132 18.1 ± 2.1 19.6 ± 3.8 145

Data are based on records covering the period 2002–2008.
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In each site, a weather station was installed in a forest gap close 
to the studied trees to measure environmental parameters. Air and 
soil temperature, relative humidity, volumetric soil water content, 
and rainfall were recorded every 5 min and hourly means or sums 
were computed and stored in the datalogger. The probe for soil tem-
perature and the time domain reflectometer for soil water content 
were installed in the middle part of the organic layer.

ExTRACTINg RADIUS vARIATION
The time-series of root and stem radial variation measured with 
dendrometers were processed to detect the phases of contraction 
and expansion according to the stem cycle approach (Downes et al., 
1999; Deslauriers et al., 2003) by using the SAS routines provided 
by Deslauriers et al. (2011). The contraction phase was considered 
as the period between a maximum and a minimum radius. The 
expansion phase was the period between a minimum and the next 
maximum radius (Figure 1). The amplitudes of contraction and 
expansion were calculated as the difference between maximum 

the stump along the adventitious roots. More root dendrometers 
were available at SIM because some trees were being monitored 
for another ongoing study. The sensors for the point dendrometers 
were linear variable differential transducers (LVDT) enclosed in an 
aluminum housing and fixed to the tree with stainless steel rods 
having a thermal linear expansion coefficient of 17 μm m−1 C−1 
implanted 6–7 cm deep in the xylem. With this equipment, the 
percentage of metal expansion was less than 1% of stem varia-
tion. A sensing rod held against the surface of the bark measured 
the radius variations, which in our monitoring represented the 
overall variation in size of xylem and phloem together. The den-
drometer sensitivity to temperature and humidity was negligible 
due to the use of dimensionally stable compounds in their manu-
facture. The dead bark was partially removed to minimize error 
due to hygroscopic thickness variations. Data were automatically 
collected every 15 min and hourly means were calculated and 
stored in a CR1000 datalogger (Campbell Scientific, Inc.). Data 
were recorded in legal time.
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Figure 1 | Stem and root dendrometers during assemblage (A,B) and installed on the tree (C,D). Cycles of contraction (light-gray background) and expansion 
(dark-gray background) of radius variation detected by a high-resolution, automatic dendrometer in black spruce. Arrows indicate examples of variations deviating 
from the theoretical diurnal pattern. Modified from Deslauriers et al. (2010).
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the duration of expansion (Figure 4). The duration of contrac-
tion was similar between sites and between stem and roots, with 
values between 2 and 10 h being the most frequent. In contrast, 
ANOVA detected significant differences between sites and meas-
urement heights (stem vs. roots) in the amplitude of contraction 
(ANOVA, bootstrapped F-values, P > 0.05). Greater amplitudes 
were observed in SIM and on the stem. The duration of expan-
sion commonly ranged between 12 and 18 h and did not differ 
significantly either between sites or between measurement heights. 
Significant differences were observed in the amplitude of expansion, 
with the higher values calculated in SIM and on the stem (ANOVA, 
bootstrapped F-statistic, P < 0.05). Compared to contraction, the 
expansion phase had slightly higher amplitudes and lasted sub-
stantially longer (Figure 4). The interactions between sites and 
measurement heights for duration and amplitude were not statisti-
cally significant (bootstrapped F-statistic, P > 0.05), which means 
that the patterns of duration and amplitude were similar between 
sites and measurement heights when data from stem and roots or 
from SIM and BER were pooled.

TIMINgS Of CONTRACTION AND ExpANSION
In BER, the onset of contraction and expansion presented a uni-
modal distribution in the stem, while the distribution showed an 
evident bimodal pattern in roots (Figure 5). The contraction clearly 
started at 07:00 in the stem, while large variations were observed in 
roots, with data concentrated at 09:00 and between 12:00 and 14:00. 
In SIM, the frequency distributions calculated for the onset of con-
traction was unimodal for both stem and root with the maximum 
of occurrence at 07:00. Therefore, only the onset of contraction 
for roots in BER differs from the other measurement height and 
site. The expansion phase began in late afternoon in both stem 

and minimum radius, regardless of the time of the day when they 
occurred. The timings of onset of contraction and expansion were 
also recorded. Because of the variable weather conditions and rainfall 
events, deviations from the theoretical circadian pattern described 
by Hergoz et al. (1995) were observed in all trees within the stand. 
These small variations were maintained in the dataset to accurately 
extract all possible information from the time-series (Figure 1).

