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Consequently, the CESA-complex that is active during secondary 
wall formation consists of the three CESA proteins CESA 4, 7, 
and 8 (Turner and Somerville, 1997; Taylor et al., 2000), and the 
primary wall complex of CESA 1, 3, and 6-related CESA proteins 
(Arioli et al., 1998; Desprez et al., 2007; Persson et al., 2007a). At 
least the primary wall complexes are assumed to be guided by 
microtubules at the cell cortex (Paredez et al., 2006); however, 
the mechanism of this process still remains unclear. The absolute 
need for the three CESA proteins for a functional CESA-complex 
suggests that the corresponding genes may exhibit similar spati-
otemporal expression. Indeed, large-scale co-expression analyses 
have confirmed such behavior (Brown et al., 2005; Persson et al., 
2005). In addition, it was also shown that the three CESA genes, 
either the primary or secondary wall CESAs, could readily be used 
as baits to find other co-expressed genes associated with cell wall 
production. These studies revealed that several crucial genes for 
xylan and lignin synthesis were transcriptionally coordinated with 
the secondary wall CESAs (Brown et al., 2005; Persson et al., 2005). 
More recently, similar approaches have also been utilized for genes 
involved in the synthesis of the primary wall hemicellulose xylo-
glucan (Cocuron et al., 2007). This study showed that the CSLC4 
gene in Arabidopsis, which is presumed to make the glucan back-
bone for the xyloglucan, was co-expressed with other genes that 

IntroductIon
Plant cell walls constitute a cellular exoskeleton that molds the 
cell shape and protects the cell against environmental threats 
(Somerville et al., 2004; Liepman et al., 2010). The cell wall mainly 
holds carbohydrate-based polymers, such as cellulose, hemicel-
luloses, and pectins, but also polyphenolic macromolecules, or 
lignins, and various highly glycosylated proteins. Historically, cell 
walls have been divided into primary and secondary walls, largely 
depending on the wall function and on the structural contents 
(Carpita and McCann, 2000). While the primary wall in most higher 
plants holds cellulose, hemicelluloses, and pectins, the secondary 
wall is mainly composed of cellulose, xylans, and lignin.

The carbohydrate-based cell wall components are, with the 
exception of cellulose, synthesized as oligomeric structures in the 
Golgi, and are subsequently transported to the cell surface where 
they are incorporated into the growing cell wall matrix (Geisler 
et al., 2008). In essence, these oligomers are assembled by different 
glycosyltransferases, perhaps working as larger protein complexes 
during synthesis (Lerouxel et al., 2006; Scheller and Ulvskov, 2010). 
Cellulose, on the other hand, is synthesized at the plasma mem-
brane by large cellulose synthase (CESA) complexes (Somerville, 
2006; Mutwil et al., 2008a; Taylor, 2008). These complexes con-
sist of three different, yet structurally related, CESA proteins. 
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BIochemIcal cell wall analyses
For neutral sugar analysis, stems of more than ten different indi-
vidual 9-week-old plants were pooled per sample and then ground 
in liquid nitrogen. The three replicates obtained from this plant 
material were then consecutively washed with 10 ml 70% etha-
nol, 10 ml methanol:chloroform (1:1, v:v) and 10 ml acetone. 
The resulting crude cell wall material was air-dried for 2 days. To 
extract the different cell wall components the material was frac-
tionated. First, pectins were extracted by adding 1.5 ml CDTA 
(1,2-Diaminocyclohexane tetraacetic acid) and shaking the sam-
ples for 12 h at 4°C. After centrifugation for 5 min at 13000 rpm, 
the supernatant was transferred into a fresh 15 ml Falcon tube. 
This extraction was repeated twice and the pooled supernatants 
were dialysed using Spectra/Por dialysis tubes (MWCO: 3.5 kDa, 
Spectrum Laboratories, Rancho Dominguez, CA, USA) for 3 days 
at 4°C in double distilled water, which was exchanged every 12 h. 
With the resulting pellet, this whole procedure was repeated with 
Na

2
CO

3
 and then 4 M KOH. The remaining material after these 

three extractions was the insoluble fraction. All four fractions were 
dried in an Alpha 2–4 lyophilisator (Christ, Osterode, Germany). 
For the analysis of the neutral sugar composition, 1 mg cell wall 
material was transferred to screw-capped eppendorf tubes and 
30 μg inositol was added as internal standard. After hydrolysis 
with 2 M trifluoroacetic acid (TFA), alditol acetates were analyzed 
as described in Neumetzler (2010), which is a modified version 
of the original protocol from Albersheim et al. (1967). Detection 
was performed with an Agilent 6890N GC System coupled with an 
Agilent 5973N Mass Selective Detector (Waldbronn, Germany). 
For analysis of cellulose in the crude cell wall material, Seaman 
hydrolysis (Selvendran et al., 1979) was performed of the pellet 
after trifluoroacetic acid hydrolysis. After this, the hexose content 
was determined with the anthrone assay described in Dische (1962).

mIcroscopIc analyses of xylem vessels
To determine the thickness of the cell wall in xylem cells, 0.5 cm long 
segments from the base of the main stem were fixed in a mixture 
of 2% paraformaldehyde and 2.5% glutaraldehyde on cacodylate 
buffer, pH 7.4 for 4 h at room temperature. The samples were then 
fixed with 2% OsO

4 
on the same buffer for 2 h, dehydrated in series 

of ethanol and propylene oxide and finally embedded in Spurr’s low 
viscosity epoxy resin (Spurr, 1969). The embedded stem segments 
were cut perpendicular to their longitudinal axes. Afterward, the 
surfaces of the created cross sections were diamond-polished down 
to 1 μm. The samples were then coated with a 5 nm gold–palladium 
layer and observed in a Jeol JSM-7500F field emission scanning 
electron microscope with an acceleration voltage of 5 kV using 
a secondary electron in-lens detector. The obtained images were 
analyzed using ImageJ (Rasband, 1997) by measuring the thick-
ness of the cell wall in the middle of the edge of adjacent cells. For 
analysis of the disturbed xylem phenotype, 0.5 cm long pieces from 
the basal part of the main stem were embedded in paraffin as previ-
ously described (Weigel and Glazebrook, 2002) using an ASP300S 
embedding automat (Leica, Wetzlar, Germany). Then, 10 μm thin 
sections were prepared with a RM2265 rotary microtome (Leica, 
Wetzlar, Germany). Phoroglucinol-HCl staining was performed 
directly on the slides. Observations of the xylem cells were made 
with a BX61 (Olympus, Hamburg, Germany) microscope using a 

are associated with xyloglucan synthesis. Furthermore, a broader 
analysis of transcriptional coordination of cell wall-related genes 
in Arabidopsis revealed that members of some gene families tend 
to be co-expressed, e.g., different GH19 family members tend to be 
co-expressed with different CESA members (Mutwil et al., 2009).

To our knowledge, the possibilities of comparative co-expression 
analysis across species remain largely unexplored, with the excep-
tion of a recent study that explored similarities in co-expression 
networks between Arabidopsis and rice for xylan synthesis-related 
genes (Oikawa et al., 2010). By using PlaNet (Mutwil et al., 2011), 
we performed large-scale condition-independent comparisons 
(Mutwil et al., 2008b; Usadel et al., 2009) of primary and secondary 
cell wall-related CESA co-expression networks from seven different 
plant species to discover gene families that are consistently tran-
scriptionally coordinated with cellulose synthesis across species. 
To identify new genes involved in secondary cell wall formation in 
Arabidopsis, we selected genes from gene families that are conserved 
in the co-expression networks of the secondary CESAs across the 
seven species and analyzed their mutant lines. We established a 
statistical pipeline based on biochemical characteristics of the cell 
wall and show that at least one of the analyzed mutants is deficient 
in the secondary wall-related polymer lignin.

materIals and methods
comparatIve co-expressIon analysIs
The respective primary and secondary CESA genes for Arabidopsis 
(253428_at, at4g32410, AtCESA1, and 246425_at, at5g17420, 
AtCESA7), poplar (PtpAffx.23691.1.S1_at, PtCESA1, and 
Ptp.3087.1.S1_at, PtCESA7), rice (Os.10183.1.S2_at, Os05g08370, 
OsCESA1, and Os.10206.1.S1_at, Os09g25490, OsCESA9), barley 
(Contig3478_at, aaf89964.1, HvCESA1, and Contig15116_at, 
bab67900.1, HvCESA5/7), medicago (Mtr.14653.1.S1_s_at, 
Medtr3g136720/Medtr7g099810, and Mtr.10615.1.S1_at, 
Medtr8g145000), soybean (Gma.10862.2.S1_x_at, Glyma04g07220, 
and GmaAffx.3712.1.S1_a, Glyma06g30860.1), and wheat 
(Ta.28561.1.S1_a, UniRef90_A2Y0X2, and Ta.4321.1.A1_at, 
UniRef90_A2WV32) were analyzed using the Network Comparer 
tool from PlaNet (http://aranet.mpimp-golm.mpg.de/aranet/ 
NetworkComparer), which is based on the AraGenNet co-expres-
sion analysis platform (Mutwil et al., 2010). The tool classifies genes 
according to their PFAM (Protein family, Finn et al., 2010) annota-
tion and compares gene vicinity networks two steps away (N = 2; 
Mutwil et al., 2010) from the query genes for re-occurring PFAMs.

plant materIal and growth condItIons
Seeds for all plant-lines used in this study were obtained from 
the Nottingham Arabidopsis Stock Centre (NASC, http://arabi-
dopsis.info). Mutants used for the neutral sugar analysis were all 
in Col-0 background. Homozygous mutants were obtained by 
genotyping using the T-DNA line specific primers and the respec-
tive left border primer of the T-DNA listed in supplementary 
Table S3 in Supplementary Material. Seedlings were first grown 
on MS medium containing 1% sucrose for 2 weeks. Then, plants 
were transferred to standard soil (Einheitserde GS90; Gebrüder 
Patzer, Sinntal-Jossa, Germany) and grown in a greenhouse under 
a 16 h light/8 h dark regime at temperatures 21°C (day) and 
17°C (night).
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silhouette width of the mutants in the cluster. For a clustering with 
k clusters, one can then calculate the overall average of the silhouette 
widths of the k clusters. Larger overall average silhouette width 
indicates better clustering; therefore, the number of clusters with 
maximum overall average silhouette width was taken as the optimal 
number of clusters. The R programming package cluster was used 
to determine the optimal number of clusters with which k-medoid 
clustering was subsequently conducted.