STATISTICAL ANALySES
The mean duration and amplitude were compared between 
sites and measurement heights (stem and root) and the interac-
tion between the two factors was tested with analysis of variance 
(ANOVA) using the GLM procedure in the SAS statistical package 
(SAS Institute, Cary, NC, USA). Statistical comparisons between 
the two factors were performed by repetitively and randomly resa-
mpling the original dataset to calculate the average F-statistic and 
related standard deviations of the distribution (Efron, 1979). A 
1000-times-bootstrapping was performed in order to improve the 
robustness of results. The tests were considered non-significant 
(P > 0.05) when the error bars crossed 0 (Chernick, 2008).

Discriminant analysis was performed to calculate the probability 
of observing the contraction according to the hour of the day and 
rainfall. To calculate this probability, contraction was coded in a 
binary response as absent (value 0) or present (value 1) for a given 
hour of the day. The resulting phase-specific densities were used 
to calculate bivariate posterior probability distributions for each 
hour of the day (Hora and Wilcox, 1982). The classification crite-
rion adopted parametric methods based on multivariate normal 
distributions within each class to derive discriminant quadratic 
functions, and assumed unequal variances between classes using the 
observed within-group covariance matrices (DISCRIM procedure 
in SAS; SAS Institute, Cary, NC, USA). Estimates were calculated 
only for values within the ranges of variation of the measurements.

RESULTS
WEATHER pATTERNS
The daily pattern of the air temperature was similar in the two 
sites, with the coldest temperatures observed at 05:00. On aver-
age, air temperature reached 17–18°C between 12:00 and 16:00. In 
SIM, soil temperature closely followed air temperature, as a conse-
quence of the shallow organic layer. In contrast, soil temperature 
in BER was constant, with a maximum range measured during the 
growing period of less than 2°C. During the day, relative humidity 
was similar in the two sites, although lower nighttime values were 
observed in SIM. As a consequence, VPD was always lower in BER, 
especially at night. Soil water content ranged between 60 and 80% 
until mid-July, then gradually decreased, with the more abrupt 
reductions observed in SIM that reached 10% at the beginning of 
September (Figure 2). Similar rainfall amounts of up to 54.1 mm 
were detected in the two sites (Figure 3). Rainfall events occurred 
frequently, with 69 and 67 rainy days observed during the study 
period in BER and SIM, respectively.

COMpARISONS bETWEEN SITES AND MEASUREMENT HEIgHTS
Duration and amplitude of contraction and expansion showed 
frequency distributions positively skewed or distinctly exponen-
tial, with most data concentrated in the lower classes except for 

Figure 2 | Soil water content measured in the two black spruce stands 
of the boreal forest of Quebec, Canada.

Figure 3 | Daily rainfall measured in the two black spruce stands of the 
boreal forest of Quebec, Canada.
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DISCUSSION
The higher daily variations in radius observed in stems than in roots 
revealed the internal water use of black spruce. During transpira-
tion, the first sources of water were the compartments closest to 
water loss (Whitehead and Jarvis, 1981), thus water reserves should 
be required according to a polar gradient from needles toward the 
roots. As a consequence, the upper part of the stem is subjected 
to greater tensions than the belowground part of tree (Cruiziat 
et al., 2002; Cermak et al., 2007). Similar results were also observed 
by Zweifel and Häsler (2001) and Cermak et al. (2007). However, 
there is evidence that the thickness of the tissues is proportional 
to the amplitudes of the diurnal stem radius variations (Zweifel 
and Häsler, 2001), and the thicker bark on stems could partially 
explain the differences in amplitude observed between roots and 
stem during the study (Figure 4).

The lack of interaction in the amplitude of contraction and 
expansion between sites and measurement heights suggested that 
water reserves in roots and stems were used in similar proportions. 
However, the use of water reserves differed between the two sites. 
The duration of the daily phases was identical, but the radial varia-
tions in both stem and roots had greater amplitudes in SIM, where 
the higher VPD suggested the occurrence of higher transpiration 
rates, although the lack of data concerning sap flow prevented a 
precise quantification of the differences between sites (Deslauriers 
et al., 2007). During the day, sap flow closely follows the same pat-
tern of variation as VPD, with an abrupt increase occurring early in 
the morning, followed by a plateau and a reduction in the afternoon 
(Anfodillo et al., 1998). Deslauriers et al. (2007) demonstrated that 
both factors have a direct effect on duration and amplitude of the 

and roots and in both sites. In roots, the expansion phase started 
at 16:00 in BER. A wider range of variation was observed in SIM, 
with the onset of expansion occurring between 15:00 and 17:00. 
The onset of stem expansion occurred between 16:00 and 18:00 
in BER and between 15:00 and 17:00 in SIM. As a result, the start 
of the expansion phase was observed 1 h earlier at SIM, for both 
stem and roots.