pca and BIplots
Principal component analysis is a standard technique for data 
reduction, from which useful summary biplots can be created. 
Each biplot allows a two-dimensional representation of the mutants 
based on their scores from the first two principle components 
(PCs). We combined the biplot with the clustering results from 
the k-medoids, by including ellipses around each cluster. The load-
ings for the variables (fractions/sugars) are represented in blue in 
the supplementary biplots. PCA was conducted by the R function 
princomp.

results and dIscussIon
conservatIon of certaIn co-expressed proteIn famIlIes 
across specIes usIng prImary and secondary wall cesa  
gene vIcInIty networks
Genes that are transcriptionally coordinated tend to be function-
ally related (Usadel et al., 2009). For example, many genes that are 
co-expressed with the secondary wall CESA genes in Arabidopsis 
are involved in secondary cell wall formation (Brown et al., 2005; 
Persson et al., 2005; Zhong et al., 2008). While these relationships 
now are obvious in Arabidopsis, no large-scale comparative studies 
have been performed to analyze such relationships in other spe-
cies. To carry out such an analysis, we first created a co-expressed 
gene vicinity network for AtCESA7 using the AraGenNet platform 
(Mutwil et al., 2010), which includes most of the essential genes 
for secondary cell wall biosynthesis (Figure 1). This co-expression 
network contains the other two CESAs responsible for secondary 
wall cellulose AtCESA4 and AtCESA8 and many other genes that 
are involved in xylan production, including IRX8 (IRREGULAR 
XYLEM 8), IRX9, GUX1 (GLUCURONIC ACID SUBSTITUTION 
OF XYLAN 1) and the recently identified IRX15 (Peña et al., 2007; 
Persson et al., 2007b; Brown et al., 2009, 2011; Jensen et al., 2011; 
Mortimer et al., 2010), and tentatively in lignin synthesis, such 
as IRX12 (Brown et al., 2005). In addition, several transcription 
factors, such as SND1 (SECONDARY WALL-ASSOCIATED NAC 
DOMAIN 1), and SND2, MYB46, 85, and 103, and IRX11 (Brown 
et al., 2005; Zhong et al., 2007, 2008), which regulate different 
aspects of secondary cell wall formation are also transcriptionally 
coordinated with the secondary CESAs.

The AtCESA7 co-expression network also displayed the cor-
responding PFAM (Finn et al., 2010) for each gene (Figure 1). 
Based on these PFAM associations, we have compared primary 
and secondary cellulose synthesis-related co-expression networks 
of seven species to investigate if those networks consistently include 
genes from certain PFAMs across species. We identified primary and 
secondary cell wall specific CESAs for barley, rice, poplar, Medicago, 
soybean, and wheat to create similar co-expression networks as 
for Arabidopsis. The secondary wall CESAs are normally expressed 

20× objective. Imaging was carried out with a ColorView III digital 
camera (Olympus, Hamburg, Germany) controlled with the cell^P 
software from Olympus. Images were processed for publication 
using Adobe Photoshop CS2 (Adobe, Dublin, Ireland).

lIgnIn measurements
The amount of lignins in selected mutants was analyzed with the 
thioglycolic-acid (TGA) assay as previously described (Campbell 
and Ellis, 1992). However, here, 2 mg of dry crude cell wall material 
was used and directly incubated with 750 μl water, 250 μl concen-
trated HCl, and 100 μl TGA.

data preprocessIng
Seven data sets, each with three replicates, from 18 plant-lines were 
considered in the analysis. The first five data sets correspond to 
the mol percentage values for the crude cell wall material and the 
four different fractions for each of the following sugars: Rhamnose 
(Rha), Fucose (Fuc), Arabinose (Ara), Xylose (Xyl), Mannose (Man), 
Galactose (Gal), and Glucose (Glc). The sixth dataset comprises 
the weight percentage values for each of the following four frac-
tions: CDTA, Na

2
CO

3
, KOH, and insoluble. Since different amounts 

of sugars could be hydrolyzed from each fraction, the dry weight 
percentages of the material extracted by the fractionation were 
normalized according to the total amount of sugars that could be 
measured on the GC–MS for that fraction. Finally, the last data set 
integrates the mol percentage values for the seven sugars of the four 
fractions (CDTA, Na

2
CO

3
, KOH, and insoluble) by normalizing 

each of them to the weight percentage values from the sixth data-
set. Note that the values for Fuc and Ara in the insoluble fraction 
were not considered in the analysis (as they were below detection 
limit across all considered variables, i.e., plants). Each data set was 
represented by a matrix with rows corresponding to the mutants 
and the columns corresponding to the fractions/sugars, such that a 
row defines a profile of a mutant. Clustering and principal compo-
nent analysis (PCA) were then performed on the mean percentage 
values from the three replicates, which were row-wise normalized 
(centered) to zero mean and unit variance.

clusterIng
We applied the k-medoid clustering method, which is a more robust 
version of k-means (Theodoridis and Koutroumbas, 2006). We 
used the Euclidean distance as a similarity measure for mutant 
profiles. To determine the number of clusters k, we employed the 
silhouette validation method (Rousseeuw, 1987). For each mutant 
i, the silhouette width, s(i), is defined as follows: Let a(i) denote 
the average dissimilarity between i and all other mutants placed 
in the same cluster as mutant i. Let b(i) denote the smallest aver-
age dissimilarity of mutant i compared to the mutants in another 
cluster. Then

s i
b i a i

a i b i
( )

( ) ( )

max( ( ), ( ))
= −

If s(i) is close to 1, it means that the mutant has been assigned 
an appropriate cluster. A value of 0 for s(i) implies that the mutant 
lies between clusters, while a value of −1 signifies misclassification. 
Using this method, each cluster could be represented by the  average 
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gene from the six other species, evaluated the expression profiles 
(Figure S1 in Supplementary Material), and validated the genes 
with previously published results (Tanaka et al., 2003; Burton et al., 
2004; Kumar et al., 2009). First, we compared the co-expressed 
gene vicinity networks of the secondary CESAs from the seven 

in roots and stems where large amounts of secondary walls are 
produced, while the primary wall CESAs tend to be more uni-
formly expressed across plant tissues and organs. Based on these 
assumptions we selected the closest homologs of the Arabidopsis 
primary wall-related CESA1 and the secondary wall-related CESA7 

Figure 1 | Co-expression gene vicinity network for AtCESA7 (turqois). 
Nodes indicate individual genes, and edges indicate whether two genes are 
co-expressed above a certain mutual rank. Red, green, and gray nodes 
indicate whether mutations in the gene cause embryophytic lethality (red), 
any biological phenotype (green), or if no mutant phenotype currently is 
available (gray) according to TAIR. Green, orange, and red edges indicate a 
mutual rank relationship 10 (green), 10 but 20 (orange), and 20 but 30 (red), 

respectively, for each connected gene pair. Most genes with acronyms have 
been associated with secondary cell wall production. The genes were 
associated to gene families according to PFAM (protein family) classification, 
and the respective PFAM is indicated below the gene name/AGI-code. Bold 
genes have been included in this study. The network was generated, and 
modified from AraGenNet (http://aranet.mpimp-golm.mpg.de/aranet; Mutwil 
et al., 2010).
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 categories based on their PFAM description (PFAM version 24.0, 
http://pfam.sanger.ac.uk). Core components and gene families that 
were enriched in primary or secondary cell wall and monocots 
or dicots were defined based on the difference of occurrence in 
primary or secondary wall and monocot and dicot specific net-
works, respectively (Figure 3). We hypothesize that the enrichments 
of certain gene families might reflect the differences of cellulose 
biosynthesis between primary and secondary cell wall as well as 
between monocots and dicots. Interestingly, many genes known to 
be involved in cell wall synthesis in Arabidopsis had homologs in 
other species that are also transcriptionally coordinated with the 
respective CESA genes. For example, most co-expression networks 
contained Glycosyltransferase family 8 genes, for which IRX8/

 species using the Network Comparer Tool from PlaNet (Mutwil 
et al., 2011). This analysis revealed that many gene families are 
conserved across species, because we found genes from the respec-
tive PFAM annotation in at least five (green nodes) or four (orange 
nodes) of the seven networks (Figure 2).

For a more comprehensive representation of conserved com-
ponents in cellulose synthesis across species, we have extended the 
analysis of the secondary CESA genes and included also the co-
expression networks of the primary cell wall-related CESAs from 
the seven species. Figure 3 shows only the highly conserved gene 
families that appear in at least eight of the 14 analyzed networks 
(for a complete list see supplementary Table S1 in Supplementary 
Material). The gene families were grouped into functional 

Figure 2 | Consensus co-expression network of secondary cell wall genes 
from seven plant species. Gene vicinity co-expression networks of the 
Arabidopsis CESA7 homologs from barley, rice, poplar, medicago, soybean, and 
wheat were compared for re-occurring gene families (PFAMs). Nodes with their 
respective PFAM description indicate gene families that are enriched across 
species. Nodes and edges colored green, orange, and red represent gene 
families and co-expression relationships between them, that are present in at 

least five, four or two of the selected networks, respectively. For example, in at 
least five of the seven co-expression networks from the different species there 
is at least one gene belonging to the gene family DUF579 (green node in the 
upper right center). Bold PFAMs indicate gene families from which we selected 
genes for further analysis. This network was generated using the Network 
Comparer Tool from PlaNet (http://aranet.mpimp-golm.mpg.de/aranet/
NetworkComparer; Mutwil et al., 2011), and red nodes were removed for clarity.
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their importance in cellulose related cell wall synthesis. In addi-
tion, DUF231 family members were consistently co-expressed with 
the CESA genes across different species, and at least two DUF231-
related gene products have recently been implicated in cellulose 
production (Bischoff et al., 2010).

Intriguingly, also transcription factors, oxidases, as well as tenta-
tive cytoskeletal components, protein degradation, and signaling 
related genes seem to be consistently co-expressed with the CESA 
genes. In particular, several MYB and NAC transcription factors, 