pOSTERIOR pRObAbILITIES Of CONTRACTION
Although most contractions started between 07:00 and 14:00 
(Figure 5), duration of contraction (calculated as the time between 
onset of contraction and onset of expansion) lasted much longer. 
The probability of observing contraction at any time depended 
on the occurrence of precipitation events (Figure 6). According 
to the bivariate posterior probability, contractions had 60–80% 
probability of being observed between 05:00 and 21:00, with a pre-
cipitation <0.5 mm h−1. Stem contraction had 80–100% probability 
of occurring between 11:00 and 15:00 in BER, with a precipitation 
<0.2 mm h−1. The probability of observing root contraction in BER 
depended less on the hour of the day or amount of precipitation, 
since the distribution pattern was more dispersed. By contrast, root 
contraction in SIM occurred during specific hours and was affected 
by precipitation, since 60–80% probability was located between 
04:00 and 22:00 with a precipitation <0.4 mm h−1 (Figure 6). Also, 
stem contractions in the same site had >60% probability of being 
observed between 05:00 and 20:00 with the same amount of pre-
cipitation. Overall, the probability of observing radius contraction 
decreased at increasing precipitation and <20% probability was 
estimated with rainfall >1.1 mm h−1 (Figure 6).

Figure 4 | Frequency distribution of duration and amplitude of contraction and expansion in stem and roots of black spruce in two stands of the boreal 
forest of Quebec, Canada. The enclosed vertical bars represent mean and twice standard deviation of the bootstrapped F-statistic calculated by 1000 replications. 
Asterisks indicate significant differences (P < 0.05), while differences are considered non-significant (P > 0.05) when the error bars crossed 0.
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contraction phase. The water deficit experienced during the day 
and exhibited by greater contraction, was subsequently balanced 
during the night by one or several equivalent expansion phases. In 
both sites, the replenishment of water storage in stem and roots was 
slower than its depletion. Nevertheless, water availability was lower 
in SIM, especially from mid-July, when soil water content began 
to diverge substantially from that in BER (Figure 2). The larger 
radius variations indicated that the water reserves in SIM were 
more solicited, also demonstrating a less favorable water status of 
the trees in that site. The use of the water stored in the outermost 
tissues of the stem makes trees less dependent on the current water 
availability in the soil. However, although efficient in the short term, 
this strategy cannot be sustained for long because it could result in 
severe declines in the water resources of trees.

In both sites, the onset of water replenishment (i.e. the expansion 
phase) was more dispersed in time compared to the onset of water 
depletion (i.e. the contraction phase; Figure 5). This reflects the key 
role of transpiration in driving water use. The high time resolution 
of our analyses enabled the detection of small radius variations that 
did not follow the theoretical diurnal pattern of radial variation. 

Figure 5 | Circular frequency distribution of onset of the contraction and expansion phases in stem and roots of black spruce in two stands of the boreal 
forest of Quebec, Canada. Hours are reported as legal time.
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Brief rainfall events can initiate a refilling of the water storage any-
time during the day (Figure 6). In SIM, the warmer site and with 
the shallower organic layer, radial variations of stem and roots were 
synchronous, but this was not the case in BER, where the onset of 
contraction in roots was observed to occur later than in the stem. In 
BER, trees are assumed to experience lower transpiration rates asso-
ciated with better water supply and lower temperatures throughout 
growing season in respect to SIM. The climatic conditions are key 
factors in the process of degradation, cycling, and accumulation 
of organic matter, which led to a greater depth of the organic layer 
in the soil of BER. A hypothesis is that the requirement for water 
from roots was markedly lower or even lacking during some days 
in BER, so the observed radius variations could be mostly related 
to water replenishment in other tree compartments.