GAUT12 (GALACTURONOSYL TRANSFERASE 12) and GUX1 
(Peña et al., 2007; Mortimer et al., 2010) have been identified in 
Arabidopsis, though their exact function is still unknown. Also, 
COBRA, a GPI-anchored protein important for anisotropic growth 
(Roudier et al., 2005), KORRIGAN, encoding for a endo-1,4-beta-
D-glucanase (Glycosyl hydrolase family 9, Nicol et al., 1998), and 
CTL1, a chitinase-like protein (Glycosyl hydrolase family 19, Zhong 
et al., 2002), had homologs in most of the primary and secondary 
CESA co-expression networks of the seven species, underlining 
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Figure 3 | Analysis of primary and secondary cellulose biosynthesis 
networks in the seven species using Network Comparer. Seven primary 
cell wall and seven secondary CESA gene vicinity co-expression networks 
have been analyzed for enrichment of PFAMs. Total presence of at least one 
gene of the respective PFAM in the fourteen co-expression networks is 
indicated in the first column. The heatmaps in the second and third column 
represent enrichment of a gene family in primary (P) or secondary cell walls (S) 
and monocots (M) or dicots (D) based on the difference of occurrence of 
genes of the respective PFAM in the 14 co-expression networks. For example, 
the genes from the NAM family (Transcription factor section) are present in 
two primary (P) and six secondary (S) co-expression networks (Table S1 in 
Supplementary Material), which sums up to eight in total (first column), and 

the difference of P − S is −4 (second column). At the same time, genes from 
this NAM family are present in five monocot (M) and three dicot (D) 
co-expression networks resulting in a difference M − D of two (third column). 
Any PFAM was defined as enriched in primary or secondary cell walls and 
marked green or orange, if P − S ³ 4 or P − S £ −4, respectively. Enrichment for 
monocots or dicots, with corresponding PFAMs marked in blue and red, was 
defined as M − D ³ 3 or M − D £ −5, respectively, because eight dicot and only 
six monocot networks (corresponding to four dicot and three monocot 
species) were analyzed. Core components (marked in bold letters) were 
defined as gene families that were present in at least ten networks, without 
being enriched in monocots or dicots, nor primary or secondary cell wall 
biosynthesis.
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co-expression networks and selected genes from gene families that 
are conserved across species (highlighted PFAMs in Figure 2). We 
obtained homozygous T-DNA mutant lines corresponding to 17 
genes that were used for further analyses (Table 1; Figure 1). To gain 
a broader overview on the cellulose synthesis-related gene families, 
these genes covered our previously defined categories “Unknown 
function” (i.e., DUF231, 547, 579, 662), “Protein degradation” (i.e. 
zf_C3HC4, Asp), “Signaling” (i.e., PBD and Ras) and “Oxidases” 
(i.e., Cu_oxidase, Cu_bind_like, Figure 3). Gene homology searches 
revealed that many of the genes also are part of larger gene families, 
perhaps suggesting functional redundancies in the absence of one 
homolog. It is also important to point out that several studies have 
been undertaken to identify irregular xylem (irx) mutants, and 
we therefore reasoned that while it is unlikely that any of the new 
mutant lines would exhibit strong defects in xylem morphology it 
appeared plausible that more subtle changes associated with the 
secondary cell wall, such as the sugar compositions, may be evident.

cell wall analyses
To provide a statistical pipeline to assess similarities and differences 
of sugar profiles in mutant lines we developed a combined PCA 
with k-medoid clustering of sugar profiles. To elucidate whether this 
approach may reveal differences of known and unknown secondary 
wall mutants we harvested the lower part of stems and analyzed the 
sugar alditols using GC–MS, and the cellulose content using the 
anthrone assay. Figure 4 shows a subset of the sugar alditol estimates 
from crude cell wall material for wild-type, irx5, irx9, irx12, and 
three T-DNA lines affecting the genes At5g05390 (mutant num-
ber 14), At5g60020 (mutant number 16), and At1g32100 (mutant 
number 18; Table 1). The complete set of sugar alditol estimates is 
available in Table S2 in Supplementary Material, and the cellulose 
measurements in Figure S2 in Supplementary Material. As previ-
ously shown the irx9 had substantial reduction in xylose (Brown 
et al., 2005; Bauer et al., 2006), and the CESA4 deficient irx5 dis-
played about 60% reduction in cellulose as estimated from the 
crude cell wall material. On the other hand, the irx mutant irx12 
displayed very minor changes in its sugar composition and cellulose 
content, similar to what Brown et al. (2005) reported.

To get a more conclusive picture of how the sugar profiles for 
the different mutants relate to each other we used the correspond-
ing values of the profiles for the pipeline outlined above. The PCA 
explain the highest variation among the samples (Figure 4B), 
and should detect similar patterns in the sugar profiles for cer-
tain mutants. To manage the latter, we assessed whether the sugar 
profiles for certain mutants clustered together, i.e., we tried to find 
mutant sugar profiles that were similar to each other but dissimilar 
to the other mutant sugar profiles. We did this by using a k-means 
clustering derivative, referred to as k-medoid (Theodoridis and 
Koutroumbas, 2006). Choosing the right number of clusters is very 
important for the result of these clustering algorithms. To obtain a 
statistically reliable number of clusters we analyzed the sugar pro-
files using the silhouette validation method (Rousseeuw, 1987). This 
method estimates whether a certain mutant sugar profile should 
be classified as belonging to a distinct cluster. This is performed 
by first quantifying the average dissimilarity between one mutant 
sugar profile to other mutant sugar profiles in the same cluster, and 
then comparing this difference against the smallest dissimilarity 

which are secondary cell wall specific according to our analysis, 
have been shown to be involved in secondary cell wall formation 
(e.g., MYB46, MYB83, SND1, SND2, Zhong et al., 2008). Oxidases, 
such as laccases (PFAM annotation: Cu_oxidase) and peroxidases 
were only slightly enriched in secondary cell wall co-expression 
networks, suggesting that in addition to their role in lignification of 
the secondary cell wall they might also have a function in primary 
cell wall biosynthesis. Furthermore, the recently identified cellulose 
synthase interacting protein (CSI) 1 (Gu et al., 2010) belongs to 
the C2 domain-containing family, which was highly enriched in 
the CESA vicinity networks. Although the exact function of CSI1 is 
still unclear, the conserved co-expression across species implies an 
important role in cellulose synthesis of this protein. Interestingly, 
actin and two other cytoskeleton related genes appear more pri-
mary cell wall specific, suggesting a more prominent role of these 
components during primary cell wall biosynthesis. To our sur-
prise also several protein degradation and signaling components 
appeared in our analysis. For example, the highly conserved gene 
family Pkinase_Tyr comprises the THESEUS1 homolog FERONIA 
in Arabidopsis. Both receptor-like kinases are involved in control of 
growth regulation (Hématy and Höfte, 2008, Kessler et al., 2010), 
suggesting that their homologs might play a similar role in other 
species. The function of protein degradation in cell wall biosyn-
thesis is unclear. However, given the importance of trafficking and 
recycling of the CESA-complex (Wightman and Turner, 2010), we 
hypothesize that these components might be involved in removing 
inhibited or defect CESA-complex subunits.

We conclude that many genes in the co-expression networks of 
primary and secondary CESA genes are conserved across species 
indicating that similar genetic modules for cellulose biosynthesis 
are present in higher plants. This demonstrates that cellulose syn-
thesis-related knowledge obtained in the model species Arabidopsis 
is likely to be transferable to other species. However, using this 
comparative analysis we can also attempt to infer gene functions in 
Arabidopsis. For example, several glycosyl hydrolase families (GH3, 
GH16, GH17) are highly conserved in CESA co-regulated clusters 
across species, but do not have any corresponding homologs in the 
Arabidopsis co-expression networks (Table S1 in Supplementary 
Material). This might be due to the fact that only about 63% of the 
Arabidopsis genes are represented on the Affymetrix ATH1 chip and 
the probesets for the respective genes might be missing on the chip 
(e.g., At3g47040 for GH3, At4g13090 and At5g65730 for GH16, and 
At1g11820 for GH17 are not represented on the ATH1 chip). We 
hypothesize that members of these families, whose expression is not 
determined by microarrays, might actually be co-expressed with 
the primary or secondary CESA in Arabidopsis and could constitute 
functional homologs of the respective genes from the other species.

IdentIfIcatIon of putatIve secondary wall-related genes
Several studies have successfully employed the co-expression 
approach to identify new genes, which are associated with sec-
ondary wall cellulose synthesis (for example Brown et al., 2005; 
Persson et al., 2005). However, there are a large number of genes 
that are also closely co-expressed with the secondary CESAs, which 
have not been characterized in previous analyses (Figure 1). To 
identify new genes that are important for secondary wall biosyn-
thesis we made use of the comparative analysis of secondary wall 
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Table 1 | T-DNA insertion information for selected genes, which are enriched in secondary cell wall co-expression networks across species.

Mutant number Agi-code T-DNA line(s)a Annotation PFAM Other speciesb

1 Wild-type Col-0

2 At5g44030 SALK_084627 (exon) CeSA4 (irX5) Cellulose_synt All 6 species

3 At2g37090 SALK_057033 (exon) irX9 Glyco_transf_43 All 6 species

4 At5g01360 SALK_103316 (exon) Protein of unknown function DUF231 All 6 species

5 At5g60720 SALK_055553 (exon) Protein of unknown function DUF547 All 6 species

6 At1g09610 SALK_050883 (exon) Protein of unknown function DUF579 Os, Hv, Pt, Gm, Ta

7 At3g50220 GABI_735E12 (exon) IRX15 DUF579 Os, Hv, Pt, Gm, Ta

8 At2g27740 SALK_013255 (exon) Protein of unknown function DUF662 Os, Ta, Hv

9 At2g03200 SALK_148906 (5′UTR) Aspartyl protease family protein; similar to CDR1 Asp Os, Hv, Pt, Mt, Ta

10 At1g72220 SALK_104510 (5′UTR) Zinc finger family protein zf_C3HC4 Os, Hv, Pt, Gm, Mt

11 At5g16490 SALK_015799 (exon) p21-rho-binding domain-containing protein PBD All 6 species

12 At5g45970 GABI_212D04 (exon) Arabidopsis thaliana RAC 2 Ras Os, Hv, Pt, Gm, Mt

13 At2g38080 SAiL_196_A02 (exon) Laccase (irX12) Cu_oxidase Os, Hv, Pt, Gm, Ta

14 At5g05390 SALK_004019 (exon) Laccase 12 Cu_oxidase Os, Hv, Pt, Gm, Ta

15 At5g01190 SAIL_77_A02 (exon) Laccase 10 Cu_oxidase_2 All 6 species

16 At5g60020 SALK_016748 (exon) Laccase 17 Cu_oxidase_2 All 6 species

17 At1g22480 SAIL_381_C11 (intron) Plastocyanin-like domain-containing protein Cu_bind_like Os, Hv, Pt, Gm, Ta

18 At1g32100 SALK_087014 (intron) 

SALK_058467 (exon) 

SALK_090999 (intron)

Pinoresinol-lariciresinol reductase (PRR1) NmrA Hv, Pt, Gm, Ta

aAll lines are in Col-0 background. bThe respective co-expression networks of the Arabidopsis CESA7 homologs of rice (Os), poplar (Pt), barley (Hv), soybean (Gm), 
medicago (Mt), and wheat (Ta) contained at least one homolog of the respective gene. Bold indicates known genotypes, and corresponding secondary wall phenotypes.
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Figure 4 | Principal component analysis and clustering of crude cell wall 
sugar estimates for the selected mutants. (A) GC–MS analysis of sugar 
alditols of crude cell wall material for indicated mutants. (B) Principal component 
analysis (PCA) of the mol% sugar values from the crude cell wall material. The 
first two components explain 93.12% of the variation. The loadings for the 
variables are displayed in supplementary Figure S3 in Supplementary Material. 