The importance of precipitation events for the water status in 
black spruce depended on water availability in the soil, which in 
our experimental design was related to the depth of the organic 
layer. The time window with higher probability of observing the 
contraction phase was comparable in the two sites (12 h in BER 
vs. 11 h in SIM). However, a higher amount of precipitation was 
needed in SIM to stop contraction and allow tissues to expand. 
Moreover, during rainy periods, clouds reduce radiation and VPD 
and so decrease transpiration and the demand for water from the 
leaves. Consequently, other environmental factors could affect the 
observed relationships between contraction and precipitation and 
play an important role in the dynamics of depletion and replenish-
ment of water within trees.

In the studied stands, contraction generally occurred between 
06:00 and 17:00, legal time, which is the period between the onset 
of contraction and that of expansion (Figure 5). In similar environ-
ments located in the same region as our sites, balsam fir showed the 
contraction phases occurring between 08:00 and 17:00, legal time, 
when the long cycles associated with precipitations were excluded 
(Deslauriers et al., 2003). In subalpine Norway spruce, Zweifel and 
Häsler (2001) reported the onset of contraction in the stem at 
09:00 during sunny July days, while at the Italian timberline, trees 
exhibited shorter periods of contraction, commonly between 10:30 
and 18:30, solar time (Deslauriers et al., 2007). Compared to these 
results, the onset of contraction at our latitudes occurred earlier. 

It is well known that the alternation between tissue contraction 
and expansion in both stem and roots is largely determined by 
the course of transpiration, availability of water and saturation of 
internal storage tissues (Zweifel et al., 2001). However, to observe 
a marked increase in radius, the final balance between the water 
exchanges in the different compartments (transpiration, water 
uptake, and the cyclic depletion and replenishment of water in 
the outermost tissues of the stem) must result in higher amounts 
of water stored than released. In stem and roots, this is especially 
important in the first stages of growth during the year, when water 
sustains the turgor of the enlarging cells in the developing early-
wood (Rossi et al., 2009). Our results demonstrated that, in the 
boreal forest, precipitation is an important factor in the replenish-
ment of the internal water reserves in trees growing on the shal-
lowest and driest organic layers.

CONCLUSION
This paper demonstrates that the climatic conditions and the depth 
of the soil organic layer can play an important role in maintaining 
the internal water reserves in black spruce. Because of its shallow 
root system, black spruce relies on water supplied by precipitations 
to maintain its water status. Future changes in air temperature and 
precipitation regime modifying water availability could substan-
tially influence the dynamics of water depletion and replenish-
ment occurring in individuals of this species growing in the stands 
with shallower or drier soils. However, this study was not able to 
disentangle the effects of the correlated weather variables on stem 
contraction and expansion, and a more accurate understanding of 
the role of climate on growth is still required to definitively assess 
the dynamics of water storage in trees.

ACKNOWLEDgMENTS
This work was funded by Natural Sciences and Engineering 
Research Council of Canada (NSERC), Consortium de Recherche 
sur la Forêt Boréale Commerciale, Consortium OURANOS, and 
the Ministère des Ressources Naturelles et de la Faune (MRNF). 
The authors thank F. Gionest, D. Laprise, C. Lupi, G. Savard, and M. 
Thibeault-Martel for technical support in the field and A. Garside 
for checking the English text.

Turcotte et al. Dynamics of water storage

www.frontiersin.org June 2011 | Volume 2 | Article 21 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/functional_plant_ecology/archive


Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential conflict 
of interest.

Received: 03 March 2011; paper pend-
ing published: 15 March 2011; accepted: 
03 June 2011; published online: 17 June 
2011.
Citation: Turcotte A, Rossi S, Deslauriers 
A, Krause C and Morin H (2011) 
Dynamics of depletion and replenish-
ment of water storage in stem and roots 
of black spruce measured by dendrome-
ters. Front. Plant Sci. 2:21. doi: 10.3389/
fpls.2011.00021
This article was submitted to Frontiers in 
Functional Plant Ecology, a specialty of 
Frontiers in Plant Science.
Copyright © 2011 Turcotte, Rossi, 
Deslauriers, Krause and Morin. This is 
an open-access article subject to a non-
exclusive license between the authors and 
Frontiers Media SA, which permits use, dis-
tribution and reproduction in other forums, 
provided the original authors and source are 
credited and other Frontiers conditions are 
complied with.

Whitehead, D., and Jarvis, P. G. (1981). 
“Coniferous forests and plantations,” 
in Water Deficits and Plant Growth, ed. 
T. T. Kozlowski (New York: Academic 
Press), 49–52.