The ellipses indicate clustering of mutant sugar profiles based on the k-mediod 
algorithm. The number of clusters was estimated based on the silhouette width, 
i.e., the dissimilarity in sugar profiles as measured by the Euclidean distances 
between the profiles. Wild-type (black), and mutants affecting cellulose (irx5; 
red), xylan (irx9; blue), and potentially lignin (irx12; orange) are indicated in 
different colors.

Ruprecht et al. Secondary cell wall themes across species

Frontiers in Plant Science | Plant Physiology  July 2011 | Volume 2 | Article 23 | 8

http://www.frontiersin.org/plant_physiology/
http://www.frontiersin.org/plant_physiology/archive


To merge the different sugar profiles from the four fractions into 
one estimate, we normalized the mol percentages of the mutants 
based on their amount of extractable material of the individual 
fractions and performed silhouette width-driven clustering on all 
the values for the four fractions. Hence, these estimates reflect the 
composition of the cell wall in a more detailed way than by only 
analyzing the neutral sugar composition in the crude cell wall mate-
rial. The result in Figure 6 shows that three clusters were apparent, 
where irx9 solely occupied one cluster, and the other two clusters 
held the rest of the mutants.

In summary, we propose that the combined sugar profiling and 
clustering analyses may be useful to classify mutants, a task that 
may be relatively difficult using the raw sugar alditol estimates.

a pInoresInol reductase Is assocIated wIth secondary wall 
IntegrIty
To investigate whether mutations in some of the genes resulted 
in weaker secondary cell walls, we generated hand-cut stem sec-
tions and stained these with Toluidine blue. As expected, none of 
the mutants showed any severe irx phenotype. This may be due 
to extensive genetic redundancy for some of the gene families. 
For example, At5g01360 (assigned to DUF231 pfam) is part of 
a gene family of over 40 genes (Bischoff et al., 2010), of which 
many have over-lapping expression pattern with At5g01360. One 
of these genes is At2g38320, which is co-expressed with the sec-
ondary wall CESA genes. However, some of the mutants appeared 
to have more disturbed xylem vessel shapes as compared to the 
wild-type. We selected one of these mutants, mutant number 18 or 
prr1, to analyze more in detail, and embedded basal mutant stem 
parts in paraffin and cut sections (10 μm) using a microtome. We 
subsequently stained these sections with either Toluidine blue or 
Phloroglucinol–HCl. The mutant stem displayed what appeared 
to be weakened secondary cell walls, with disturbed xylem vessel 
morphology (Figures 7A,B). Since deformed xylem vessels were 
observed in wild-type stems occasionally, the number of deformed 
xylem vessels was counted in three different mutant lines corre-
sponding to the PRR1 gene and in the wild-type. Table 2 clearly 
shows that all of the three prr1 mutant lines contained about twice 
as many xylem vessels with disturbed shapes as wild-type sections. 
Several of these sections also indicated that the secondary walls 
were thinner in the mutants compared to wild-type. Since it is 
difficult to estimate cell wall thickness by using light microscopy 
we embedded basal stem parts in Spurr’s resin, created a plane 
surface perpendicular to the stem axis for detailed analysis by using 
a scanning electron microscope (Figure 7). The thickness of the 
secondary cell walls of the xylem related cells in one of the mutants 
and wild-type was measured. The results indicate that impairment 
of the PRR1 function results in thinner cell walls, and that this most 
likely affects the integrity of the wall.

The PRR1 can reduce pinoresinols to lariciresinols (Nakatsubo 
et al., 2008), and the latter can subsequently be converted into secoiso-
lariciresinols. These structures are part of a larger family of molecules 
generally referred to as lignans, and may work as antioxidants and 
phytoestrogens (Pan et al., 2009). In addition, some of these struc-
tures have also been found in lignin through two-dimensional-NMR 
studies (Zhang et al., 2003). To investigate whether the prr1 mutants, 
and some of the laccase mutants, caused alterations in lignin related 

between the one mutant sugar profile and mutant sugar profiles 
that are assigned to other clusters. The scores range between −1 
and 1, where a value close to −1 means that the mutant should be 
assigned to another cluster, and a value close to 1 means that the 
mutant is correctly classified. The clustering with the highest aver-
age silhouette width for the sugar profiles from the crude cell wall 
material resulted in an optimal number of two clusters. As seen in 
Figure 4B, most of the mutant profiles were classified as belonging 
to one major cluster. However, at least one of the mutant profiles, 
corresponding to irx9, was retained in its own cluster, and the other 
severe irx mutant, irx5, deviated quite dramatically from the other 
sugar profiles in the larger cluster. These data showed that changes 
in the cell wall composition can be captured by the two methods, 
i.e., PCA and the clustering evaluation.

pca and clusterIng analyses of sugar profIles reveal 
several secondary wall mutant classes
While the crude cell wall sugar measurements are informative for 
mutants with dramatic alterations in certain monosaccharides, 
it is relatively difficult to detect smaller changes associated with 
distinct polymers. To enrich for such small putative changes, we 
fractionated the crude cell walls into four fractions using CDTA, 
which mainly releases Ca2+-chelated polymers such as pectins, 
Na

2
CO

3
, which releases pectic polymers that are associated to other 

polymers by weak hydrogen-bonds, and 4 M KOH, which releases 
hemicellulosic polymers associated by stronger hydrogen-bonds 
to the remaining matrix. In addition, we analyzed the remain-
ing pellet, which largely contains cellulosic polymers. Consistent 
with the supposed fractionation pattern we obtained relatively 
more pectin related monosaccharides, e.g., rhamnose, galactose, 
and arabinose, in the first two fractions, and mainly xylose in 
the third fraction (Table S2 in Supplementary Material). Similar 
to the analysis undertaken for the crude cell wall sugar profiles 
we performed PCA and silhouette width based clustering of the 
mutant sugar profiles for the different fractions (Figure 5). In the 
CDTA fraction we obtained two clusters, one with most of the 
mutants and one containing only irx5. Interestingly, irx12 mutant, 
and also mutant number 14, 16, and 18 were separated on the 
PCA plot. These three mutants correspond to two laccase genes 
and to a pinoresinol reductase (PRR1) gene, respectively (Table 1). 
It is important to note that both the IRX12 and the two laccase 
gene products are proposed to be associated with lignin synthesis, 
and that the gene product from the PRR1 has been shown to be 
involved in the synthesis of lignan (Nakatsubo et al., 2008). The 
main cause for these mutants to separate from the other mutants 
in the PCA plot appeared to be a relative changes in xylose and 
galactose (Figure S3 in Supplementary Material). A similar, but less 
clear, pattern was also seen in the Na

2
CO

3
 fraction where at least 

two of the laccases and the prr1 mutants are contained in a sepa-
rate cluster from the wild-type mainly because of less arabinose 
in the mutants (Figure 5; Figure S3 in Supplementary Material). 
However, these changes were relatively small. It is important to 
note that the results obtained here are based on one T-DNA per 
mutant due to the extensive work load involved in generating the 
profiles from the fractionated material. We can therefore not rule 
out that the observed changes emanate from additional mutations 
in the T-DNA line backgrounds.
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Figure 5 | Principal component analysis and cluster analyses of sugar 
contents from fractionated cell wall material. Principal component analyses 
of the mol% sugar values in the different fractions for each mutant. The 
separation based on the scores from the first two principle components is 
displayed, and the explained variation of these components is indicated below 
each graph. The loadings for the variables are included in supplementary 

Figure S3 in Supplementary Material. The ellipses indicate clustering of mutants 
based on the k-mediod algorithm. The number of clusters was estimated based 
on the silhouette width, i.e., the dissimilarity in sugar profiles as measured by 
the Euclidean distances between the profiles. Wild-type (black), and mutants 
affecting cellulose (irx5; red), xylan (irx9; blue), and potentially lignin (irx12; 
orange) are indicated in different colors.
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Figure 6 | Clustering of combined sugar profiles from the four different 
cell wall fractions. Clustering summary of mutants based on the k-mediod 
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Figure 7 | Mutations in PRR1 cause disturbed xylem shapes, thinner 
secondary cell walls and a decrease in lignin related structures. (A,B) 
Example of stem sections stained with phloroglucinol–HCl for SALK_087014 
(A); affecting PRR1) and wild-type (B). Arrowheads indicate xylem vessels with 
disturbed morphology. Scale bars = 25 mm. (C,D) Secondary cell walls from 

stem sections using scanning electron microscopy from SALK_087014 (C) and 
wild-type (D). Scale bars = 1 mm. (e) Secondary cell wall width from wild-type 
(N = 687) and SALK_087014 (N = 585). Displayed are the means of three 
different stems per line. (F) Thioglycolic-acid analysis of lignin contents in 
different mutants, presumably affecting stem lignification.

structures we measured the lignin content using the Thioglycolic-acid 
(TGA) assay (Campbell and Ellis, 1992). Using this method we found 
that the prr1, irx12, and the laccase mutant number 16 indeed held 
lower levels of lignin related structures, whereas the laccase mutant 
number 14 had similar levels as the wild-type control (Figure 7). It 
is important to note that these analyses only estimate the levels of 
lignin related structures, and do not reflect differences in the structure 
of the structures. Given that these mutants displayed similar trends 
for the sugar profiles in the CDTA fraction it is possible that defects 
in the lignin polymers affect pectin levels, or extractability.

conclusIon
The remarkable transcriptional coordination of the genes associ-
ated with secondary cell wall formation in Arabidopsis suggested 
that similar relationships would also be present in other plant spe-
cies. Indeed, by comparing the co-expression networks of primary 
and secondary CESA genes from seven different plant species we 
find that many components in these networks are conserved across 

Table 2 | Quantification of xylem vessels with disturbed shapes for prr1 

(At1g32100).

genotype Distorted xylem vessel (%) Counted cells

WT Col-0 7.8 N = 1364

SALK_058467 17.7 N = 458

SALK_090999 16.7 N = 436

SALK_087014 20.1 N = 523
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