Zhang, X., Hogg, W. D., and Mekis, E. 
(2001). Spatial and temporal charac-
teristics of heavy precipitation events 
over Canada. J. Clim. 14, 1923–1936.

Zhang, X., Vincent, L. A., Hogg, W. D., and 
Niitsoo, A. (2000). Temperature and pre-
cipitation trends in Canada during the 
20th century. Atmos. Ocean 38, 395–429.

Zimmermann, M. H. (1983). Xylem 
Structure and Ascent of Sap. Berlin: 
Springer-Verlag.

Zweifel, R., and Häsler, R. (2001). 
Dynamics of water storage in mature 
subalpine Picea abies: temporal and 
spatial patterns of change in stem 
radius. Tree Physiol. 21, 561–569.

Zweifel, R., Item, H., and Häsler, R. (2001). 
Link between diurnal stem radius 
changes and tree water relations. Tree 
Physiol. 21, 869–877.

Zweifel, R., Zimmermann, L., and 
Newbery, D. M. (2005). Modeling 
tree water deficit from microclimate: 
an approach to quantifying drought 
stress. Tree Physiol. 25, 147–156.

Motha, R. P., and Baier, W. (2005). Impacts 
of present and future climate varia-
bility on agriculture in the temperate 
regions: North America. Clim. Change 
70, 137–164.

Polomski, J., and Kuhn, N. (1998). 
Wurze lsy steme . Birmensdorf : 
Eidgenössische Forschungsanstalt für 
Wald, Schnee und Landschaft.

Rossi, S., Morin, H., Deslauriers, A., and 
Plourde, P.-Y. (2011). Predicting xylem 
phenology in black spruce under cli-
mate warming. Global Change Biol. 
17, 614–625.

Rossi, S., Simard, S., Rathgeber, C. B. K., 
Deslauriers, A., and De Zan, C. (2009). 
Effects of a 20-day-long dry period on 
cambial and apical meristem growth 
in Abies balsamea seedlings. Trees 23, 
85–93.

Steppe, K., DePauw, D. J. W., Lemeur, R., 
and Vanrolleghem, P. A. (2005). A 
mathematical model linking tree sap 
flow dynamic to daily stem diameter 
fluctuations and radial stem growth. 
Tree Physiol. 26, 257–273.

Waring, R. H., Whitehead, D., and Jarvis, P. 
G. (1979). The contribution of stored 
water to transpiration in Scots pine. 
Plant Cell Environ. 2, 309–317.

Hergoz, K. M., Häsler, R., and Thum, R. 
(1995). Diurnal changes in the radius 
of a subalpine Norway spruce stem: 
their relation to the sap flow and their 
use to estimate transpiration. Trees 10, 
94–101.

Hora, S. C., and Wilcox, J. B. (1982). 
Estimation of error rates in several 
population discriminant-analysis. J. 
Marketing Res. 19, 57–61.

Irvine, J., and Grace, J. (1997). Continuous 
measurements of water tensions in 
the xylem of trees based on the elas-
tic properties of wood. Planta 202, 
455–461.

Jarvis, P. G. (1975). “Water transfer in 
plants,” in Heat and Mass Transfer in 
the Biosphere. Part 1: Transfer Processes 
in the Plant Environments, eds. D. A. 
De Vries and N. H. Afgan (New York: 
John Wiley), 369–394.

Lassoie, J. P. (1973). Diurnal dimensional 
fluctuations in a Douglas-fir stem in 
response to tree water status. For. Sci. 
19, 251–255.

Lupi, C., Morin, H., Deslauriers, A., and 
Rossi, S. (2010). Xylem phenology 
and wood production: resolving the 
chicken-or-egg dilemma. Plant Cell 
Environ. 33, 1721–1730.

Turcotte et al. Dynamics of water storage

Frontiers in Plant Science | Functional Plant Ecology  June 2011 | Volume 2 | Article 21 | 8

http://www.frontiersin.org/functional_plant_ecology/
http://www.frontiersin.org/functional_plant_ecology/archive

	Dynamics of depletion and replenishment of water storage in stem and roots of black spruce measured by dendrometers
	INTRODUCTION
	MATERIALS AND METHODS
	Study sites
	Data collection
	Extracting radius variation
	Statistical analyses

	RESULTS
	Weather patterns
	Comparisons between sites and measurement heights
	Timings of contraction and expansion
	Posterior probabilities of contraction

	DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES




